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ABSTRACT
Hybrid electrical energy storage (HEES) systems, composed of
multiple banks of heterogeneous electrical energy storage (EES)
elements with their unique strengths and weaknesses, have been
introduced to efficiently store and retrieve electrical energy while
attaining performance metrics that are close to their respective best
values across their constituent EES elements. This paper is the first
paper to formally describe the charge allocation problem and pro-
vide a systematic solution method aiming at the maximum charge
allocation efficiency, which performing proper distribution of the
incoming power to selected destination banks. We introduce a gen-
eralized HEES architecture and build the corresponding electrical
circuit models of the chargers and banks. We formulate a mixed in-
teger nonlinear optimization problem, where the objective function
is the global charge allocation efficiency, and the constraints are
energy conservations, with careful consideration of the conversion
power loss in the chargers, rate capacity effect and self-discharge of
the EES elements, charge transfer losses, and so on. We present a
rigorous algorithm to achieve a near-optimal global charge alloca-
tion efficiency for long-term charge allocation process (i.e., tens of
hours.) Experimental results based on a photovoltaic cell array as
the incoming power source and a HEES system comprised on bat-
teries and supercapacitors demonstrate a significant gain in charge
allocation efficiency for the proposed algorithm.
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1. INTRODUCTION
Electrical energy is a high quality form of energy [1] in the sense

that it can easily and efficiently be converted into other forms of
lower quality energy. Electrical energy consumption generally fluc-
tuates over time according to variation of the load demands (e.g.,
an information processing or computing system that is running dif-
ferent applications at different times.) Conventional fossil fuel and
nuclear power plants can generate a steady amount of power but
the rate at which the power generation can be ramped up or down
is low. At the same time, the output power levels of most renew-
able power sources are largely dependent on environmental fac-
tors (e.g., the irradiance level or climate conditions) and thereby
not controllable. Therefore, electricity generation and consump-
tion are typically not matched with each other. Storage of excess
energy avoids energy waste and mitigates over-investment in power
generation facilities by shaving the peak power demand. Electrical
energy storage (EES) systems thus increase availability of the elec-
trical energy, mitigate the supply-demand mismatches, and reduce
the generation capacity required to meet the peak-power demand.

Some actual deployment of grid-scale EES systems (including
both homogeneous and hybrid) to mitigate the gap between the sup-
ply and demand has been described in [2, 3, 4]. However, current
EES systems are mainly homogeneous, that is, they consist of a
single type of EES element, and therefore, suffer from a funda-
mental shortcoming that will plague every homogeneous EES: key
metrics (normalized with respect to capacity) of any homogeneous
EES cannot be better than those of its individual storage elements.

Let’s consider the memory organization in a computer system
to draw analogies to what we propose. Although intensive re-
search has focused on improving the memory technologies, it is
unlikely that a single type of memory will dominate memory sys-
tems because no single type of memory can fulfill all the desir-
able requirements such as low access delay, high density, low cost,
non-volatility, and low power consumption. A practical solution to
overcome this problem has been the use of memory hierarchy com-
prising of heterogeneous types of memory devices that can hide
drawbacks of each memory type while realizing its benefits. A
well designed and controlled memory hierarchy provides the mi-
croprocessor with a memory resource that has the capacity of its
largest component, a level of performance that is close to that of its
fastest component, at a per-bit cost that is close to that of its least
expensive component.

In the same way, a homogeneous EES system approach is not
desirable because none of the existing types of EES elements can
fulfill all the required performance metrics such as power density,
energy density, cost per unit capacity, weight per unit capacity,
round-trip efficiency, cycle life, and environmental effects. This
limitation prevents the adoption of a wide range of socially and
economically useful technologies, such as widespread adoption of



grid-scale EES and electric vehicles (EVs), while causing signifi-
cant inefficiencies in many technologies. Hence, elimination of this
limitation of homogeneous EES systems is the primary motivation
for our research.

A hybrid EES (HEES) system is consisting of different types of
EES elements[5, 6], where each type has its unique strengths and
weaknesses. The HEES system can exploit the strength of each type
of EES element and achieve a combination of performance metrics
that is superior to that of any of its individual EES components.
Based on the properties of the HEES system and characteristics
of power sources (or load devices), we also develop correspond-
ing control policies to operate HEES system properly to achieve a
near-optimal performance. Inspired by memory allocation policy
that are widely used in computing systems, we propose charge al-
location policy aiming to maximize the charge allocation efficiency
by properly distributing power of the incoming power to selected
destination banks. More precisely, we see to answer the follow-
ing questions: i) what is the optimal voltage level for the charge
transfer interconnect (CTI) , ii) among all the possible destination
EES banks, which one(s) should be selected, and iii) among the se-
lected destination EES banks, how to allocate the charging currents
to achieve optimal global charge allocation efficiency for the whole
system over a given time period. The charge allocation efficiency is
determined by the types of the selected banks and the magnitudes
of the charging currents, state of charges (SoCs) of the banks and
characteristics of the external power source. Since SoCs of EES
banks and source power are time dependent, our solution to charge
allocation problem should be online.

In this paper, we introduce a generalized HEES architecture com-
prised of two EES elements (batteries and supercapacitors) and
build the corresponding electrical circuit models for power sup-
plies, chargers, battery banks and supercapacitor banks. We define
global charge allocation efficiency as the ratio of energy received by
EES banks and the total energy provided by power sources over a
given time period. In addition to the energy received by EES banks,
we also consider the power dissipations on internal resistances of
battery bank and supercapacitor bank, power loss on charger during
power conversion and rate capacity effect of battery banks. There-
fore, the global charge allocation efficiency is dependent on the
source power profile, magnitude of charging current and SoC of
each EES bank.

