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ABSTRACT 
To cope with the variations and uncertainties that emanate from 
hardware and application characteristics, dynamic power 
management (DPM) frameworks must be able to learn about the 
system inputs and environment and adjust the power management 
policy on the fly. In this paper we present an online adaptive 
DPM technique based on model-free reinforcement learning (RL), 
which is commonly used to control stochastic dynamical systems. 
In particular, we employ temporal difference learning for semi-
Markov decision process (SMDP) for the model-free RL. In 
addition a novel workload predictor based on an online Bayes 
classifier is presented to provide effective estimates of the 
workload states for the RL algorithm. In this DPM framework, 
power and latency tradeoffs can be precisely controlled based on 
a user-defined parameter. Experiments show that amount of 
average power saving (without any increase in the latency) is up 
to 16.7% compared to a reference expert-based approach. 
Alternatively, the per-request latency reduction without any 
power consumption increase is up to 28.6% compared to the 
expert-based approach. 

Categories and Subject Descriptors: B.8.2 [Performance and 
Reliability]: Performance Analysis and Design Aides. 

General Terms: Algorithms, Management, Performance, Design. 

Keywords: Dynamic Power Management, Bayes Classification, 
Reinforcement Learning. 

1. INTRODUCTION 
Power consumption has become one of the critical concerns in 
design of electronic computing systems. High power consumption 
degrades system reliability, increases the cooling cost for high 
performance systems, and reduces the service time of batteries in 
portable devices. Dynamic power management (DPM), defined as 
the selective shut-off or slow-down of system components that are 
idle or underutilized, has proven to be an effective technique for 
reducing power dissipation at system level [1]. An effective DPM 
policy should minimize power consumption while maintaining 
performance degradation to an acceptable level. Design of such 
DPM policies has been an active research area. 
Bona fide DPM frameworks should account for variations that 
originate from process, voltage, and temperature (PVT) variations 
as well as current stress, device aging, and interconnect wear-out 

