
Deriving a Near-optimal Power Management Policy Using Model-
Free Reinforcement Learning and Bayesian Classification

Yanzhi Wang1, Qing Xie1, Ahmed C. Ammari2, and Massoud Pedram1
1Department of Electrical Engineering, University of Southern California, Los Angeles, CA

2National Institute of the Applied Sciences and of the Technology (INSAT), 1080 Tunis cedex, Tunisia
{yanzhiwa, xqing, pedram}@usc.edu, chiheb.ammari@insat.rnu.tn

ABSTRACT
To cope with the variations and uncertainties that emanate from
hardware and application characteristics, dynamic power
management (DPM) frameworks must be able to learn about the
system inputs and environment and adjust the power management
policy on the fly. In this paper we present an online adaptive
DPM technique based on model-free reinforcement learning (RL),
which is commonly used to control stochastic dynamical systems.
In particular, we employ temporal difference learning for semi-
Markov decision process (SMDP) for the model-free RL. In
addition a novel workload predictor based on an online Bayes
classifier is presented to provide effective estimates of the
workload states for the RL algorithm. In this DPM framework,
power and latency tradeoffs can be precisely controlled based on
a user-defined parameter. Experiments show that amount of
average power saving (without any increase in the latency) is up
to 16.7% compared to a reference expert-based approach.
Alternatively, the per-request latency reduction without any
power consumption increase is up to 28.6% compared to the
expert-based approach.

Categories and Subject Descriptors: B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aides.

General Terms: Algorithms, Management, Performance, Design.

Keywords: Dynamic Power Management, Bayes Classification,
Reinforcement Learning.

1. INTRODUCTION
Power consumption has become one of the critical concerns in
design of electronic computing systems. High power consumption
degrades system reliability, increases the cooling cost for high
performance systems, and reduces the service time of batteries in
portable devices. Dynamic power management (DPM), defined as
the selective shut-off or slow-down of system components that are
idle or underutilized, has proven to be an effective technique for
reducing power dissipation at system level [1]. An effective DPM
policy should minimize power consumption while maintaining
performance degradation to an acceptable level. Design of such
DPM policies has been an active research area.
Bona fide DPM frameworks should account for variations that
originate from process, voltage, and temperature (PVT) variations
as well as current stress, device aging, and interconnect wear-out

phenomena in the underlying hardware. They must also consider
workload type and intensity variations due to change in
application behavior. In addition, DPM frameworks must cope
with sources of uncertainty in the system under their control e.g.,
inaccuracies in monitoring data about the current (power-
performance) state of the system. These sources of variability and
uncertainty tend to cause two effects: (i) difficulty of determining
the current global state of the system and predicting the next state
given a DPM agent’s action, and (ii) difficulty in determining the
reward (credit assignment) rate of a chosen or contemplated
action. Thus DPM policies that are statically optimized (and are
considered to be globally optimal for the modeled system) may in
reality not achieve optimal performance in the presence of such
uncertainties and variations. Therefore, adaptive DPM methods
which are able to learn about the input and environmental
variations/uncertainties and change the policy accordingly are
critically important for modern DPM systems.
Many DPM methods have been proposed in the literature. They
can be broadly classified into three categories: ad hoc, stochastic,
and learning based methods. Ad hoc policies are based on the idea
of predicting whether or not the next idle period length is greater
than a specific value (the break-even time Tbe). A decision to
sleep will be made if the prediction indicates an idle period longer
than Tbe. Among these methods Srivastava et al. [2] use a
regression function to predict the idle period length while Hwang
et al. [3] propose an exponential-weighing average function for
predicting the idle period length. Ad hoc methods are easy to
implement, but perform well only when the requests are highly
correlated; they typically do not take performance constraints into
account.
By modeling the request arrival times (rates) and device service
times (rates) as stationary stochastic processes, stochastic policies
can take into account both power consumption and performance.
Stochastic DPM techniques have a number of key advantages
over ad hoc techniques. First, they capture a global view of the
system, thus allowing the designer to search for a global optimum
which can exploit multiple inactive states of multiple interacting
resources. Second, they compute the exact solution (in
polynomial time) for the performance-constrained power
optimization problem. Third, they exploit the vigor and
robustness of randomized policies. On the flip side, the
performance and power obtained by a stochastic policy are
expected values, and there is no guarantee that the results will be
optimum for a specific instance of the corresponding stochastic
process. Second, policy optimization requires a priori Markov
models of the service provider and service requester. Third, policy
implementation tends to be more involved.
In [4], Benini et al. model a power-managed system as a
controllable discrete-time Markov decision process (MDP) by
assuming the non-deterministic service time of a request follows a
geometric distribution. Qiu et al. in [5] model a similar system by
using a controllable continuous-time MDP with Poisson

