

2007 Radio and Wireless Symposium 9 – 11 January 2007, Long Beach, CA.

Lifetime-Aware Hierarchical Wireless Sensor Network Architecture with Mobile Overlays

Maryam Soltan, Morteza Maleki, and Massoud Pedram Department of Electrical Engineering University of Southern California

Outline

- Network structure and objectives
- Routing protocol
- System analysis
- Results
- Conclusion

Hierarchical Network Structure

Sensor nodes Event Aggregation Relay (*EAR*) nodes Mobile Aerial Infrastructure overLay (*MAIL*) nodes Base Station

M # of *MAIL* nodes N # of *EAR* nodes

- Recurrent cycle
- Network Monitoring Lifetime (*MoL*)

Flight Trajectory

MAIL Node

EAR Node

Sensor Node

Objectives

Analysis of concurrent controllable mobility and multi-hop routing in a multi-tier network

Design and Analysis of Mobility-aware routing protocol

Motivation

Lower energy dissipation Longer lifetime.
 Energy consumption for wireless transmission:

 $\varepsilon = e_t d^{\beta}$

d: Distance

 e_t : Energy dissipation for transmitting unit of data over unit of distance

 β : Path loss exponent

- Hierarchical network structure and multi-hop routing lowers energy dissipation.
- Mobility brings symmetry in battery depletion

Bounded Hop Count Routing (BHR)

- Multi-hop routing between EAR nodes
 - Less network delay and smaller storage size
 - Shorter distance Less transmission power
- Dynamic Hop Count (DHC) vs. Initial Hop Count (IHC)
 - mobility
 - Routing delays
 - transmission, propagation and queueing
- Bounded number of hops
 - route if hop count <= H</p>
 - Storage, delay, and energy trade-off

EAR Node Cluster and State Transitions in Each Cycle

Queuing Analysis of Each EAR Node

(a) Temporal variation of arrival rate for node *i*(b) Temporal variations of departure rate

For $(t > T_1) \Rightarrow U_i(t) = \begin{cases} \mu_1 \text{ or } \mu_2 \text{ if } Q_i(t) > 0 \\ A_i(t) & \text{if } Q_i(t) = 0 \end{cases}$, otherwise $U_i(t) = 0$

(c) Temporal Variations of queue size

Waiting Time in Queues

- EAR-to-EAR link delay:
 t_{link1}
- State durations: T_i
- Avg. waiting in each EAR node: waiting in each EAR

Average Number of Hops for a Packet Transmission

- Hop count for packet delivery from an EAR node to a *MAIL* node
 - Between 1 to H
- Temporal average of DHC for a packet delivery

DHC seen by an *EAR* node during one cycle

$$\overline{h} = \frac{1}{T_M} \cdot \left(H \cdot (T_1 + T_2) + (T_4 + T_5) + (\frac{H+1}{2}) \cdot (T_3 + T_6) \right)$$

Network Delay Average delay for a packet to reach a MAIL node, D_{net}

 $D_{net} = \overline{h} \cdot \overline{W} + \frac{(\overline{h} - 1)}{\mu_1} + \frac{1}{\mu_2}$ Waiting time in queues *EAR*-to-*EAR* communications

Network Lifetime

Average energy consumption for a packet delivery: $\overline{E} = (\overline{h} - 1) \cdot e_E + e_M$

 e_E : Avg. energy consumption for EAR-to-EAR communication e_M : Avg. energy consumption for EAR-to-MAIL communication

Average # of packets generated during lifetime of the network: $N \cdot \lambda \cdot T_{net}$

$$\overline{E}.(N\cdot\lambda\cdot T_{net}) = N\cdot E_0 \Longrightarrow T_{net} = \frac{E_0}{\lambda\cdot\overline{E}}$$

Optimization Problem $Max_{v,H,N_c} T_{sys}$ s.t. $D_{net} \leq D_{max}$, $B_p \leq B_{max}$, $c \cdot C_M \leq C_{max}$ $T_{svs} = Min(T_{net}, c \cdot T_e)$ $T_e: MAIL$ endurance time $(T_e \propto 1/v^3)$ T_{net} : Network lifetime B_p : Peak queue size C_M : Recharge Cost c: # of charge occasionsConvex epigraph form: $f \Box 1/T_{svs} \Rightarrow f \ge 1/cT_e, \quad f \ge 1/T_{net}$ $\underset{v,H,R_c}{Min} f$ s.t. $k\lambda E - f \cdot E \le 0$, $\rho \cdot v^3 - f \cdot c \cdot \alpha \cdot E_M \le 0$ and $D_{net} \leq D_{\max}$, $B_p \leq B_{\max}$, $c \cdot C_M \leq C_{\max}$

Simulation Results

Sample scenario:

COMMUNICATIONS

1000 *EAR* nodes Random distribution Two *MAIL* nodes e_t for *EAR-to-EAR:* 0.0013 e_t for *EAR-to-MAIL:* 10 (pJoul/bit/m²) λ : 0.3

Simulation Results – Cont.

Concluding Remarks

- Lifetime and delay aware deployment strategy
- A mobility-aware multi-hop routing protocol (Bounded hop count routing (BHR))
 - To control the trade off between delay, buffer size and lifetime
- Analysis of lifetime, delay, and buffer size
- Optimization problem formulation
- Packet level simulator