phenomena in the underlying hardware. They must also consider 
workload type and intensity variations due to change in 
application behavior. In addition, DPM frameworks must cope 
with sources of uncertainty in the system under their control e.g., 
inaccuracies in monitoring data about the current (power-
performance) state of the system. These sources of variability and 
uncertainty tend to cause two effects: (i) difficulty of determining 
the current global state of the system and predicting the next state 
given a DPM agent’s action, and (ii) difficulty in determining the 
reward (credit assignment) rate of a chosen or contemplated 
action. Thus DPM policies that are statically optimized (and are 
considered to be globally optimal for the modeled system) may in 
reality not achieve optimal performance in the presence of such 
uncertainties and variations. Therefore, adaptive DPM methods 
which are able to learn about the input and environmental 
variations/uncertainties and change the policy accordingly are 
critically important for modern DPM systems. 
Many DPM methods have been proposed in the literature. They 
can be broadly classified into three categories: ad hoc, stochastic, 
and learning based methods. Ad hoc policies are based on the idea 
of predicting whether or not the next idle period length is greater 
than a specific value (the break-even time Tbe). A decision to 
sleep will be made if the prediction indicates an idle period longer 
than Tbe. Among these methods Srivastava et al. [2] use a 
regression function to predict the idle period length while Hwang 
et al. [3] propose an exponential-weighing average function for 
predicting the idle period length.  Ad hoc methods are easy to 
implement, but perform well only when the requests are highly 
correlated; they typically do not take performance constraints into 
account.  
By modeling the request arrival times (rates) and device service 
times (rates) as stationary stochastic processes, stochastic policies 
can take into account both power consumption and performance. 
Stochastic DPM techniques have a number of key advantages 
over ad hoc techniques. First, they capture a global view of the 
system, thus allowing the designer to search for a global optimum 
which can exploit multiple inactive states of multiple interacting 
resources. Second, they compute the exact solution (in 
polynomial time) for the performance-constrained power 
optimization problem. Third, they exploit the vigor and 
robustness of randomized policies.  On the flip side, the 
performance and power obtained by a stochastic policy are 
expected values, and there is no guarantee that the results will be 
optimum for a specific instance of the corresponding stochastic 
process. Second, policy optimization requires a priori Markov 
models of the service provider and service requester. Third, policy 
implementation tends to be more involved. 
In [4], Benini et al. model a power-managed system as a 
controllable discrete-time Markov decision process (MDP) by 
assuming the non-deterministic service time of a request follows a 
geometric distribution. Qiu et al. in [5] model a similar system by 
using a controllable continuous-time MDP with Poisson 
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distribution for the request arrival times and exponentially 
distributed request service times. This in turn enables the power 
manager (PM) to work in an event-driven manner, and thus 
reduce the decision making overhead. Other enhancements 
include time-indexed semi-MDP of Simunic et al. [6]. To cope 
with uncertainties in the underlying hardware state, DPM policies 
based on partially observable Markov decision process (POMDP) 
have been proposed in [7] and [8]. Note that in the aforesaid 
stochastic DPM approaches, request inter-arrival times and 
system service times are modeled as stationary processes that 
satisfy certain probability distributions. In addition, an optimal 
policy for the given controllable MDP can be found only if we 
have knowledge (and model) of the state transition probability 
function and the reward function for the MDP. Reinforcement 
learning is primarily concerned with how to obtain the optimal 
policy for a given MDP when such a model is not known in 
advance. The DPM agent must interact with its environment to 
obtain information which, by means of an appropriate algorithm, 
can be processed to produce an optimal policy. 
Several recent works use machine learning techniques for 
adaptive policy optimization. Compared to simple ad hoc policies, 
machine learning-based approaches can simultaneously consider 
power and performance penalty, and perform well under various 
workload conditions. In [9], an online policy selection algorithm 
is proposed, which generates offline and stores a set of DPM 
policies (referred to as “experts”) to choose from. The controller 
evaluates the performances of the experts at the end of each idle 
period and based on that decides which expert should be activated 
next. The performance of the expert-based approach is close to 
the best performing expert for any given workload. However, the 
effectiveness of such learning algorithm depends heavily on the 
expert selection. Besides, such an algorithm has a limited ability 
to achieve a good power-performance tradeoff. 
Tan et al. in [10] propose to use an enhanced Q-learning 
algorithm for system-level DPM. This is a model-free RL 
approach since the PM does not require prior knowledge of the 
state transition probability function. However the knowledge of 
the state and action spaces and also the reward function is 
required. The Q-learning based DPM learns a policy online by 
trying to learn which action is best for a certain system state, 
based on the reward or penalty received. In this way the PM does 
not depend on any pre-designed experts; and can achieve a much 
wider range of power-latency tradeoffs. However, this work is 
based on discrete-time model of the stochastic process, and thus 
has large overhead in real implementations. Moreover, the 
number of state-action pairs in this system is large, which may 
result in large computational overhead and slow convergence 
speed. 
In this paper, we present a novel approach for RL-based DPM in a 
partially observable environment. While possessing the merits of 
[10] (model free, and independent of any pre-designed experts), 
the proposed approach can perform learning and power 
management in a continuous-time and event-driven manner. Other 
novel characteristics of the proposed work are: 
• The proposed method uses enhanced TD(λ) learning 

algorithm for semi-MDP [11] to accelerate convergence and 
alleviate the reliance on Markovian property.  

• Workload prediction is incorporated in this work to provide 
partial information about service request (SR) state for the RL 
algorithm. Specifically, an online naïve Bayes classifier [14] 
is selected as the workload predictor because of its relatively 
high prediction rate, as well as the fact that the partial 

information it provides contains certain degree of certainty 
due to the use of posterior probability in such algorithm. 

• State and action spaces of the RL algorithm are optimized i.e., 
the number of state-action pairs are greatly reduced. 

It is interesting that our approach allows us to learn the optimal 
timeout policy, which is often the optimal DPM policy when the 
request inter-arrival time is non-exponentially distributed [6]. 
In the proposed method, the tradeoff between power consumption 
and latency can be controlled by a user-defined parameter. 
Experiments on both synthesized and real traces show that the 
proposed PM finds a much “wider” average power and latency 
tradeoff curve compared with prior work references.  
The rest of the paper is organized as follows. Section 2 explains 
basic background of reinforcement learning for SMDP. Section 3 
explains our system model, as well as the workload prediction 
method using an online Bayes classifier. The experimental results 
are presented in Section 4, and we conclude in Section 5. 