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'11, June 5-10, 2011, San Diego, California, USA
Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

distribution for the request arrival times and exponentially
distributed request service times. This in turn enables the power
manager (PM) to work in an event-driven manner, and thus
reduce the decision making overhead. Other enhancements
include time-indexed semi-MDP of Simunic et al. [6]. To cope
with uncertainties in the underlying hardware state, DPM policies
based on partially observable Markov decision process (POMDP)
have been proposed in [7] and [8]. Note that in the aforesaid
stochastic DPM approaches, request inter-arrival times and
system service times are modeled as stationary processes that
satisfy certain probability distributions. In addition, an optimal
policy for the given controllable MDP can be found only if we
have knowledge (and model) of the state transition probability
function and the reward function for the MDP. Reinforcement
learning is primarily concerned with how to obtain the optimal
policy for a given MDP when such a model is not known in
advance. The DPM agent must interact with its environment to
obtain information which, by means of an appropriate algorithm,
can be processed to produce an optimal policy.
Several recent works use machine learning techniques for
adaptive policy optimization. Compared to simple ad hoc policies,
machine learning-based approaches can simultaneously consider
power and performance penalty, and perform well under various
workload conditions. In [9], an online policy selection algorithm
is proposed, which generates offline and stores a set of DPM
policies (referred to as “experts”) to choose from. The controller
evaluates the performances of the experts at the end of each idle
period and based on that decides which expert should be activated
next. The performance of the expert-based approach is close to
the best performing expert for any given workload. However, the
effectiveness of such learning algorithm depends heavily on the
expert selection. Besides, such an algorithm has a limited ability
to achieve a good power-performance tradeoff.
Tan et al. in [10] propose to use an enhanced Q-learning
algorithm for system-level DPM. This is a model-free RL
approach since the PM does not require prior knowledge of the
state transition probability function. However the knowledge of
the state and action spaces and also the reward function is
required. The Q-learning based DPM learns a policy online by
trying to learn which action is best for a certain system state,
based on the reward or penalty received. In this way the PM does
not depend on any pre-designed experts; and can achieve a much
wider range of power-latency tradeoffs. However, this work is
based on discrete-time model of the stochastic process, and thus
has large overhead in real implementations. Moreover, the
number of state-action pairs in this system is large, which may
result in large computational overhead and slow convergence
speed.
In this paper, we present a novel approach for RL-based DPM in a
partially observable environment. While possessing the merits of
[10] (model free, and independent of any pre-designed experts),
the proposed approach can perform learning and power
management in a continuous-time and event-driven manner. Other
novel characteristics of the proposed work are:
• The proposed method uses enhanced TD(λ) learning

algorithm for semi-MDP [11] to accelerate convergence and
alleviate the reliance on Markovian property.

• Workload prediction is incorporated in this work to provide
partial information about service request (SR) state for the RL
algorithm. Specifically, an online naïve Bayes classifier [14]
is selected as the workload predictor because of its relatively
high prediction rate, as well as the fact that the partial

information it provides contains certain degree of certainty
due to the use of posterior probability in such algorithm.

• State and action spaces of the RL algorithm are optimized i.e.,
the number of state-action pairs are greatly reduced.

It is interesting that our approach allows us to learn the optimal
timeout policy, which is often the optimal DPM policy when the
request inter-arrival time is non-exponentially distributed [6].
In the proposed method, the tradeoff between power consumption
and latency can be controlled by a user-defined parameter.
Experiments on both synthesized and real traces show that the
proposed PM finds a much “wider” average power and latency
tradeoff curve compared with prior work references.
The rest of the paper is organized as follows. Section 2 explains
basic background of reinforcement learning for SMDP. Section 3
explains our system model, as well as the workload prediction
method using an online Bayes classifier. The experimental results
are presented in Section 4, and we conclude in Section 5.