The global charge allocation (GCA) problem is formulated to
optimize the global charge allocation efficiency over a given time
period. To solve the GCA problem, we start from the instanta-
neous charge allocation (ICA) problem, which seeks to optimize
the charge allocation efficiency at a specific instance of time. Since
the ICA problem is essentially a mixed integer non-linear optimiza-
tion problem (MINLP), which is NP-complete, we propose an ef-
fective way of solving the ICA problem and get near-optimal so-
lution in an iterative manner, where in each iteration we solve a
convex optimization problem which can be solved in polynomial
time. Near-optimal solutions of the original GCA problem can
be obtained by incorporating time-dependent constraints for charg-
ing currents of different sets of EES banks in the ICA problem,
and subsequently, solving the ICA problem with the imposed con-
straints at every decision epoch throughout the charge allocation
process. Such constraints force the charge allocation manager to
“consider the future energy production profile”, and thereby, avoid
greedy decisions that may prove wrong e.g., over charging of cer-
tain (high efficiency) EES banks (such a scheme may result in ef-
ficiency degradation if some EES banks are already full.) Experi-
mental results show that the percentage improvement from various
baseline setups ranges from 8.6% to 51.4%.
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Figure 1: Architecture of the proposed HEES system.

2. HEES SYSTEMS

2.1 HEES System Architecture
Figure 1 illustrates a conceptual drawing of the proposed HEES

system architecture. The system comprises of a number of different
EES banks, connected to each other through distributed power con-
verters (i.e., distributed charging and DC/DC conversion circuitry)
and CTI. The power converters and CTI are needed because of the
different state-of-charge (SoC), terminal voltage, and power rating
values for each EES bank, which makes it ill advised to directly
connect the EES banks to one another [5, 7]. Since a typical EES el-
ement has a low voltage rating and a small energy capacity, storage
bank itself is composed of a large number of homogeneous EES el-
ements with same SoCs, organized in an appropriately constructed
two-dimensional array using series and/or parallel connections.

As we mentioned in Section 1, no existing EES elements can
fulfill all the requirements of an ideal energy storage system such
as low capital cost, high cycle efficiency, long cycle life, low self-
discharge rate, and high power and energy densities. For exam-
ple, a Li-ion battery bank provides high energy capacity, low self-
discharge, stable open terminal voltage, and relative low cost, but
suffers from a large rate capacity effect at high input/output power
levels. In contrast, a supercapacitor bank has superior cycle effi-
ciency, a long cycle life, and capability of dealing with a high peak
power demand (of the load devices), but it has small energy ca-
pacity and high self-discharge rate. Therefore, heterogeneous EES
banks, such as battery and supercapacitor banks, can be used in a
complementary manner in an HEES system to exploit the best char-
acteristics (strengths) of each type of EES element while hiding
their shortcomings and weaknesses. According to the properties
of HEES system and characteristics of power source and load de-
vices, some charge management policies, including charge migra-
tion, charge replacement, charge allocation and bank reconfigura-
tion, are needed to achieve better performance [5]. In this paper, we
focus on deriving the near-optimal charge allocation control policy.

2.2 Charge Allocation
Charge allocation policy is to determine the best-suited EES banks

to store the energy that is coming into the HEES system from a
predictable power source. In addition, the charge allocation policy
sets the amount of charging current for each selected EES bank.
More precisely, the optimal charge allocation policy ideally dis-
tributes the incoming charge to all the selected destination banks
and achieves the highest possible charge allocation efficiency, which
implies that the maximum amount of energy can be stored among
the EES banks. Although the optimal charge allocation policy may
be also related to load devices, it is out of scope of this paper.

Figure 2 shows the conceptual architecture of the charge alloca-
tion subsystem in a HEES system. The HEES system contains N
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Figure 2: Charge allocation system.

heterogeneous EES banks, denoted by a set S={1,2, ...,N}, each
consisting a number of homogeneous EES elements. Each EES
bank is connected to the CTI through a charger (which is a type
of power converter.) At any time t, a subset S′(t) ⊆ S is selected
among the N EES banks to receive energy from the power source
through the CTI and the intervening chargers.

The proposed charge allocation framework can be applied to any
kind of power sources, e.g., photovoltaic array, power grid, wind-
mill, etc. The input power and voltage profile of the source, de-
noted by Psrc(t) and Vsrc(t), respectively, are assumed to be given
(or to be predictable.) The power source is connected to the CTI
through a source-to-CTI voltage converter with power loss denoted
by Pc, s(t). This converter supports high voltage and current levels,
and can regulate the voltage on the CTI, denoted by Vcti(t), through
a feedback loop. The current flows from the source, through the
CTI, into (a selected set) of chargers that connect the CTI to des-
tination EES banks. Choosing the optimal Vcti(t) is crucial for the
charge allocation problem. For the kth charger, the input current
(known as the charger input current) and output current (known as
the charging current) are denoted by Icti, k(t) and Idst, k(t), respec-
tively. The charger power loss is denoted by Pc, k(t). For the kth

EES bank, the open circuit terminal voltage (OCV) and closed cir-
cuit terminal voltage (CCV) are denoted by V OC

dst, k(t) and VCC
dst, k(t),

respectively. Generally, V OC
dst, k(t) 6= VCC

dst, k(t) due to the internal
resistance and capacitance. The relation between V OC

dst, k(t) and
VCC

dst, k(t) is specified in Section 3. Psd, k(t) is the self-discharge

power of the kth destination EES bank, depending on the SoC and
bank properties. Notice that if the input power exceeds the max-
imum receiving capability of the HEES system at time t, the ex-
cessive input power cannot be stored but dumped to the ground
(dissipated as heat.) This amount of power is denoted by Pwaste(t),
as shown in Figure 2. The precise definition of charge allocation
efficiency is presented in Section 3.2.