2. THEORETICAL BACKGROUD 
2.1 Semi-Markov Decision Processes 
A stationary semi-Markov decision process (SMDP) is a 
continuous-time dynamical system comprised of a countable state 
set, S, and a finite action set, A. The decision maker (DM) can 
choose actions only when system changes state. Suppose that the 
system changes to state s S∈  at the current (transition) epoch, 
and action a A∈  is applied. An SMDP then evolves as follows. 
• At the next epoch, the system transitions to s’ with probability 

( ' | , )p s s a  given that a is chosen in s. Furthermore, the next 
epoch occurs within t time units with probability ( | , , ')p t s a s  
given s, a, and s’. Thus, the next epoch occurs at or before 
time t and the state equals s’ with 
probability '( | ) ( ' | , ) ( | , , ')ssf t a p s s a p t s a s≡ . Let Τ(s,a) 
denote expected value of the current epoch duration. Then, 

'0
'

( , ) (1 ( | ))ss
s S

T s a f t a dt
∞

∈
= − ∑∫ . If this duration is distributed 

exponentially, then SMDP reduces to continuous-time MDP.  
• When DM selects action a in state s, she accrues a reward at 

the rate of ( , )r s a  as long as the system occupies s (before it 
transitions to s’. ) 

A policy {( , ) | , }s a a A s Sπ = ∈ ∈ is a set of state-action pairs for 
all states of an SMDP. We use notation: ( )s a=π  to specify the 
action that is chosen in state s according to policy π . We 
consider the class of stationary and deterministic policies. An 
optimal policy is the one maximizing the total expected reward. 

2.2 Temporal Difference Learning for SMDP’s 
As illustrated in Figure 1, the general reinforcement learning 
model consists of an agent, a finite state space S, a set of available 
actions A, and a reward function :R S A R× → . 

           
        Figure 1: Agent-environment interaction Model. 



Assume that the agent-environment interaction system evolves as 
a stationary SMDP, which is continuous in time but has a 
countable number of events. Then there exists a countable set of 
times {t0, t1, t2,…,tk,…}, known as epochs. At epoch tk, system 
has just transitioned to state sk S∈ . The agent selects an action 
ak A∈  according to some policyπ . At time tk+1, the agent finds 
itself in a new state sk+1, and, in the time period [tk, tk+1), it 
receives a scalar reward with rate rk.  
Suppose system starts at time t0. The return R is defined as the 
discounted integral of reward rate. Furthermore, the value of a 
state s under a policyπ , denoted ( )V sπ , is the expected return 
when starting from s and following π thereafter: 
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where β >0  is a discount factor. 
Similarly, we can define value functions for state-action pairs: 
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Now suppose that we want to estimate the value function 
( )V sπ for some state, s. However, the agent has no prior 

knowledge about state transition probabilities, which are essential 
for characterizing an SMDP. Therefore, traditional value iteration 
or policy iteration methods cannot be used here.  Instead a simple 
1-step temporal difference learning method [11] (also known as 
the TD(0) rule) for SMDP may be used. Such a method generates 
an estimate ( ) ( )kV s for each state s at epoch tk, which is the 
estimate of the actual value ( )V sπ  following policyπ . Suppose 
state sk is visited at epoch tk, then the TD(0) rule updates the 
estimate ( ) ( )k

kV s at the next epoch tk+1 based on the chosen 
action ka , and the next state sk+1 as follows: 
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In the above expression, 1k k kt tτ += − is the time that system 
remains in state sk; (0,1)α ∈ denotes the learning rate; 
1 ( , )

k

k k
e r s a
−− βτ

β
is the sample discounted reward recieved in 

kτ time units; and ( )
1( )k

kV s + is the estimated value of the actually 
occurring next state. Notice that whenever state sk is visited, its 

estimated value is updated to be closer to 1 ( , )
k

k k
e r s a
−− βτ

β
 

( )
1( )k k

ke V sβτ−
++ . The key idea is that the aforesaid expression is a 

sample of the value of ( ) ( )k
kV s , and it is more likely to be correct 

because it incorporates the real return. If the learning rate α  is 
adjusted properly (slowly decreased) and the policy is kept 
unchanged, TD(0) converges to the optimal value function [12]. 

For realistic RL algorithms, we need not only evaluate the 
performance of a predefined policy, but simultaneously learn the 
optimal policy and use that policy to control (make decisions.) To 
achieve this goal, the RL algorithm should learn the value of each 
state-action pair. Meanwhile system should choose an action at 

each state, either by choosing the one with maximum estimated 
value, or by using other semi-greedy policies [12]. 

