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RealitiesRealities
Motivation

Power has emerged as the #1 limiter of design 
performance beyond the 65nm generation.
Dynamic and static power dissipation limit achievable 
performance due to fixed caps on chip or systemperformance due to fixed caps on chip or system 
cooling capacity.
Power related signal integrity issues (IR drop L di/dtPower related signal integrity issues (IR drop, L di/dt 
noise) have become major sources of design re-spins.

Transistors (and silicon) are freeTransistors (and silicon) are freeTransistors (and silicon) are free.Transistors (and silicon) are free.
Power is the only real limiter.Power is the only real limiter.
Optimizing for frequency and/or area may achieve neither.Optimizing for frequency and/or area may achieve neither.

Pat Gelsinger, Senior Vice President & CTO, Intel



Industry ViewIndustry View
Motivation



CMOS ScalingCMOS Scaling
CMOS Scaling

Scaling improves:
Transistor Density & Functionality 
on a chip.
Speed and frequency of operation 
⇒ Higher performance.

Scaling and power dissipation
Active power  ↑ - CVDD

2f
Scale VDDScale VDD

Scale Vth to recover speed ⇒
Ileak↑

Standby (or leakage) power ↑Standby (or leakage) power ↑
VDDIleak

Leakage power is catching up 
with the active power in UDSMwith the active power in UDSM 
CMOS circuits.



Capacitive Power DissipationCapacitive Power Dissipation
Background

The capacitive component 
of power dissipation is a

Vdd

Vinof power dissipation is a 
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Short Circuit Power DissipationShort Circuit Power Dissipation
Background
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Leakage Power DissipationLeakage Power Dissipation
Background

FET 'ON'
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Dynamic Voltage & Frequency ScalingDynamic Voltage & Frequency Scalingy g q y gy g q y g

DVFS is a method to provide variable amount of energy 
f t k b li th ti lt /ffor a task by scaling the operating voltage/frequency.

Power consumption of a CMOS-based circuit isPower consumption of a CMOS based circuit is
α : switching factor
Ceff : effective capacitance
V : operating voltage

α ⋅ ⋅ ⋅2
effP = C V f

Energy required to run a task during T is

V    : operating voltage
f      : operating frequency

Energy required to run a task during T is
(assuming V∝ f,  T ∝ f –1)⋅ ∝ 2E = P T V

By lowering CPU frequency, CPU energy can be saved.



Energy saving with DVFSEnergy saving with DVFSgy ggy g

Example : a task with workload W should be 
l t d b d dli Dcompleted by a deadline, D

Voltage Voltage
∝ 2E f ∝ = ∝

2
2 1 1

2 2
f EE f
4 4

W
W

V1

V2

g

75% energy saving

∝1 1E f 2 2 4 4
( ), ,⎛ ⎞= ⎜ ⎟

⎝ ⎠
1 1

2 2
V fV f
2 2

W
Time Time

DT1 D

DVFS is an effective way of reducing the CPU energy 
consumption by providing “just-enough” computation 
power.



Choosing a frequency in DVFSChoosing a frequency in DVFSg q yg q y

Workload of a task, Wtask, is defined as the total 
b f CPU l k l i d t fi i h thnumber of CPU clock cycles required to finish the 

task N      : total number of instructions in a task
CPI   : clock cycles per instruction≡ ∑

N

task i
i 1

W CPI

Task execution time, Ttask, is a function of the CPU     
frequency, f cpu

y p
i=1

t kWq y,

Given a deadline of D, ftarget denotes the CPU 

= task
task cpu

WT
f

, target
frequency that results in Ttask closest to D

= ⇒ =task
t t t k

Wf T D ⇒target taskf T D
D
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Motivation for workload decompositionMotivation for workload decomposition

CPU-bound vs. memory-bound applications
The figure shows execution time variation according to the 
CPU frequency ranging from 733 MHz to 333 MHz.
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Workload decompositionWorkload decompositionpp

A program execution sequence consists of on-chip and 
ff hi koff-chip work

On-chip work : performed inside the CPU (e.g. cache hit)
Off-chip work : performed outside the CPU (e g cache miss)Off chip work : performed outside the CPU (e.g. cache miss).