3. PROBLEM FORMULATION

3.1 System Models

3.1.1 Battery bank
As representative electrical energy storage elements, batteries

have advantages of a high energy capacity, a low self-discharge
rate, a stable open circuit terminal voltage, and a relatively low
cost compared with a supercapacitor. Therefore, battery banks are
suitable for long-term and high-energy capacity storage banks. The
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Figure 3: Li-ion battery equivalent circuit model.

proposed charge allocation framework and optimization technique
are general in that they can be applied to any types of battery banks,
provided that accurate and effective battery models are given. In
this paper, without loss of generality, we consider a Li-ion battery
to demonstrate the charge allocation problem in this paper.

We adopt the battery model of a Li-ion battery from [8], as shown
in Figure 3, which includes a runtime-based model on the left as
well as a circuit-based model on the right for accurate capturing of
the battery service life and the I-V characteristics. In this model,
Cb is the remaining charge in the battery, and VSOC is voltaic repre-
sentation of the SoC of the battery, given by:

VSOC = Cb
/

Cb, f ull ×1 V, (1)

where Cb, f ull is the total charge of battery when it is fully charged.
We derive the total charge by converting a nominal battery capacity
in Ahr to the amount of charge in Coulomb as follows:

Cb, f ull = 3600×Capacity×Correction_Factor, (2)

where Capacity is the nominal battery capacity in Ahr. Moreover,
in Figure 3, Ib and Isd denote the charging current and the self-
discharging current (Isd ≈ 0 in battery since the self-discharge is
negligible), respectively; V OC and VCC are the OCV and CCV of
the battery, respectively; Rseries, Rts and Rtl are internal resistances;
and Cts, Ctl are internal capacitances. The battery OCV is modeled
as a voltage-controlled voltage source of VSOC. The other parame-
ters are functions of VSOC as well. The relations are non-linear and
given by:

V OC = b11eb12VSOC +b13V 3
SOC +b14V 2

SOC +b15VSOC +b16,

Rseries = b21eb22VSOC +b23,Rts = b31eb32VSOC +b33,

Cts = b41eb42VSOC +b43,Rtl = b51eb52VSOC +b53,

Ctl = b61eb62VSOC +b63, (3)

where those bi j are empirically parameters [9].
The rate capacity effect of batteries describes that the available

charge or discharge capacity decreases with the increase of charge
or discharge current. We relate the charging efficiency and the
charging current Ib using a concave and monotone decreasing func-
tion ηrate(Ib) [10]. Typically, the rate capacity effect is negligible
in supercapacitors, i.e., ηrate = 1.

In reality, the OCV V OC, CCV VCC, charging current Ib, as well
as voltages and currents on internal resistors and capacitors are
functions of time t. Although the internal resistance and capaci-
tance are also functions of time t (because they are dependent on
SoC value), we omit this dependence since they change with time
t rather slowly. Therefore, when V OC(t) and Ib(t) are given, we
derive VCC(t) as follows without loss of generality:

Ctl ·dVtl(t)
/

dt = Ib(t)−Vtl(t)
/

Rtl ,

Cts ·dVts(t)
/

dt = Ib(t)−Vts(t)
/

Rts,

VCC(t) = V OC(t)+Vtl(t)+Vts(t)+ Ib(t) ·Rs. (4)

Since an EES bank consists of series and parallel connection of a
number of homogeneous (and same SoC) EES elements (e.g., bat-
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teries), the relationship between the bank CCV VCC
dst, k(t) and OCV

V OC
dst, k(t) (1≤ k≤N) in the charge allocation framework is more in-

volved than the CCV-OCV relation of a single EES element. When
the OCV is given (this is typically true since the OCV can be de-
rived from the bank SoC), the CCV shall be determined separately
for each EES element, then combined to obtain the CCV of the
bank, considering the topology inside an EES bank. Note that the
homogeneity among EES elements will help in deriving the bank
CCV. Besides, the self-discharge rate of an EES bank can be calcu-
lated in a similar way.

3.1.2 Supercapacitor bank
As another representative EES elements, although supercapaci-

tors have lower energy density, it have superior characteristics over
batteries or other types of EES elements, in terms of both cycle
efficiency and cycle life. Thus, the supercapacitor banks are com-
monly used to store surplus energy from the battery banks during
low load power demand periods, and provide extra energy during
peak load power demand periods in HEES systems. The electrical
circuit model for the supercapacitor used in this paper contains a
low series resistance (∼25mΩ) [9]. Therefore, the following rela-
tion between the OCV V OC(t) and the CCV VCC(t) at time t holds
for the supercapacitors such that

VCC(t) = V OC(t)+ Ic(t) ·Rseries, (5)

where Ic(t) is the charging current of the supercapacitor at time t.
A primary disadvantage of the supercapacitor is its larger self-

discharge rate compared with other EES elements. A supercapaci-
tor may lose more than 20% of its stored energy per day even if no
load is connected to it [5]. Therefore, for long-term (e.g., tens of
hours) charging or discharging operations, the self-discharge effect
is not negligible. The voltage decay after ∆t is given by:

V OC(t +∆t) = V OC(t) · e−∆t/τ, (6)

where τ is the self-discharge time constant. For a short time interval
∆t, using Taylor Expansion, the power loss at time t due to self-
discharge can be given by:

Psd(t) = Ccap

(
V OC

dst (t)
)2/

τ, (7)

where Ccap is the capacitance of the supercapacitor.