2.3 TD(λ) for SMDP’s 
Because a real DPM problem is non-Markovian and non-
stationary, we turn to the more powerful TD(λ) algorithm [12]. 
TD(λ) algorithm behaves more robustly in non-Markov cases. 
The learning rate of TD(λ) is also faster. 
Suppose that we are in state sk at epoch tk, and we make decision 
ak. In 1-step TD learning, we wait until the next epoch tk+1 and 
then perform a “1-step backup” to update the estimate ( ) ( )k

kV s . In 
1-step backup the target is the immediate reward plus the 
discounted estimated value of the next state, i.e.: 
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Similarly, we could perform 2-step backup, in which we wait 
until epoch tk+2 and then perform a “backup” to update the value 
estimate ( ) ( )k

kV s . The target of 2-step backup is given by: 
1
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where the system transitions from state sk under action ak to state 
sk+1 and then under action ak+1 ends up in state sk+2. This result 
can be easily generalized to n-step backup for arbitrary n. When 
n →∞ , the n-step backup algorithm becomes Monte Carlo 
method (which relies on repeated random sampling to compute 
the optimal policy.) However, the n-step backup is rarely used 
directly because it is difficult to implement. Rather, people seek 
to find effective ways of averaging backups of different steps.  
The TD(λ) algorithm may be understood as one particular way of 
averaging n-step backups. It contains all the n-step backups, each 
weighted proportional to λn-1 (0< λ < 1). The resulting target is: 
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R Rλ λ λ
∞
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TD(λ) learning algorithm can be implemented conveniently with 
the help of eligibility traces, as discussed in [12]. Among variant 
specific implementations, the one implemented in our system is 
Watkin’s Q(λ) algorithm [13] modified for SMDP problems. This 
algorithm can perform simultaneous learning and control. In 
particular, the value update rule for an state-action pair in 
Watkin’s Q(λ) algorithm is computed as follows: 
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where ( ) ( , )kQ s a is the value of state-action pair at epoch tk, 
and ( ) ( , )ke s a denotes the eligibility of that pair. Such eligibility 
reflects the degree to which state-action pair ( , )s a  has been 
chosen in the recent past. It can be updated online as follows:  

1( ) ( 1)( , ) ( , ) (( , ),( , ))kk k
k ke s a e e s a s a s aβτλ δ−− −= +  

where ( , )x yδ denotes the delta kronecker function.   

3. SYSTEM MODEL 
In this section, we explain how to extend RL techniques to solve 
the system-level DPM problem. Similar to many previous works, 
the system whose power is being managed consists of a service 
requester (SR), a service provider (SP), and a service queue (SQ). 
The SR generates different types of requests to be processed by 
the SP, and these requests are buffered in the SQ before 



processing. A power manager using RL algorithm, as well as a 
workload predictor is added to the system, as shown in Figure 2. 

               
   Figure 2. Abstract model of a power-managed system. 
In this work, the state of the entire system is characterized by a 3-
tuple (SR, SQ, SP), where SR is the service request generating 
rate (high, low, etc.) or the next inter-arrival time (short, long, 
etc.), SQ is the number of requests in the service queue, and SP is 
the system power state (busy, idle, sleep.) Note that the SP 
transition from idle to busy state is an autonomous transition. To 
be more realistic, we consider in this work that the SR state 
cannot be directly obtained by the PM. In contrast to previous 
work on POMDP [7][8], the PM has no prior knowledge of the 
characteristics of the SR. Therefore, workload prediction has to be 
incorporated to provide partial information to the PM so that the 
PM can learn in the observation domain of the SR.  

3.1 Workload Prediction 
The proposed system relies on workload prediction method to 
provide partial observation of actual SR state for the PM. 
Previous work on workload prediction in [2][3] assumes that a 
linear combination of previous idle times (or request inter-arrival 
times) may be used to infer the future ones, which is not always 
true. For example, one very long inter-arrival time can ruin a set 
of subsequent predictions. Thus in our work a naïve Bayes 
classifier, which can overcome the above effect and result in 
much higher prediction accuracy, is adopted as the workload 
predictor.  
Naïve Bayes classifier is a generative classifying technique using 
the idea of maximum a posteriori (MAP). Given input feature 
x=(x1, x2, …, xn), the classifier’s goal is to assign class label l 
from a finite set L for the output y, by maximizing the posterior 
probability Prob(y=l|x1,x2,…,xn): 
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= ⋅ =
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where the denominator Prob(x1,x2,…,xn) is the same for every 
class assignment of y. Prob(y=l), which is the prior probability 
that the class of y is l, can be calculated from training set. Hence, 
we only need Prob(x1,x2,…,xn|y=l), the conditional probability of 
seeing the input feature vector x given that the class of y is l.  
A fundamental assumption that Bayes classifier made is that all 
input features are conditionally independent given the class y, i.e., 
Prob(x1|x2,…,xn, y=l) = Prob(x1|y=l). Therefore, we get: 