An external memory access is asynchronous to the 
CPU

Execution time variation as a function of the CPU frequency 
depends on the workload composition of the task.

     ∂
= + ⇒ = −

∂

on off on
task

task 2cpu ext cpu cpu

TW W WT
f f f f

Fixed 
(100MHz for SDRAM access)

Varied
(333MHz to 733MHz)



Energy saving via workload decompositionEnergy saving via workload decompositiongy g pgy g p

For memory-bound application programs, CPU energy 
b d ith th l f ltcan be saved with a rather low performance penalty.

f cpu = fmax / 2f cpu = fmax
D 18

8 2 16 2a.

Ta=10 T’a=18 (80% PFloss)
a’.

CPU-bound
D=18

5 5 10 5b.
Tb=10 T’b=15 (50%)

b’.

2 8
T 4 8 T

c.
Tc=10 T’c=12 (20%)

c’.

memory-bound
On-chip work
Off-chip work

memory bound
Lower f cpu can be set for “b” & “c”, 

resulting in higher energy saving



DVFS with workload decompositionDVFS with workload decompositionDVFS with workload decompositionDVFS with workload decomposition

With workload decomposition, the target frequency, 
f i l l t d

=
onWf + +

on off
on off W WT T T

ftarget, is calculated as 

=
−target offf

D T
= + = +on off

task cpu extT T T
f f

Note that
on WW target frequency without 

workload decomposition
≤

−
task

off

WW
D T D

Workload decomposition–based DVFS results in lower 
CPU energy consumption due to more aggressiveCPU energy consumption due to more aggressive 
voltage scaling.



Decomposing the workload at runtimep g

Utilize the embedded hardware in modern 
i i th f it i itmicroprocessors, i.e., the performance monitoring unit 

(PMU).
PMU can report 15 ~ 20 different dynamic events duringPMU can report 15 ~ 20 different dynamic events during 
execution of a program

Cache hit/miss counts 
TLB hit/miss counts
No. of stall cycles
T t l f i t ti b i t dTotal no. of instructions being executed 
Branch misprediction counts.

Based on events from the PMU workload mayBased on events from the PMU, workload may 
accurately be decomposed at runtime.
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Overview of prior DVFS worksOverview of prior DVFS workspp

Most DVFS methods are concerned about CPU energy 
reduction onlyreduction only

More precisely, dynamic portion of the CPU energy
Lower CPU frequency always causes less CPU energy.

Most computing systems, however, comprise of many 
subsystems such as memory subsystems and 
peripheral devicesperipheral devices.

Battery lifetime also depends on power consumption in 
subsystems, which is not affected by CPU frequency 
changeschanges.
Lowering CPU frequency can cause shorter battery lifetime 
due to an increase in the standing and idle portions of the 
system energy consumptionsystem energy consumption.



System energy with DVFSSystem energy with DVFSSystem energy with DVFSSystem energy with DVFS

A computing system with a CPU and n memory and 
I/O b tI/O subsystems

CPU
sub2

sub1Vsys

Gndbattery

Consider a CPU bound application as an example

subn

Consider a CPU-bound application as an example
Power = =
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DVFS for the minimal system energyDVFS for the minimal system energyy gyy gy

Timing constraint
Different applications exhibit different execution time variation 
as a function of the CPU frequency.
Need an accurate task execution time model as a function of 
the CPU frequency.

Minimal system energy
Each component’s power consumption must be known a 
priori.
Information about the power state of each component (i.e., p p ( ,
active or idle state info) is also required.

These two requirements can be satisfied by using the 
kl d d iti hworkload decomposition approach.



Timing constraintTiming constraintTiming constraintTiming constraint

Program execution time, T

= + = +
on off

on off
cpu ext

W WT T T
f f

Given a task with workload, Won and Woff, and latency 
constraint, D

=
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target off
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Wf
WD
f
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D D
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ftarget

Time Time



System power breakdownSystem power breakdownSystem power breakdownSystem power breakdown

Power consumption profile severely fluctuates due to 
lt t ti f Won d Woffalternate execution of Won and Woff.