3.1.3 Charger
A charger is a switching converter that can regulate the output

charging current into a desired output charging current value ac-
cording to our proposed algorithm. In this paper, we use a PWM
(pulse width modulation) buck-boost converter model as the charger
model, as shown in Figure 4. The input voltage, input current, out-
put voltage and output current of the charger are denoted by Vin,
Iin, Vout and Iout , respectively. Depending on the relation between
input voltage Vin and output voltage Vout , the charger has two work-
ing modes: a buck mode (if Vin >Vout ) and otherwise a boost mode.

When the charger is turned on, the power loss Pc of the charger con-
sists of three components: conduction loss Pcdct , switching loss Psw
and controller loss Pctrl [11], among which the non-zero switching
loss and controller loss are independent to the output current Iout .
When the charger is turned off, the power loss Pc is zero because
the controller of the charger is turned off in this case. Therefore,
the power loss Pc is given by:

Pc = Pon
c · xc = (Pcdct +Psw +Pctrl) · xc, (8)

where xc is a binary variable with the interpretation that xc = 1 if
the charger is turned on and xc = 0 otherwise.

In the buck mode, the power loss components is given by:

Pcdct =Iout
2 · (RL +D ·Rsw1 +(1−D) ·Rsw2 +Rsw4)

+
(∆I)2

12
· (RL +D ·Rsw1 +(1−D) ·Rsw2 +Rsw4 +RC),

Psw =Vin · fs · (Qsw1 +Qsw2),
Pctrl =Vin · Icontroller, (9)

where D = Vout/Vin is the PWM duty ratio (less than 1) and ∆I =
Vout · (1−D)

/
(L f · fs) is the maximum current ripple; fs is the

switching frequency; Icontroller is the current flowing into the con-
troller; RL and RC are the equivalent series resistances of the induc-
tor L and capacitor C, respectively; Rswi and Qswi are the turn-on
resistance and gate charge of ith MOSFET switch in Figure 4, re-
spectively.

In the boost mode, the power loss components are given by:

Pcdct =

(
Iout

1−D
)2 · (RL +D ·Rsw3 +(1−D) ·Rsw4 +Rsw1 +D · (1−D) ·RC)

+
(∆I)2

12
· (RL +D ·Rsw3 +(1−D) ·Rsw4 +Rsw1 +(1−D) ·RC),

Psw = Vout · fs · (Qsw3 +Qsw4),
Pctrl = Vin · Icontroller, (10)

where D = 1−Vin/Vout and ∆I = Vin ·D
/
(L f · fs).

3.1.4 System Power Analysis
As Figure 2 shows, current flows out of the power source into the

CTI through the source-to-CTI converter, then it flows into chargers
which connect the CTI and selected destination EES banks. There-
fore, the source power Psrc(t) equals to the sum of the power loss
of the source-to-CTI voltage converter Pc, s(t), the power drain to
the ground Pwaste(t), and the power delivered from the CTI to the
inputs of charger, denote by Pcti(t), as follows:

Psrc(t) = Vsrc(t) · Isrc(t) = Pc, s(t)+Pwaste(t)+Pcti(t)

= Pc, s(t)+Pwaste(t)+
N∑

k=1

Pin, k(t), (11)

where Pin, k(t) is the input power of the kth charger from the CTI.
For the kth charger, the relation between the input power Pin, k(t)
and output power, denoted by Pout, k(t), is given by:

Pin, k(t) = Vcti(t) · Icti, k(t) = Pout, k(t)+Pc, k(t),

Pout, k(t) = VCC
dst, k(t) · Idst, k(t), (12)

where Vcti(t), Icti, k(t), VCC
dst, k(t) and Idst, k(t) are the input voltage

Vin, input current Iin, output voltage Vout and output current Iout of
the kth charger, respectively. Note both of Pc, k(t) and Pc, s(t) can
be computed by (8) but using different sets of parameters.



Furthermore, the output power of the kth charger equals to the
sum of three power components, i.e., the power that the kth EES
bank receives, denoted by Pdst, k(t), the power dissipation on the
internal resistance of the EES bank, denoted by Pint, k(t), and the
power loss due to the rate capacity effect for battery banks, denoted
by Prate, k(t). Details of these power components are shown in (13):

Pout, k(t) = Pint, k(t)+Prate, k(t)+Pdst, k(t),

Pint, k(t) =
(
VCC

dst, k(t)−V OC
dst, k(t)

)
· Idst, k(t),

Prate, k(t) = V OC
dst, k(t) · Idst, k(t) ·

(
1−ηrate(Idst, k(t))

)
,

Pdst, k(t) = V OC
dst, k(t) · Idst, k(t) ·ηrate(Idst, k(t)), (13)

where ηrate(Idst, k(t)) is the charging efficiency with consideration
of the rate capacity effect.

Let EHEES(t) denote the energy stored in the HEES system (among
all EES banks) at time t. Then we have:

d
dt

EHEES(t) =
N∑

k=1

Pdst, k(t)−
N∑

k=1

Psd, k(t), (14)

where Psd, k(t) is the self discharge power of the kth EES bank, and
Pdst, k(t) = 0 if the kth bank is not selected to be charged at time t.