1 2( , ,..., | ) ( | )n j jProb x x x y l Prob x y l= = ∏ = , and we compute the 
MAP class of y as follows: 
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In the original algorithm, the prior and conditional probabilities 
are obtained by performing Maximum Likelihood estimation on 
the whole data set. However, in this work we have to implement 
the predictor in an online fashion. So when we observe a 
sequence of features (x1=m1, x2=m2, …,xn=mn) and output y=l, we 
update the conditional and prior probabilities as follows: 

{ }1,2,..., ( | ) (1 ) ( | )i i i ii n Prob x m y l Prob x m y lα α∀ ∈ = = ← + − ⋅ = =   

( ) (1 ) ( )Prob y l Prob y lβ β= ← + − ⋅ =   
where , (0,1)α β ∈  denote the updating rate parameters.  
In this work, we use previous request inter-arrival times as input 
features x=(x1, x2, …, xn), in which xi = 1 if the corresponding 
interval length is greater than break-even time Tbe; otherwise, xi = 
0. The output is the prediction whether or not the next inter-
arrival time is greater than Tbe. In real implementations, we use 
three output states “long, short, and unknown”. We predict the 
next-inter-arrival time to be “unknown” if the difference between 
posterior probabilities that the next inter-arrival time is long and 
that it is short, is less than a predefined parameter ε. 

3.2 RL-based DPM 
To apply RL techniques for DPM frameworks, first we define 
decision epochs i.e., when new decisions are made and updates 
for the RL algorithm are executed. Note that the decision epochs 
are a subset of all possible transition epochs. In our case, the 
decision epochs coincide with one of the following four: 
1. The SP entered the idle state (SP =idle) and SQ = 0. 
2. The SP entered the idle state and SQ ≥ 1. 
3. The SP has just entered the sleep state and finds that SQ > 0. 

This means at least one request has arrived during the 
transition from idle to sleep state, and therefore, the PM can 
decide whether to turn on the SP or to keep it in sleep state. 

4. The SP is in sleep state and SQ transitions from zero to one 
(the SQ is initially empty, and a new request comes.) 

The proposed RL-based DPM framework operates as follows. At 
each decision epoch, the PM finds itself in one of the four 
aforesaid conditions; it will make a decision and issue commands 
to hardware to implement the decision. If it finds itself in case (1), 
then it will use the RL-based timeout policy described below. If it 
is in case (2), it will continue to keep the SP in the active state to 
continue processing requests in the SQ (we may not perform 
update for RL algorithm in this case because there is just one 
action to choose.) Otherwise (i.e., for cases 3 and 4), it will use 
the RL-based N-policy (again described below).  
As pointed out in reference [6], the optimal policy when SP = idle 
for non-Markov environments is often a timeout policy, wherein 
the SP is put to sleep if it is idle for more than a specified timeout 
period. A list of timeout periods, as well as immediate shutdown 
(timeout value = 0), serve as the action set when SP = idle. The 
proposed PM learns to choose the optimal action among these by 
using a RL technique (see the pseudo-code.) 

RL-based timeout policy 

 
When the SP is in the sleep state, the action set for the PM is a set 
of integers. In the standard N-policy, the SP will wake up to 
process requests only if SQ ≥ N. We incorporate the N-policy in 
the RL-based framework as described by the following pseudo-
code. Note that the partial knowledge of the SR state from the 
workload predictor can help in making decisions when SP = 

At decision epoch tk (SP = idle and SQ = 0), 
1. Choose an action from the action set (list of timeout values) 

based on the estimated state of the SR. 
2. Execute timeout policy based on the chosen timeout value. 