2. THEORETICAL BACKGROUD
2.1 Semi-Markov Decision Processes
A stationary semi-Markov decision process (SMDP) is a
continuous-time dynamical system comprised of a countable state
set, S, and a finite action set, A. The decision maker (DM) can
choose actions only when system changes state. Suppose that the
system changes to state s S∈ at the current (transition) epoch,
and action a A∈ is applied. An SMDP then evolves as follows.
• At the next epoch, the system transitions to s’ with probability

(' | ,)p s s a given that a is chosen in s. Furthermore, the next
epoch occurs within t time units with probability (| , , ')p t s a s
given s, a, and s’. Thus, the next epoch occurs at or before
time t and the state equals s’ with
probability '(|) (' | ,) (| , , ')ssf t a p s s a p t s a s≡ . Let Τ(s,a)
denote expected value of the current epoch duration. Then,

'0
'

(,) (1 (|))ss
s S

T s a f t a dt
∞

∈
= − ∑∫ . If this duration is distributed

exponentially, then SMDP reduces to continuous-time MDP.
• When DM selects action a in state s, she accrues a reward at

the rate of (,)r s a as long as the system occupies s (before it
transitions to s’.)

A policy {(,) | , }s a a A s Sπ = ∈ ∈ is a set of state-action pairs for
all states of an SMDP. We use notation: ()s a=π to specify the
action that is chosen in state s according to policy π . We
consider the class of stationary and deterministic policies. An
optimal policy is the one maximizing the total expected reward.

2.2 Temporal Difference Learning for SMDP’s
As illustrated in Figure 1, the general reinforcement learning
model consists of an agent, a finite state space S, a set of available
actions A, and a reward function :R S A R× → .

 Figure 1: Agent-environment interaction Model.

Assume that the agent-environment interaction system evolves as
a stationary SMDP, which is continuous in time but has a
countable number of events. Then there exists a countable set of
times {t0, t1, t2,…,tk,…}, known as epochs. At epoch tk, system
has just transitioned to state sk S∈ . The agent selects an action
ak A∈ according to some policyπ . At time tk+1, the agent finds
itself in a new state sk+1, and, in the time period [tk, tk+1), it
receives a scalar reward with rate rk.
Suppose system starts at time t0. The return R is defined as the
discounted integral of reward rate. Furthermore, the value of a
state s under a policyπ , denoted ()V sπ , is the expected return
when starting from s and following π thereafter:

0

0

0

0 0

()
0 ' 0

'

()
' 0

'

() { | } (') (| ())

(, ()) (| ())

t t
sst

s S
t t

sst t
s S

V s E R s s e V s df t t s

e r s s d df t t s

∞ − −

∈

∞ − −

∈

= = = −

+ −

∑ ∫

∑ ∫ ∫

βπ π
π

β τ

π

π τ π

where β >0 is a discount factor.
Similarly, we can define value functions for state-action pairs:

0

0 0

0

0

0 0

()
' 0

'

()
' 0

'

(,) { | , }

(,) (|)

(', (')) (|)

t t
sst t

s S

t t
sst

s S

Q s a E R s s a a

e r s a d df t t a

e Q s s df t t a

∞ − −

∈

∞ − −

∈

= = =

= −

+ −

∑ ∫ ∫

∑ ∫

π
π

β τ

β π

τ

π

Now suppose that we want to estimate the value function
()V sπ for some state, s. However, the agent has no prior

knowledge about state transition probabilities, which are essential
for characterizing an SMDP. Therefore, traditional value iteration
or policy iteration methods cannot be used here. Instead a simple
1-step temporal difference learning method [11] (also known as
the TD(0) rule) for SMDP may be used. Such a method generates
an estimate () ()kV s for each state s at epoch tk, which is the
estimate of the actual value ()V sπ following policyπ . Suppose
state sk is visited at epoch tk, then the TD(0) rule updates the
estimate () ()k

kV s at the next epoch tk+1 based on the chosen
action ka , and the next state sk+1 as follows:

(1) () () ()
1

1() () (,) () ()
k

kk k k k
k k k k k k

eV s V s r s a e V s V s
−

−+
+

⎛ ⎞−
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠

βτ
βτα

β

In the above expression, 1k k kt tτ += − is the time that system
remains in state sk; (0,1)α ∈ denotes the learning rate;
1 (,)

k

k k
e r s a
−− βτ

β
is the sample discounted reward recieved in

kτ time units; and ()
1()k

kV s + is the estimated value of the actually
occurring next state. Notice that whenever state sk is visited, its

estimated value is updated to be closer to 1 (,)
k

k k
e r s a
−− βτ

β

()
1()k k

ke V sβτ−
++ . The key idea is that the aforesaid expression is a

sample of the value of () ()k
kV s , and it is more likely to be correct

because it incorporates the real return. If the learning rate α is
adjusted properly (slowly decreased) and the policy is kept
unchanged, TD(0) converges to the optimal value function [12].

For realistic RL algorithms, we need not only evaluate the
performance of a predefined policy, but simultaneously learn the
optimal policy and use that policy to control (make decisions.) To
achieve this goal, the RL algorithm should learn the value of each
state-action pair. Meanwhile system should choose an action at

each state, either by choosing the one with maximum estimated
value, or by using other semi-greedy policies [12].

2.3 TD(λ) for SMDP’s
Because a real DPM problem is non-Markovian and non-
stationary, we turn to the more powerful TD(λ) algorithm [12].
TD(λ) algorithm behaves more robustly in non-Markov cases.
The learning rate of TD(λ) is also faster.
Suppose that we are in state sk at epoch tk, and we make decision
ak. In 1-step TD learning, we wait until the next epoch tk+1 and
then perform a “1-step backup” to update the estimate () ()k

kV s . In
1-step backup the target is the immediate reward plus the
discounted estimated value of the next state, i.e.:

(1) ()
1

1 (,) ()
k

k k
k k k k

eR r s a e V s
−

−
+

−
= +

βτ
βτ

β

Similarly, we could perform 2-step backup, in which we wait
until epoch tk+2 and then perform a “backup” to update the value
estimate () ()k

kV s . The target of 2-step backup is given by:
1

1()(2) ()
1 1 2

1 1(,) (,) ()
k k

k k k k
k k k k k k

e eR r s a e r s a e V s
+

+

− −
− − +

+ + +
− −

= + +
βτ βτ

βτ β τ τ

β β

where the system transitions from state sk under action ak to state
sk+1 and then under action ak+1 ends up in state sk+2. This result
can be easily generalized to n-step backup for arbitrary n. When
n →∞ , the n-step backup algorithm becomes Monte Carlo
method (which relies on repeated random sampling to compute
the optimal policy.) However, the n-step backup is rarely used
directly because it is difficult to implement. Rather, people seek
to find effective ways of averaging backups of different steps.
The TD(λ) algorithm may be understood as one particular way of
averaging n-step backups. It contains all the n-step backups, each
weighted proportional to λn-1 (0< λ < 1). The resulting target is:

1 ()

1
(1) n n

k k
n

R Rλ λ λ
∞

−

=

= − ∑

TD(λ) learning algorithm can be implemented conveniently with
the help of eligibility traces, as discussed in [12]. Among variant
specific implementations, the one implemented in our system is
Watkin’s Q(λ) algorithm [13] modified for SMDP problems. This
algorithm can perform simultaneous learning and control. In
particular, the value update rule for an state-action pair in
Watkin’s Q(λ) algorithm is computed as follows:

(1) ()

() () ()
1'

(,) : (,) (,)

1 (,) max (, ') (,) (,)
k

k

k k

k k k
k k ka

s a S A Q s a Q s a

e r s a e Q s a Q s a e s a

+

−
−

+

∀ ∈ × =

⎛ ⎞−
+ + −⎜ ⎟⎜ ⎟

⎝ ⎠

βτ
βτα

β

where () (,)kQ s a is the value of state-action pair at epoch tk,
and () (,)ke s a denotes the eligibility of that pair. Such eligibility
reflects the degree to which state-action pair (,)s a has been
chosen in the recent past. It can be updated online as follows:

1() (1)(,) (,) ((,),(,))kk k
k ke s a e e s a s a s aβτλ δ−− −= +

where (,)x yδ denotes the delta kronecker function.