3.2 Charge Allocation Optimization Problem
Formulation

Let us consider a charge allocation process starting at time T0
and ending at time T0 + Ta, where Ta is the total time duration of
the charge allocation process. Assume that at time T0, we have
knowledge of the SoCs of all EES banks, based on which we can
determine the EES bank open circuit voltages V OC

dst, k(T0), ∀k ∈ S.
Also assume that the power source profile, i.e., Psrc(t) and Vsrc(t),
is given over the time period [T0,T0 + Ta]. For the charge alloca-
tion problem, there are three sets of variables that we could control
for optimizing the global charge allocation efficiency. The first is
the CTI voltage Vcti(t) which can be controlled by the source-to-
CTI converter. The second is a subset S′(t)⊆ S of destination EES
banks selected among all N EES banks to receive the energy from
the power source. The third is the set of EES bank charging cur-
rents {Idst, k(t)}, k ∈ S which can be controlled by the chargers.
Note that if k 6∈ S′(t), i.e., the kth EES bank is not selected, we
have Idst, k(t) = 0. Therefore, the global charge allocation (GCA)
optimization problem can be formally described as follows:

Given: Initial OCVs of all destination EES banks, V OC
dst, k(T0),

∀k∈ S, power source profile Psrc(t), Vsrc(t), ∀t ∈ [T0,T0 +Ta].

Find: Vcti(t), S′(t), and Idst, k(t), ∀k ∈ S and ∀t ∈ [T0,T0 +Ta].

Maximize: the global charge allocation efficiency, defined by:

ηGCA =
∫ T0+Ta

T0

N∑
k=1

(
Pdst, k(t)−Psd, k(t)

)
dt

/∫ T0+Ta

T0

Psrc(t)dt,

(15)
or equivalently, maximize the total energy stored among all
destination EES banks at time T0 + Ta (at the end of charge

allocation), given by
∫ T0+Ta

T0

N∑
k=1

(
Pdst, k(t)−Psd, k(t)

)
dt.

Subject to:
1) The EES bank charging current must be no less than 0 and
no greater than a maximum current value Imax, k, i.e.,

0≤ Idst, k(t)≤ Imax, k, ∀t ∈ [T0,T0 +Ta], ∀k ∈ S. (16)

2) The system energy constraints, from (8), (11)∼(13),
N∑

k=1

(
Pint, k(t)+Prate, k(t)+Pdst, k(t)+Pc, k(t)

)
+Pc, s(t)≤ Psrc(t),

Pc, k(t) = Pon
c, k(t) · xc, k(t), (17)

where xc, k(t) = 1 if k ∈ S′(t), xc, k(t) = 0 if k 6∈ S′(t), for
∀t ∈ [T0,T0 +Ta].
3) The energy stored in EES bank cannot exceed its maxi-
mum energy capacity Emax, k at any time t, i.e.,

Ek(T0)+
∫ T0+t

T0

(
Pdst, k(τ)−Psd, k(τ)

)
dτ≤ Emax, k, (18)

∀t ∈ [T0,T0 + Ta],∀k ∈ S, where Ek(T0) stands for the initial
energy stored in the kth bank at time T0.

Due to the existence of binary variables xc, k(t), the GCA optimiza-
tion problem is a mixed-integer nonlinear programming (MINLP)
problem which is NP-complete. Therefore certain approximations
shall be made for near-optimal solution of the GCA problem.

4. OPTIMIZATION METHOD
Before solving the global charge allocation (GCA) optimization

problem described in Section 3.2, we first consider the instanta-
neous charge allocation (ICA) problem, which seeks to optimize
the instantaneous charge allocation efficiency at a specific time in-
stance. The ICA problem can be seen as a special case of GCA
problem with Ta → 0, and we will provide the algorithm for solv-
ing the ICA problem and getting near-optimal solution in Section
4.1. Subsequently, we break the whole charge allocation process
into a series of time slots and solve an ICA problem at each deci-
sion epoch with an additional time dependent constraints for charg-
ing currents of different types of EES banks. Finally, we obtain
the near-optimal solution of GCA problem by collecting the near-
optimal solutions of all ICA problems in chronological order.

4.1 Instantaneous Charge Allocation
The ICA optimization problem is described as follows:

Given: At time t, the OCVs of all destination EES banks V OC
dst, k(t),

∀k ∈ S, power source characteristics, Psrc(t) and Vsrc(t).

Find: Vcti(t), S′(t), and Idst, k(t), for ∀k ∈ S at time t.

Maximize: instantaneous charge allocation efficiency, defined by,

ηICA =
N∑

k=1

(
Pdst, k(t)−Psd, k(t)

)/
Psrc(t), (19)

or equivalently, maximize total power received by all EES

banks
N∑

k=1

Pdst, k(t).

Subject to: constraints (16) and (17).

Similar to the original GCA problem, the ICA optimization prob-
lem is again an MINLP problem, which is NP-complete. The ICA
problem becomes a convex optimization problem if the following
three assumptions hold.

• The CTI voltage Vcti(t) is given at time t, instead of a variable
to control.



• The set S′(t) of selected EES banks is given at time t, or
equivalently, xc, k(t) is given for ∀k ∈ S. Note that we only
perform charge allocation optimization on the EES banks be-
longing to S′(t).

• The CCV VCC
dst, k(t) is given at time t for ∀k ∈ S′(t), rather

than a function of Idst, k(t) as in (4) and (5).