At the next decision epoch tk+1, 
3. The system finds itself either in the sleep state (no request 

came during the timeout period) or in the idle state (some 
request came in that period.) 

4. Regardless, it evaluates the chosen action using the “backup” 
method discussed in section 2 (note the dependency of the 
backup calculation on the estimates of the SR state.) 

5. Go back to step 1. 



sleep, and therefore we incur less performance penalty under the 
same power consumption level. Also note that timeout values or 
estimated SR based re-decision may be incorporated in the RL-
based N-policy for better performance. 

RL-based N-policy 

 
In this work, we use “cost rate” instead of “reward rate” in the RL 
algorithms, which can be treated in the similar way. The cost rate 
is a linearly-weighted combination of power consumption and the 
number of requests buffered in the SQ. This is a reasonable cost 
rate because as reference [5] has pointed out the average number 
of requests in the SQ is proportional to the average latency for 
each request, which is defined as the average time for each 
request between the moment it is generated and the moment that 
the SP finishes processing it i.e., it includes the queuing time plus 
execution time. In this way, the value function Q(s, a) for each 
state-action pair (s, a) is a combination of the expected total 
discounted energy consumption and total latency experienced by 
all requests. Since the number of requests and the total execution 
time are fixed, the value function is equivalent to a combination 
of the average power consumption and per-request latency. The 
relative weight between average power and per-request latency 
can be changed to obtain the Pareto-optimal tradeoff curve.  
Note that although the DPM problem is not SMDP in essence, we 
can obtain much better results compared to the expert-based 
systems due to the robustness of TD(λ) learning technique used. 

3.3 Multiple-Update Initialization 
The use of various timeout values as actions in RL-based DPM 
algorithm enables us to do multiple updates. Suppose that the SP 
is in the idle state, and the PM takes an action corresponding to a 
specific timeout. If a request comes before the timeout expires, all 
actions corresponding to larger timeout values can evaluate (using 
the “backup” method described in section 2.) This is because all 
actions with larger timeout values, if taken, would result in the 
same immediate cost and the same discounted next state value 
compared to the selected action. The proposed multiple-update 
scheme can significantly accelerate convergence speed of RL 
algorithms. In this work such a scheme is for quick initialization. 

4. EXPERIMENTAL RESULTS 
In this section we present the results with RL-based DPM with 
workload prediction and other improvements on two different 
devices: hard disk drive (HDD) and wireless adapter card (WLAN 
card.) Table 1 and 2 list the power and delay characteristics of 
both devices. In these tables Ttr is the time taken in transitioning 
to and from the sleep state while Ptr is the power consumption in 
waking up the device. Tbe refers to the break even time. 
        Table 1. Power and delay characteristics of HDD. 
Pbusy Pidle Psleep Etr Ttr Tbe 
2.15W 0.90W 0.13W 7.0J 1.6s 6.8s 

   Table 2. Power and delay characteristics of WLAN card. 
Ptran Prcv Pidle Psleep Etr Ttr Tbe 

1.6W 1.2W 0.90W 0W* 0.9J 0.3s 0.7s 
*The WLAN card is turned off. 
For the baseline system we use the expert-based DPM developed 
in [9]. Three policies are adopted as experts in the expert-based 
DPM: fixed timeout policy, adaptive timeout policy and 
exponential predictive policy [3], as shown in Table 3. 
        Table 3. Characteristics of the expert-based policy. 

Expert Characteristics 
Fixed Timeout Timeout = any value 

Adaptive Timeout Initial Timeout = Tbe, adjustment = ±0.1 Tbe 
Exponential Predictive 1 (1 )k k kI i Iα α+ = ⋅ + − ⋅ , 0.5α =  

In the following, we refer to the “simple RL-based power 
managed system” as the system which can only make decisions 
when SP = idle. This is for fair comparison with the baseline 
systems since they cannot make decisions when SP = sleep. The 
PM in the simple RL-based system makes decisions and performs 
updates for the RL algorithm according to the current state tuple 
(SR, SQ, SP), in which SP = idle, and SR is the estimated SR 
state provided by the Bayes classifier. Similarly we refer to the 
“entire power managed system” as the system which can make 
decisions when the SP are in both the idle or sleep states.  