3. SYSTEM MODEL
In this section, we explain how to extend RL techniques to solve
the system-level DPM problem. Similar to many previous works,
the system whose power is being managed consists of a service
requester (SR), a service provider (SP), and a service queue (SQ).
The SR generates different types of requests to be processed by
the SP, and these requests are buffered in the SQ before

processing. A power manager using RL algorithm, as well as a
workload predictor is added to the system, as shown in Figure 2.

 Figure 2. Abstract model of a power-managed system.
In this work, the state of the entire system is characterized by a 3-
tuple (SR, SQ, SP), where SR is the service request generating
rate (high, low, etc.) or the next inter-arrival time (short, long,
etc.), SQ is the number of requests in the service queue, and SP is
the system power state (busy, idle, sleep.) Note that the SP
transition from idle to busy state is an autonomous transition. To
be more realistic, we consider in this work that the SR state
cannot be directly obtained by the PM. In contrast to previous
work on POMDP [7][8], the PM has no prior knowledge of the
characteristics of the SR. Therefore, workload prediction has to be
incorporated to provide partial information to the PM so that the
PM can learn in the observation domain of the SR.

3.1 Workload Prediction
The proposed system relies on workload prediction method to
provide partial observation of actual SR state for the PM.
Previous work on workload prediction in [2][3] assumes that a
linear combination of previous idle times (or request inter-arrival
times) may be used to infer the future ones, which is not always
true. For example, one very long inter-arrival time can ruin a set
of subsequent predictions. Thus in our work a naïve Bayes
classifier, which can overcome the above effect and result in
much higher prediction accuracy, is adopted as the workload
predictor.
Naïve Bayes classifier is a generative classifying technique using
the idea of maximum a posteriori (MAP). Given input feature
x=(x1, x2, …, xn), the classifier’s goal is to assign class label l
from a finite set L for the output y, by maximizing the posterior
probability Prob(y=l|x1,x2,…,xn):

MAP 1 2

1 2

1 2

arg max (| , , ...)

(, , ... |) ()arg max
(, , ...)

n
l

n

l n

y Prob y l x x x

Prob x x x y l Prob y l
Prob x x x

= =

= ⋅ =
=

where the denominator Prob(x1,x2,…,xn) is the same for every
class assignment of y. Prob(y=l), which is the prior probability
that the class of y is l, can be calculated from training set. Hence,
we only need Prob(x1,x2,…,xn|y=l), the conditional probability of
seeing the input feature vector x given that the class of y is l.
A fundamental assumption that Bayes classifier made is that all
input features are conditionally independent given the class y, i.e.,
Prob(x1|x2,…,xn, y=l) = Prob(x1|y=l). Therefore, we get:

1 2(, ,..., |) (|)n j jProb x x x y l Prob x y l= = ∏ = , and we compute the
MAP class of y as follows:

M AP
1

arg max () (|)
n

j
l j

y Prob y l Prob x y l
=

= = ⋅ =∏

In the original algorithm, the prior and conditional probabilities
are obtained by performing Maximum Likelihood estimation on
the whole data set. However, in this work we have to implement
the predictor in an online fashion. So when we observe a
sequence of features (x1=m1, x2=m2, …,xn=mn) and output y=l, we
update the conditional and prior probabilities as follows:

{ }1,2,..., (|) (1) (|)i i i ii n Prob x m y l Prob x m y lα α∀ ∈ = = ← + − ⋅ = =

() (1) ()Prob y l Prob y lβ β= ← + − ⋅ =
where , (0,1)α β ∈ denote the updating rate parameters.
In this work, we use previous request inter-arrival times as input
features x=(x1, x2, …, xn), in which xi = 1 if the corresponding
interval length is greater than break-even time Tbe; otherwise, xi =
0. The output is the prediction whether or not the next inter-
arrival time is greater than Tbe. In real implementations, we use
three output states “long, short, and unknown”. We predict the
next-inter-arrival time to be “unknown” if the difference between
posterior probabilities that the next inter-arrival time is long and
that it is short, is less than a predefined parameter ε.