We refer the ICA problem with the above three assumptions as
the simplified instantaneous charge allocation (SICA) problem. For
the SICA problem, the optimization variables are only the charging
currents {Idst, k(t)}, k ∈ S′(t). The SICA problem has a concave
objective function (19) to be maximized, with linear inequality con-
straints (16) and convex inequality constraints (17). Thus the SICA
problem is a convex optimization problem and can be solved in
polynomial time, using standard convex optimization tools such as
[12]. Based on this, we propose our algorithm to solve ICA prob-
lem in an iterative manner. In this algorithm, for each subroutine
with a given Vcti(t), we find the near-optimal ICA efficiency with
that given Vcti(t) value, denoted by ηICA(Vcti(t)), in an iterative
manner. In each iteration we heuristically update the selection set
S′(t), the CCV value VCC

dst, k(t), and subsequently solve the SICA
problem until we converge to the near-optimal ηICA(Vcti(t)) value.
By searching in the feasible region of Vcti(t) and repeating this
subroutine for different Vcti(t) values, we finally obtain the near-
optimal solution of the original ICA problem. The searching of
near-optimal control variable Vcti(t) can be accelerated by assum-
ing quasi-concave property of optimal ICA efficiency over Vcti(t)
and and applying effective search algorithm such as the ternary
search to exploit the quasi-concavity property. This assumption
can be validated by simulation results. The pseudo-code of our al-
gorithm is given in Algorithm 1.

In Algorithm 1, the convergence of S′(t) and Vcti(t) at time t
can be proved, and experimental results show quick convergence
of the variables VCC

dst, k(t), ∀k ∈ S′(t). The reason for the quick con-
vergence is that typically the difference between the OCV V OC

dst, k(t)
and the CCV VCC

dst, k(t) is not significant for a destination EES bank,
since if the EES bank has relatively large internal resistance (e.g.,
battery bank), the optimal charging current will be relatively small.

We also implement some enhancements to the algorithm frame-
work shown in Algorithm 1 to accelerate the convergence rate, such
as using pre-computed VCC

dst, k(t) values in future iterations. Details
of such extensions are not discussed in this paper.

4.2 Long-Term Global Charge Allocation
In this section, we consider the GCA problem for long term

charge allocation with given or predictable source profiles during
time [T0,T0 +Ta]. The GCA problem can be solved in the discrete
time space. The duration of each time slot may be in the order of
several seconds or minutes; while the duration of the whole charge
allocation process, given by Ta, may last for several hours. One
intuitive idea would be to solve an ICA problem using Algorithm
1 at every decision epoch (the beginning of each time slot), find
the near-optimal Vcti(t), S′(t) and Idst, k(t), ∀k ∈ S values and then
keep the values unchanged within that time slot, assuming that the
power source profile and SoCs of destination EES banks will not
change significantly during each time slot. However, this idea may
cause greedy decisions of mainly charging the high efficiency banks
(i.e., the banks with little rate capacity effect and small internal
resistance, e.g., supercapacitor banks) first, which may prove not
optimal in the later stage, in the following two aspects.

• Since the volumetric energy densities of the supercapacitor
banks are much lower than the battery banks, it is highly pos-
sible that the former will be fully charged at the very early

Algorithm 1: Solving the ICA problem.

Input: The destination bank OCVs V OC
dst, k(t), ∀k ∈ S, the

source characteristics Psrc(t) and Vsrc(t), the feasible
region of CTI voltage (Vcti, min,Vcti, max), and
predefined parameters ε1, ε2, ε3 and α (0 < α < 1

2 )
Output: The near-optimal CTI voltage Vcti(t), destination

banks selection set S′(t) and charging currents
Iopt
dst, k(t), ∀k ∈ S, at time t

1 repeat
2 for Vcti(t) = (1−α) ·Vcti, min +α ·Vcti, max, α ·Vcti, min +

(1−α) ·Vcti, max, do
3 i← 0
4 Initialize S′(0)(t)← S

5 Initialize VCC, (0)
dst, k (t)←V OC

dst, k(t), ∀k ∈ S′(0)(t)
6 repeat
7 i← i+1, S′(i)(t)← S′(i−1)(t)
8 Solve the SICA problem with fixed Vcti(t),

S′(i−1)(t) and VCC, (i−1)
dst, k (t), ∀k ∈ S′(i−1)(t), find

the optimal {Iopt, (i)
dst, k (t), k ∈ S′(i−1)(t)}

9 ∀k ∈ S′(i−1)(t), if Iopt, (i)
dst, k (t) < ε2 , then

10 Iopt, (i)
dst, k (t)← 0 and S′(i)(t)← S′(i)(t)\k

11 Update the CCV values VCC, (i)
dst, k (t), ∀k ∈ S′(i)(t)

using (4) and (5)
12 until maxk∈S′(i)(t)

∣∣VCC, (i)
dst, k (t)−VCC, (i−1)

dst, k (t)
∣∣ < ε1 and

S′(i)(t) = S′(i−1)(t)
13 Calculate ηICA(Vcti(t)), using (7), (13) and (19)

14 if ηICA
(
(1−α) ·Vcti, min +α ·Vcti, max

)
<ηICA

(
α ·

Vcti, min +(1−α) ·Vcti, max
)
, then

15 Vcti, min← (1−α) ·Vcti, min +α ·Vcti, max

16 else
17 Vcti, max← α ·Vcti, min +(1−α) ·Vcti, max

18 until |Vcti, max−Vcti, min|< ε3

19 return near-optimal Vcti(t), S′(i)(t) and Iopt, (i)
dst, k (t), ∀k ∈ S

stage of the charge allocation process. If so, the system has
to charge battery banks with large charging currents during
the remaining charge allocation process, during which the
ICA efficiency may drop significantly. Therefore the GCA
efficiency over time period [T0,T0 +Ta] may not be optimal.