Won (Woff) results in CPU (subsystem) power consumption.
System power consumption may thus be divided into

fixed variable when components

System power consumption may thus be divided into 
the following components:

fixed variable

idle
remains unchanged 

are not used

DC-DC converter, PLL, 

CPU idle, memory is not 
accessedidle

activestandingidle + fixed

when each component 
is used for some task

leakage

CPU active, memory is 

Obtained by simple measurements or using values in the spec.

, y
accessed



System energy modelSystem energy modelSystem energy modelSystem energy model

Using workload decomposition, the 
t i d l d

fixed variable

system energy is modeled as:
idle

activestanding= = ⋅ + ⋅ + ⋅∑∫
3
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sys sys sys cpu sub it
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The BitsyX Platform The BitsyX Platform e tsy at oe tsy at o

The ADS’s BitsyX board has a PXA255 microprocessor 
hi h i 32 bit RISC ith 32KBwhich is a 32-bit RISC processor core, with a 32KB 

instruction cache and a 32KB write-back data cache, a 2KB 
mini-cache, a write buffer, and a memory management unit y g
(MMU) combined in a single chip.

PXA255 processor



Clock frequencies in BitsyXClock frequencies in BitsyXClock frequencies in BitsyXClock frequencies in BitsyX

PXA255 can operate from 100MHz to 400MHz, with a 
fcore supply voltage of 0.85V to 1.3V f cpu

.

Internal bus (PXbus) connects the core and other 
functional blocks inside the CPU f intfunctional blocks inside the CPU f int

.

External bus is connected to SDRAM (64MB) f ext

Wh f cpu i h d f int d f ext l h dWhen f cpu is changed, f int and f ext are also changed.



Frequency settings in BitsyXFrequency settings in BitsyX

Nine frequency combinations, Fn(f cpu, f int, f ext)

Freq. 
Set

f cpu 

[MHz] V cpu [V] f int [MHz] f ext [MHz]

F1 100 0.85 50 100
F2 133 0.85 66 133
F 200 1 0 50 100F3 200 1.0 50 100
F4 200 1.0 100 100
F5 265 1.0 133 133
F6 300 1.1 50 100
F7 300 1.1 100 100
F 400 1 3 100 100F8 400 1.3 100 100
F9 400 1.3 200 100



Performance monitoring unit (PMU)

PMU on the PXA255 processor can report up to 15 
diff t d i t t tidifferent dynamic events at run time.

Cache hit/miss counts, TLB hit/miss counts, No. of stall 
cycles, Total no. of instructions being executed, Branch y , g ,
misprediction counts.

For DVFS, we use the PMU to generate statistics for
Total no. of instructions being executed (INSTR)
No. of stall cycles due to on/off-chip data dependencies 
(STALL)( )
No. of Data Cache misses (DMISS)

We also record the no. of clock cycles from the 
beginning of the program execution (CCNT).



Algorithm flow of the SE-DVFS for BitsyX

System power valuesDecompose workload 

E ti ti d l

Pcpu, Pstd, Psub … Wtask Won and Woff

Execution time model 
Ttask (Fn) = Ton + Toff

System energy model, Esys(Fn)

DVFS policy
An optimal Fopt is adopted such that
Ttask(Fopt) ≤ D with minimal Esys(Fopt)



Execution time and frequency settingsExecution time and frequency settings
Execution time variation for different frequency 
combinations – “math”, “crc”, “djpeg”, “qsort”, “gzip”

“math” is CPU-bound ( strongly dependent on f cpu ) 
“gzip” is memory-bound (f int & f ext dependent )

Freq. 
Set

f cpu

(MHz)
f int

(MHz)
f ext
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F1 100 50 1004

5
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rm
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F2 133 66 133
F3 200 50 100
F4 200 100 1002
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m
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(n gzip

F5 265 133 133
F6 300 50 100
F7 300 100 100

1

Ex
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io

F8 400 100 100
F9 400 200 100
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Frequency combination



OnOn--chip workload, chip workload, WWononp ,p ,

Total workload, Wtask, is modeled as:

= = ⋅∑
N

i avg
taskW CPI N CPI

number of instructions
CPU clocks per instruction

( )
=

= ⋅ + + +

∑task
i

avg avg avg
0 branch miss stall on stall offN CPI CPI CPI CPI

1

_ _ _       

ideal CPI which is 1 for a single-issue processor

CPU clocks due to branch misprediction overhead

CPU clocks due to on-chip (off-chip) stalls

On-chip workload, Won, is given as:

( )

ideal CPI which is 1 for a single issue processor

( )= ⋅ = ⋅ + +on avg avg avg
on branch miss stall onW N CPI N CPI CPI CPI0 _ _



OnOn--chip CPI calculationchip CPI calculationOO c p C ca cu at oc p C ca cu at o

In our previous work on XScale80200-based system 
(DATE’04) b i d f h l f CPI(DATE’04),            was obtained from the plot of CPIavg

vs. MPIavg
.

avg
onCPI

CCNT MEM
= =avg avgCCNT MEMCPI MPI

INSTR INSTR
,    

XScale-80200 processor

CPIavg

CCNT

events description

number of executed instructions
number of clock counts

INSTR
MPIavg

avg
onCPI

CPIavg = b•MPIavg + c

MEM is not provided by the PMU of PXA255 processor

MEM number of off-chip accessesMPIavg

MEM is not provided by the PMU of PXA255 processor
Instead, we used STALL and DMISS events.



Plot of CPIPlot of CPIavgavg vs. SPIvs. SPIavgavgPlot of CPIPlot of CPI vs. SPIvs. SPI

We define SPI as ratio of the number of stall cycles to 
the total instruction count

≡ = +avg avg avg
on off

STALLSPI SPI SPI
INSTR

the total instruction count
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gzip= + +avg avg avg
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Calculating SPICalculating SPIonon using Dusing D--cache misscache missgg onon gg

The more D-cache miss events, the higher the probability of off-
chip accesses most stalls are off-chip stallschip accesses most stalls are off chip stalls.
We define DPI as ratio of the number of D-cache miss events to 
the total instruction count.

≡avg DMISSDPI
INSTRINSTR

= + = +avg min avg min
on on on onCPI CPI SPI CPI dpi spi DPI2 ( )CPIavg

DPI dpi2spi(DPI)

DPI≤ k1 CPIon
max - CPIon

min

avg
onCPI

max
onCPI CPU-bound

avg
onCPI

CPIon
max

CPIon
min

k1<DPI≤ k2 DF•(n-1)

… … …

kn-2<DPI≤ kn-1 DF•2

k DPI k DF 1 i

+ ⋅min
onCPI 2 DF

+ ⋅min
onCPI (n -1) DF

SPIavg

(CPIon
max – CPIon

min)

kn is constant: k1 < k2 < … < kn

kn-1<DPI≤ kn DF•1

DPI > kn 0 min
onCPI

+ ⋅min
onCPI 1 DF

mem-bound

(CPIon CPIon )
DF = 

n



Calculating Calculating WWoffoff from from TToffoffgg

Woff is calculated from Toff which is given as

= − = −
n n

n n

on
off on

F task n F cpu cpu
F F

CCNT WT T F T
f f

( )

Toff is dependent on the f ext as well as f int.
Example: when a D-cache miss occurs, two operations 
are performed:are performed:

Data fetch from the external memory (f ext)
Data transfer to the CPU core where the cache-line andData transfer to the CPU core where the cache line and 
destination register are updated (f int)

Due to lack of exact timing information, we have opted to 
d l T ff ( ) offffmodel Toff as: ( )αα − ⋅⋅

= + = +
n n n

n n

offoff
off off off

F int,F ext,F int ext
F F

1 WWT T T
f f



Execution time model summaryExecution time model summaryyy

Execution time, Ttask(Fn), in BitsyX system

( )αα − ⋅⋅
= + + = + +

n n n

n n n

offon off
on off off

task n F int,F ext,F cpu int ext
F F F

1 WW WT F T T T
f f f

( )

An α value of ~0.35 was obtained for tested applications

n n n

The average error in predicting the execution time was 
less than 2% for all nine frequency settings.