3.2 RL-based DPM
To apply RL techniques for DPM frameworks, first we define
decision epochs i.e., when new decisions are made and updates
for the RL algorithm are executed. Note that the decision epochs
are a subset of all possible transition epochs. In our case, the
decision epochs coincide with one of the following four:
1. The SP entered the idle state (SP =idle) and SQ = 0.
2. The SP entered the idle state and SQ ≥ 1.
3. The SP has just entered the sleep state and finds that SQ > 0.

This means at least one request has arrived during the
transition from idle to sleep state, and therefore, the PM can
decide whether to turn on the SP or to keep it in sleep state.

4. The SP is in sleep state and SQ transitions from zero to one
(the SQ is initially empty, and a new request comes.)

The proposed RL-based DPM framework operates as follows. At
each decision epoch, the PM finds itself in one of the four
aforesaid conditions; it will make a decision and issue commands
to hardware to implement the decision. If it finds itself in case (1),
then it will use the RL-based timeout policy described below. If it
is in case (2), it will continue to keep the SP in the active state to
continue processing requests in the SQ (we may not perform
update for RL algorithm in this case because there is just one
action to choose.) Otherwise (i.e., for cases 3 and 4), it will use
the RL-based N-policy (again described below).
As pointed out in reference [6], the optimal policy when SP = idle
for non-Markov environments is often a timeout policy, wherein
the SP is put to sleep if it is idle for more than a specified timeout
period. A list of timeout periods, as well as immediate shutdown
(timeout value = 0), serve as the action set when SP = idle. The
proposed PM learns to choose the optimal action among these by
using a RL technique (see the pseudo-code.)

RL-based timeout policy

When the SP is in the sleep state, the action set for the PM is a set
of integers. In the standard N-policy, the SP will wake up to
process requests only if SQ ≥ N. We incorporate the N-policy in
the RL-based framework as described by the following pseudo-
code. Note that the partial knowledge of the SR state from the
workload predictor can help in making decisions when SP =

At decision epoch tk (SP = idle and SQ = 0),
1. Choose an action from the action set (list of timeout values)

based on the estimated state of the SR.
2. Execute timeout policy based on the chosen timeout value.

At the next decision epoch tk+1,
3. The system finds itself either in the sleep state (no request

came during the timeout period) or in the idle state (some
request came in that period.)

4. Regardless, it evaluates the chosen action using the “backup”
method discussed in section 2 (note the dependency of the
backup calculation on the estimates of the SR state.)

5. Go back to step 1.

sleep, and therefore we incur less performance penalty under the
same power consumption level. Also note that timeout values or
estimated SR based re-decision may be incorporated in the RL-
based N-policy for better performance.

RL-based N-policy

In this work, we use “cost rate” instead of “reward rate” in the RL
algorithms, which can be treated in the similar way. The cost rate
is a linearly-weighted combination of power consumption and the
number of requests buffered in the SQ. This is a reasonable cost
rate because as reference [5] has pointed out the average number
of requests in the SQ is proportional to the average latency for
each request, which is defined as the average time for each
request between the moment it is generated and the moment that
the SP finishes processing it i.e., it includes the queuing time plus
execution time. In this way, the value function Q(s, a) for each
state-action pair (s, a) is a combination of the expected total
discounted energy consumption and total latency experienced by
all requests. Since the number of requests and the total execution
time are fixed, the value function is equivalent to a combination
of the average power consumption and per-request latency. The
relative weight between average power and per-request latency
can be changed to obtain the Pareto-optimal tradeoff curve.
Note that although the DPM problem is not SMDP in essence, we
can obtain much better results compared to the expert-based
systems due to the robustness of TD(λ) learning technique used.

3.3 Multiple-Update Initialization
The use of various timeout values as actions in RL-based DPM
algorithm enables us to do multiple updates. Suppose that the SP
is in the idle state, and the PM takes an action corresponding to a
specific timeout. If a request comes before the timeout expires, all
actions corresponding to larger timeout values can evaluate (using
the “backup” method described in section 2.) This is because all
actions with larger timeout values, if taken, would result in the
same immediate cost and the same discounted next state value
compared to the selected action. The proposed multiple-update
scheme can significantly accelerate convergence speed of RL
algorithms. In this work such a scheme is for quick initialization.