• The other reason comes from the self-discharge of super-
capacitor banks. According to (7), the self-discharge rate
Psd, k(t) is proportional to the square of V OC

dst, k(t) for super-
capacitor banks. Therefore if we charge the high efficiency
banks with high rate in the early stage, the OCVs of such
banks will grow rapidly, and we will suffer from more se-
vere self-discharge in the later stage. In this way the GCA
efficiency may also be affected.

The key idea to overcome the above two problems and let the charge
allocation manager to “consider the future energy generation pro-
file” is to impose a constraint on the total charging current of the
supercapacitor banks. The constraint shall be time dependent, i.e.,
for higher power input Psrc(t), the constraint shall be looser. In this
paper, we impose a time dependent upper bound on the total charg-
ing current of supercapacitor banks, denoted by Bspc(t). At time



t, the bound is proportional to the input source power Psrc(t), i.e.,
Bspc(t) = βspc ·Psrc(t). Therefore, the following constraint shall be
added to the original ICA problem formulated in Section 4.1.∑

k∈Sspc

Idst, k(t)≤ Bspc(t), (20)

where Sspc ∈ S is the set of supercapacitor banks. We denote the
ICA optimization problem with constraint (23) as the constrained
ICA problem. Note that the constrained ICA problem can be solved
in the similar way as the original ICA problem because the ad-
ditional constraint is a linear inequality constraint. One effective
way of setting the appropriate βspc value for achieving near-optimal
GCA efficiency is to charge the supercapacitor EES banks in such
rate that they become nearly fully charged at the end of the whole
charge allocation process.

Therefore, the near-optimal GCA optimization algorithm we pro-
posed is summarized as follows. At time T0, we globally consid-
ers the whole charge allocation process and determine the coeffi-
cient βspc such that the supercapacitor banks will be (nearly) fully
charged at time T0 + Ta. Then we break the whole charge alloca-
tion process [T0,T0 + Ta] into a series of time slots. At each deci-
sion epoch, we solve the constrained ICA problem, find the near-
optimal Vcti(t), S′(t) and Idst, k(t), ∀k ∈ S values of the constrained
ICA problem and then perform charge allocation using the values
unchanged within that time slot.

We made several improvements on the near-optimal GCA opti-
mization algorithm to reduce the online computation costs, such as
starting with the S′(t) and Vcti(t) from the previous decision epochs
in the following ones, as long as the changes of the power source
profile and SoCs of destination EES banks are within some cer-
tain thresholds, or using variable length time slots instead of fixed
length ones according to the changes of source profile and destina-
tion bank SoCs.

5. RESULTS AND DISCUSSION
We consider two different HEES systems: one is consisting of

four EES banks (two supercapacitor banks and two battery banks)
and the other one is consisting of ten EES banks (four supercapac-
itor banks and six battery banks.) We first apply our proposed ICA
optimization algorithm to these two HEES systems and show the
improvements of the ICA efficiency, respectively. Then we con-
sider two charge allocation processes (one lasts for 6 hours and
the other lasts for 12 hours) and solve corresponding GCA prob-
lems using our proposed GCA optimization algorithm. The base-
line setups we adopt in our experiment include: i) the equal power
charging scheme (EPC, i.e., the input power is equally distributed
into all EES banks), ii) battery banks first scheme (BBF, i.e., the
input power is equally distributed into all battery banks), and iii)
supercapacitor banks first scheme (SBF, i.e., the input power is
equally distributed into all supercapacitor banks, and this scheme
switches to BBF if all supercapacitor banks are fully charged). We
use a constant CTI voltage for the baseline setups, during the whole
charge allocation process. We report the ICA and GCA efficiencies
obtained at several representative CTI voltage values. We use a
Linear Technology LTM4607 converter as the charger and voltage
converter models. The characteristics of the Li-ion battery is ob-
tained by measuring and extracting the parameters of the battery
model given in Figure 3. The characteristics of supercapacitor are
obtained from Maxwell BCAP P270 series.

5.1 Instantaneous Charge Allocation Problem
Table 1 summaries the ICA efficiencies obtained by applying

our proposed ICA optimization algorithm and baseline setups men-
tioned previously to the four banks HEES system, with the OCV of

Table 1: Comparison of ICA efficiencies for a HEES system
with four banks.

N Near-optimal Baseline
Vcti EPC SBF BBF

4 90.1%

15 V 71.3% 71.8% 54.4%
12 V 73.1% 72.4% 54.7%
10 V 74.2% 72.7% 54.7%
8 V 75.1% 72.7% 54.6%
5 V 75.0% 70.7% 54.0%

Table 2: Comparison of ICA efficiencies for a HEES system
with ten banks.

N Near-optimal Baseline
Vcti EPC SBF BBF

10 90.5%

15 V 74.1% 80.3% 51.5%
12 V 74.4% 80.4% 51.6%
10 V 74.5% 80.3% 51.6%
8 V 74.5% 80.0% 51.6%
5 V 72.3% 75.8% 50.7%

8 V, 2 V, 3 V, and 6 V, respectively. The instantaneous power of
the PV array is 40 W. The results show that the proposed algorithm
achieves 15.0% to 36.1% efficiency improvement. Table 2 shows
the results for the ten banks HEES system, with the OCV of 8 V, 8
V, 1 V, 1 V, 4 V, 4 V, 3 V, 3 V, 3 V, and 3 V, respectively. The PV ar-
ray provides instantaneous power of 60 W. Our proposed algorithm
can improve the ICA efficiency by 10.1% to 39.8%. The significant
improvement comes from the full utilization of the high efficiency
bank(s). For example, the charging current for the supercapacitor
bank with OCV of 8 V is much higher than those of the other three
EES banks in the four banks HEES system.