System energy model for BitsyXSystem energy model for BitsyXy gy yy gy y

Using workload decomposition

Power
nsys,FP t( )

= + +
n n n n

on off off
F F int,F ext,FT T T T

, n

off
ext FP

n

on
FP

n

off
int,FP

active power

stdP

t tt t

standing power
n

off
ext,FT

n

off
int,FT

n

on
FT

nsys,FP

std on on off off off offE P T P T P T P T

Timet1 t4t2 t3

= ⋅ + ⋅ + ⋅ + ⋅
n n n n n n n n

std on on off off off off
sys F sys F F F int F int,F ext F ext,FE P T P T P T P T, , , ,



Accuracy of the system energy modelAccuracy of the system energy model
The estimated energy consumption for “djpeg”

The average error rate is less than 4%.g

Freq. 
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measured parameters [ mW ]

40

J]
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Scaling granularityScaling granularityg g yg g y

Fine-grained SE-DVFS may be applied to non real-
ti li titime applications.
Considering the scaling overhead, frequent voltage 
scaling may outweigh any advantage from DVFSscaling may outweigh any advantage from DVFS.
OS quantum unit (~60 msec in Linux) is suitable as a 
scale unit, which is three orders of magnitude larger , g g
than the voltage scaling overhead (~500 μsec).
Using the OS quantum, our DVFS can be applied to 
each process when it is scheduled.



Determining the optimal frequency settingDetermining the optimal frequency settingDetermining the optimal frequency settingDetermining the optimal frequency setting

First satisfy the timing constraint; Next find a setting 
th t i i i th t t l t (SE DVFS)that minimizes the total system energy (SE-DVFS).
Pseudo code for optimal frequency selection:

1.    Ψ = { Fmin , …, Fmax }, Γ = {φ }, and Emin =  ∞
2. for every frequency setting Fn in Ψ

Timing
3. if ( )
4.                  Γ = Γ ∪ Fn ;
5 for every frequency setting F in Γ

Timing 
constraint ( )+ ≤ + ⋅

n max

i 1 i
F loss FT 1 PF T CE-DVFS

5.    for every frequency setting  Fn in Γ
6. calculate system energy using proposed model
7. if ( ≤ Emin )

System energy 
minimization nsys FE ,

8.                        Emin = Esys,Fn
; Fopt

i+1 = Fn ;
minimization



The software architectureThe software architecture
The software architecture comprises of a proc interface 
module and a policy setting module tightly linked with 
th Li h d l th PMU d th f dthe Linux scheduler, the PMU, and the freq. and 
voltage control circuitry on the BitsyX board.

“proc” Interface Module
Kernel Space

External PFloss input parameter

proc  Interface Module

Linux Policy Setting ModuleLinux 
Scheduler

y g

PMU Access 
Module

DVFS
Module
DVFS

PXA255 Processor



Power measurementPower measurementPower measurementPower measurement

Data acquisition system operates up to 100 kHz.

Power supply
R

Power supply
(12V)

BitsyX

Data 
Acquisition 

S

V+
V-

System



Experimental results (I)Experimental results (I)p ( )p ( )

Comparing two DVFS techniques:
SE-DVFS vs. CE-DVFS

Resulting performance loss
SE DVFS
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Experimental results (II)Experimental results (II)Experimental results (II)Experimental results (II)

Actual power consumption of two DVFS methods
For “gzip” with 30% target PFloss, SE-DVFS results in  
11.4% lower total system energy than CE-DVFS
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Experimental results (III)Experimental results (III)p ( )p ( )

CE-DVFS vs. SE-DVFS
SE-DVFS results in 2% ~ 18% higher system energy savings 
compared to CE-DVFS
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Workload decomposition
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ConclusionConclusion

A DVFS policy for the actual system energy reduction 
d d i l t d hi h liwas proposed and implemented, which uses online 

decomposition of the application workload into on-chip 
and off-chip componentsand off chip components

Based on actual current measurements in the BitsyX 
platform up to 18% more system energy saving wasplatform, up to 18% more system energy saving was 
achieved with the proposed DVFS compared with the 
results in the previous DVFS techniques

For both CPU and memory-bound programs, the 
specified timing constraints were satisfied