4. EXPERIMENTAL RESULTS
In this section we present the results with RL-based DPM with
workload prediction and other improvements on two different
devices: hard disk drive (HDD) and wireless adapter card (WLAN
card.) Table 1 and 2 list the power and delay characteristics of
both devices. In these tables Ttr is the time taken in transitioning
to and from the sleep state while Ptr is the power consumption in
waking up the device. Tbe refers to the break even time.
 Table 1. Power and delay characteristics of HDD.
Pbusy Pidle Psleep Etr Ttr Tbe
2.15W 0.90W 0.13W 7.0J 1.6s 6.8s

 Table 2. Power and delay characteristics of WLAN card.
Ptran Prcv Pidle Psleep Etr Ttr Tbe

1.6W 1.2W 0.90W 0W* 0.9J 0.3s 0.7s
*The WLAN card is turned off.
For the baseline system we use the expert-based DPM developed
in [9]. Three policies are adopted as experts in the expert-based
DPM: fixed timeout policy, adaptive timeout policy and
exponential predictive policy [3], as shown in Table 3.
 Table 3. Characteristics of the expert-based policy.

Expert Characteristics
Fixed Timeout Timeout = any value

Adaptive Timeout Initial Timeout = Tbe, adjustment = ±0.1 Tbe
Exponential Predictive 1 (1)k k kI i Iα α+ = ⋅ + − ⋅ , 0.5α =

In the following, we refer to the “simple RL-based power
managed system” as the system which can only make decisions
when SP = idle. This is for fair comparison with the baseline
systems since they cannot make decisions when SP = sleep. The
PM in the simple RL-based system makes decisions and performs
updates for the RL algorithm according to the current state tuple
(SR, SQ, SP), in which SP = idle, and SR is the estimated SR
state provided by the Bayes classifier. Similarly we refer to the
“entire power managed system” as the system which can make
decisions when the SP are in both the idle or sleep states.

4.1 HDD
For the HDD, we implement our simulation based on the
synthesized SR model, which is a continuous-time Markov model
with three different states, each corresponding to a different
request generating rate. The state transition matrix is given by:

0.02 0.01 0.01

0.005 0.01 0.005
0.005 0.005 0.01

−⎡ ⎤
−⎢ ⎥

⎢ ⎥−⎣ ⎦

The request generation rates for the three states are 1.5, 0.1 and
0.025, respectively. The request inter-arrival times at each state
satisfy arbitrary distribution (not necessarily be exponential.) The
PM does not know what the exact state SR is in; rather it relies on
the workload predictor for estimations of the SR state.

Figure 3. Tradeoff curves for HDD: entire system.

Figure 3 gives the power and latency tradeoff curves for the entire
RL-based power management system with workload prediction,
as well as three different expert-based DPM systems. The timeout
values of the fixed timeout expert in those three systems are set to
be 0.5Tbe, 1Tbe and 1.5Tbe, respectively. We can see from the
figure that the tradeoff curve of the RL-based system is more
evenly distributed and has a much wider tradeoff range. Even
with the same latency, the RL-based DPM system can achieve
much lower power consumption than the references. The
maximum power saving with the same average latency is 18.1%.
The reason that the RL-based DPM system outperforms baseline
systems is that performance of the expert-based baseline system

At decision epoch tk (here the SP is in sleep state),
1. Choose an action from the action set (list of N values) based

on the estimated state of the SR.
2. The SP turns on to process requests until SQ ≥ N (i.e., the SQ

has accumulated at least N requests.)
At the next decision epoch tk+1,

3. Evaluate the chosen action using the “backup” method
discussed in section 2 (note the dependency of the backup
calculation on the estimates of the SR state.)

4. Go back to step 1.

depends heavily on the selection of experts (in fact the
performance of the expert-based DPM will converge to, but not
exceed, the expert with best performance), and each expert is not
as robust as the RL based DPM. The learning rate of the RL
algorithm is fast (in less than 100 SR requests), due to the
carefully designed state space and other improvements.