4.1 HDD 
For the HDD, we implement our simulation based on the 
synthesized SR model, which is a continuous-time Markov model 
with three different states, each corresponding to a different 
request generating rate. The state transition matrix is given by: 

 
0.02 0.01 0.01

0.005 0.01 0.005
0.005 0.005 0.01

−⎡ ⎤
−⎢ ⎥

⎢ ⎥−⎣ ⎦
 

The request generation rates for the three states are 1.5, 0.1 and 
0.025, respectively. The request inter-arrival times at each state 
satisfy arbitrary distribution (not necessarily be exponential.) The 
PM does not know what the exact state SR is in; rather it relies on 
the workload predictor for estimations of the SR state.  

 
Figure 3. Tradeoff curves for HDD: entire system. 

Figure 3 gives the power and latency tradeoff curves for the entire 
RL-based power management system with workload prediction, 
as well as three different expert-based DPM systems. The timeout 
values of the fixed timeout expert in those three systems are set to 
be 0.5Tbe, 1Tbe and 1.5Tbe, respectively. We can see from the 
figure that the tradeoff curve of the RL-based system is more 
evenly distributed and has a much wider tradeoff range. Even 
with the same latency, the RL-based DPM system can achieve 
much lower power consumption than the references. The 
maximum power saving with the same average latency is 18.1%. 
The reason that the RL-based DPM system outperforms baseline 
systems is that performance of the expert-based baseline system 

At decision epoch tk (here the SP is in sleep state), 
1. Choose an action from the action set (list of N values) based 

on the estimated state of the SR. 
2. The SP turns on to process requests until SQ ≥ N (i.e., the SQ 

has accumulated at least N requests.) 
At the next decision epoch tk+1,  

3. Evaluate the chosen action using the “backup” method 
discussed in section 2 (note the dependency of the backup 
calculation on the estimates of the SR state.) 

4. Go back to step 1. 



depends heavily on the selection of experts (in fact the 
performance of the expert-based DPM will converge to, but not 
exceed, the expert with best performance), and each expert is not 
as robust as the RL based DPM. The learning rate of the RL 
algorithm is fast (in less than 100 SR requests), due to the 
carefully designed state space and other improvements.  

4.2 WLAN Card 
For the WLAN card, we have measured several real traces using 
the tcpdump utility in Linux. The measured traces include: 45-
minute trace for online video watching, 2-hour trace for web 
surfing, and 6-hour trace for a combination of web surfing, online 
chatting and server accessing, 2 hours each. To reduce decision 
overhead, we incorporate a “minimal decision interval” of 0.1s for 
the RL algorithm and the workload predictor. The correct 
prediction rate of the online Bayes predictor can be 99.2% for the 
video trace, 79.8% for the web trace, 82.8% for the combined 
trace. In comparison, the correct prediction rate of an exponential 
predictor [3] for the combined trace is less than 65%. 

 
Figure 4. Tradeoff curves for WLAN card: simple system. 

 
Figure 5. Tradeoff curves for WLAN card: entire system. 

Figure 4 gives the power and latency tradeoff curves for the 
simple RL-based DPM system with workload prediction, as well 
as three different expert-based systems. The tradeoff curves for 
the entire system are given in Figure 5. Comparing these two 
figures, we can see that with the help of the RL-based N-policy, 
system can minimize average power to two thirds of the minimal 
power achievable by the simple RL-based system by sacrificing 
performance. When comparing the RL-based DPM with reference 
systems, we can see again that the former approach can achieve a 

“wider and deeper” power and latency tradeoff curve than the 
latter. When comparing to the expert-based approach in which the 
fixed timeout expert has timeout value of 1Tbe, the maximum 
power saving with the same latency is 16.7%; while the maximum 
latency saving with the same power consumption is 28.6%. 

5. CONCLUSION 
In this paper a novel adaptive DPM technique using 
reinforcement learning is proposed. The underlying system model 
is that of a semi-Markov Decision Process (which enables 
modeling the system evolution in continuous time and allows the 
time spent in a particular system state to follow an arbitrary 
probability distribution.) The TD(λ) learning for SMDP problems 
is selected as the basic RL algorithm in the proposed system. The 
proposed DPM is model-free and requires no prior information of 
the state transition probability function for the SMDP. A 
workload predictor based on an online Bayes classifier is 
presented to provide estimates of the request inter-arrival times to 
the DPM agent. Experiments show that the proposed PM finds a 
much “deeper and wider” power and latency tradeoff curve 
compared with reference expert-based DPM systems. 
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