Since the optimal CTI voltage Vcti depends on the power source
characteristics, charge allocation scheme, and SoC and properties
of EES banks, there is no way to determine a generally optimal Vcti.
From Tables 1 and 2, a fluctuation of the ICA efficiency up to 4.6%
can be observed by setting different Vcti values. Hence, it is not
surprising that an inappropriate Vcti can be often used in practice.
In contrast, our proposed ICA optimization algorithm can search
and converge rapidly to the near-optimal Vcti.

5.2 Global Charge Allocation Problem
In the GCA problem, a PV array with a given power profile is

used as the power source. We assume that the solar irradiance pro-
file G is given as a sine function of time t from sunrise to sunset
with the peak achieved at noon [13]. We employ the maximum
power point tracking (MPPT) or maximum power transfer tracking
(MPTT) [14] techniques for the PV array and achieve the optimal
solar energy harvesting. In other words, we maximize the source
power generation Psrc(t), by tracking the optimal source voltage
Vsrc(t) and current Isrc(t), based on the instantaneous variation of
the solar irradiance, shading, temperature at time t. Therefore, both
of Psrc(t) and Vsrc(t) are given in our experiment. We consider the
same HEES systems as in Section 5.1 but the initial OCVs of all the
supercapacitor banks are set to 1 V, assuming they are preemptive
before a long-term charge allocation process.

Tables 3 and 4 list the GCA efficiencies of the target HEES
systems with four EES banks and ten EES banks, respectively.
Based on the experimental results, the GCA efficiency depends
on the selection of charge allocation scheme, the power source
profile, and the properties of EES banks. Although not perform-
ing well in the experiments, BBF is a reasonable charge allocation
scheme for a long-time storing purpose, considering the small self-
discharge rate of the batteries. The results show that no baseline
setup can consistently outperform the other baseline setups. In con-
trast, our proposed near-optimal GCA optimization algorithm can
always achieve a near-optimal GCA efficiency by adaptively setting



Table 3: Comparison of 6 hours process GCA efficiencies for a
HEES system with four banks.

N Near-optimal Baseline
Vcti EPC SBF BBF

4 83.8%

15 V 74.6% 69.8% 32.4%
12 V 74.9% 69.7% 32.4%
10 V 74.8% 69.3% 32.5%
8 V 74.4% 70.4% 32.6%
5 V 71.7% 68.0% 33.1%

Table 4: Comparison of 12 hours process GCA efficiencies for
a HEES system with ten banks.

N Near-optimal Baseline
Vcti EPC SBF BBF

10 82.6%

15 V 70.6% 74.0% 46.9%
12 V 71.0% 73.8% 47.0%
10 V 71.2% 73.7% 47.1%
8 V 70.9% 72.9% 47.2%
5 V 68.5% 70.6% 47.2%
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Figure 5: Comparison of ICA efficiencies, charging currents of
one supercapacitor bank and one battery bank applying differ-
ent charge allocation schemes during 12 hours for a ten bank
HEES system.

Vcti(t) and selecting destination banks S′(t), and properly allocating
charging currents Idst, k(t) among all selected EES banks. For the
four banks HEES system, the source power is a sine function with
peak at 50 W and lasts for 6 hours. The improvement is from 8.9%
to 51.4%. For the ten banks HEES system, we extend our charge
allocation process to a day (i.e., 12 hours using a PV array with
peak power 100 W) and the improvement is from 8.6% to 35.6%.

Figure 5(a) shows the ICA efficiency by applying different charge
allocation schemes versus time during the 12 hours charge allo-
cation process for the ten banks HEES system. The solid curve
with big dots describes the results of our proposed GCA algorithm,
while the solid, dashed and dotted curves stand for that of the SBF,
BBF and EPC, respectively. Figures 5(b) and 5(c) shows the charg-
ing current of one supercapacitor bank (Idst, SB) and one battery
bank (Idst, BB) in the HEES system, respectively. The aggressive
charge allocation scheme such as SBF can achieve a high ICA ef-
ficiency at early stage. However, after all the supercapacitor banks
are fully charged (about 8 hours), SBF has to be switched to BBF,

which has a much lower ICA efficiency (even lower than normal
BBF due to the severe self-discharge of the fully charged super-
capacitor banks.) Hence, SBF cannot guarantee the optimal GCA
efficiency. For conservative charge allocation schemes such as EPC
and BBF, are not able to achieve optimality either because of rela-
tively large rate capacity effect and un-fully utilization of the high
efficiency EES banks.

6. CONCLUSIONS
Hybrid electrical energy storage (HEES) system is one of the

most promising and practical ways to achieve a high performance
and low-cost EES system. This is the first paper that introduces
fundamental concepts of global charge allocation (GCA), including
the system architecture and formal problem definition. The GCA
problem is formulated as a mixed-integer non-linear optimization
problem. We propose a systematic algorithm for the GCA problem
by solving a series of instantaneous charge allocation (ICA) at each
decision epochs with time dependent constraints to avoid greedy
decisions which proved not optimal. Furthermore, we propose an
effective way of solving the ICA problem and getting near-optimal
solution in an iterative manner, where in each iteration we solve
a convex optimization problem which can be solved by standard
convex optimization algorithm in polynomial time. We perform
experiments using a photovoltaic array as the power source and
demonstrate that the proposed algorithm outperforms the baseline
setup by an improvement of 8.6% to 51.4% in GCA efficiency.
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