4.2 WLAN Card
For the WLAN card, we have measured several real traces using
the tcpdump utility in Linux. The measured traces include: 45-
minute trace for online video watching, 2-hour trace for web
surfing, and 6-hour trace for a combination of web surfing, online
chatting and server accessing, 2 hours each. To reduce decision
overhead, we incorporate a “minimal decision interval” of 0.1s for
the RL algorithm and the workload predictor. The correct
prediction rate of the online Bayes predictor can be 99.2% for the
video trace, 79.8% for the web trace, 82.8% for the combined
trace. In comparison, the correct prediction rate of an exponential
predictor [3] for the combined trace is less than 65%.

Figure 4. Tradeoff curves for WLAN card: simple system.

Figure 5. Tradeoff curves for WLAN card: entire system.

Figure 4 gives the power and latency tradeoff curves for the
simple RL-based DPM system with workload prediction, as well
as three different expert-based systems. The tradeoff curves for
the entire system are given in Figure 5. Comparing these two
figures, we can see that with the help of the RL-based N-policy,
system can minimize average power to two thirds of the minimal
power achievable by the simple RL-based system by sacrificing
performance. When comparing the RL-based DPM with reference
systems, we can see again that the former approach can achieve a

“wider and deeper” power and latency tradeoff curve than the
latter. When comparing to the expert-based approach in which the
fixed timeout expert has timeout value of 1Tbe, the maximum
power saving with the same latency is 16.7%; while the maximum
latency saving with the same power consumption is 28.6%.

5. CONCLUSION
In this paper a novel adaptive DPM technique using
reinforcement learning is proposed. The underlying system model
is that of a semi-Markov Decision Process (which enables
modeling the system evolution in continuous time and allows the
time spent in a particular system state to follow an arbitrary
probability distribution.) The TD(λ) learning for SMDP problems
is selected as the basic RL algorithm in the proposed system. The
proposed DPM is model-free and requires no prior information of
the state transition probability function for the SMDP. A
workload predictor based on an online Bayes classifier is
presented to provide estimates of the request inter-arrival times to
the DPM agent. Experiments show that the proposed PM finds a
much “deeper and wider” power and latency tradeoff curve
compared with reference expert-based DPM systems.

Acknowledgement – This work is sponsored in part by a grant
from the National Science Foundation.

REFERENCES
[1] L. Benini, A. Bogliolo and G. De Micheli, “A survey of design

techniques for system level dynamic power management,” IEEE
Trans. on VLSI Systems, Vol. 8, Issue 3, pp. 299-316, 2000.

[2] M. Srivastava, A. Chandrakasan and R. Brodersen, “Predictive
system shutdown and other architectural techniques for energy
efficient programmable computation,” IEEE Trans. on VLSI, 1996.

[3] C. H. Hwang and A. C. Wu, “A predictive system shutdown method
for energy saving of event-driven computation,” in ICCAD ’97.

[4] L. Benini, G. Paleologo, A. Bogliolo and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. on
CAD, Vol. 18, pp. 813-833, Jun. 1999.

[5] Q. Qiu and M. Pedram, “Dynamic Power Management Based on
Continuous-Time Markov Decision Processes,” in DAC ’99.

[6] T. Simunic, L. Benini, P. Glynn and G. De Micheli, “Event-driven
power management,” IEEE Trans. on CAD, 2001.

[7] H. Jung and M. Pedram, “Dynamic power management under
uncertain information,” in DATE ’07, pp. 1060-1065, Apr. 2007.

[8] Q. Qiu, Y. Tan and Q. Wu, “Stochastic Modeling and Optimization
for Robust Power Management in a Partially Observable System,” in
DATE ’07, pp. 779-784, Apr. 2007.

[9] G. Dhiman and T. Simunic Rosing, “Dynamic power management
using machine learning,” in ICCAD ’06, pp. 747-754, Nov. 2006.

[10] Y. Tan, W. Liu and Q. Qiu, “Adaptive power management using
reinforcement learning,” in ICCAD ’09, pp. 461-467, Nov. 2009.

[11] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time Markov decision problems,” in Advances in Neural
Information Processing Systems 7, pp. 393-400, MIT Press, 1995.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998.

[13] C. Watkins, Learning from Delayed Rewards, PhD thesis,
Cambridge University, Cambridge, England, 1989.

[14] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
August 2006.

