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Introduction

PVT variations pose a major challenge
 Design of reliable systems
« Robustness of DPM techniques

Stress/aging results in unacceptable safety margins
o Stress (HCI, NBTI, TDDB) changes V,, of Trans.
 Trans. characteristics change > 10% over 10 years

Lack of proper modeling and optimization tools

« Transforms low-level variability into system-level
uncertainty

Improving accuracy and robustness of the decision
making strategy

 Important step to guarantee the quality of DPM solutions
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Some Relevant Prior Work

« S.Borkar, et al. (DAC 2003)

e Parameter variations and impact on architecture

K. Kang, et al. (DAC 2007)

« Variation resilient circuit design technique

H. Su, et al. (ISLPED 2003)

« Leakage estimation under V & T variations

M. Lie, et al. (ISLPED 2004)

 Probabilistic analysis for impact of variations

F. Marc, et al. (Trans. On Device Reliability 2006)

« Circuit aging simulation techniqgue based on behavioral
model
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High Level Explanation of the Problem

« Many researchers have examined techniques for:
e Variability modeling and control at the low levels
(e.g., physical design optimization and/or logic synthesis)
« Dynamic power management with system variables being
— Directly observable
— Deterministic

« These techniques suffer from the following:
e« System state is not fully observable

« Conventional DPM approaches tend to be less effective
because uncertainty modeling is not done
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Overview of the Proposed Solution

« Develop aresilient power management framework

« The framework accounts for parameter variations during
power management

o Effects of uncertainties due to variability/stress are
captured by stochastic processes

« QOur proposed DPM framework is based on:
e Stochastic process model
« Dynamic programming
« EXxpectation-maximization algorithm

— Enables a power manager to predict uncertain state of a
system in a dynamic environment

 Roles of the power manager
 Interact with uncertain stochastic environments
 Select appropriate actions (i.e., V-F values)
« Minimize the long term cost (i.e., energy dissipation)
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POMDP

« POMDPiIs atuple (S, A, O, T,Z c)such that
« Sis afinite set of states (power)
« As afinite set of actions (V-F value)
« Ois afinite set of observations (temperature)
« Tis atransition probability function
— T(s'a,s)=Prob(s"' =s'|a' =a,s" =)
e Zis an observation function
— Z(o',s';a)=Prob(o'”" =0'|a' =a,s"" =s")
e cis acostfunction
— action ain state sincurs some cost, c(s, a)

« POMDP maintains a belief state (vector)
o A probability distribution over the possible states
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POMDP-based Power Manager

e Structure of the proposed power manager

Stochastic
Power
manager
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Power Management Framework (1/2)

« Partial observation and its effect on the probability

density function
s b (s)T(s'
« Computing the belief state: »"' (s")= 2(0'5,0)), b(5)T(s'a.9)
ZS’S,,Z(O L a)b ($)T(s",a,s)

« Complexity of computing the belief state grows rapidly
with the number of states

 Solving a belief-state based DPM problem is quite

expensive
S3

S A current belief state

= [b, b, bs]

2 5,2 [0.5W 0.8W]
2 S 5, [0.8W 1.1W]
= 55 55 [L1W 1.4W]

b, +b,+b,=1

most probable observation
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Power Management Framework (2/2)

« To avoid the complexity of solving the belief-state

based DPM problem

« We adopt a state estimation technique based on the
expectation-maximization (EM) algorithm

« The EM algorithm deals with uncertain information when
computing the maximum likelihood estimate (MLE) of the

system state

« Forming the complete observation with MLE
« MLE enables determination of the system state without

using belief states

0= Nu, &) Maximum Complete

\ Likelihood
Estimate

[

0y

Probability

Identify the state s

—

0,

v
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EM-based State Estimation (1/3)

« The goal is to obtain estimation of the complete
observation by using the EM algorithm

0. Observed data (i.e., noisy measurement)

e m: missing date (i.e., hidden source of variation that
affects the power state of the system)

« Together o and m constitute the complete data
« EM algorithm finds an observation estimate 0 that
maximizes the complete-data likelihood, which is defined

as.
p(o,m|0) = p(m|o,0)p(o|0)

* ldentify the system state from the complete data
through a pre-defined observation-state mapping
table

« The mapping table is obtained by doing extensive
simulation at design time
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Backup slide: EM algorithm (2/3)

« The EM algorithm iteratively improves an
observation estimate @ as follows: ¢ =argmaxQ(0)

0
« 0t :the value that maximizes the conditional expectation
of log-likelihood of the complete data given the observed

variables
e Q(0): the expected value of the log-likelihood of complete
data
« We cannot determine the exact value of the log-
likelihood since we do not know the complete data

« We calculate an expected value of the log-likelihood of
complete data for the given values o

0(0) = E (log p(o.m | )|o)

=" p(m|o)log p(o,m| O)dm

12
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EM-based State Estimation (3/3)

« The flow of the state estimation by the EM algorithm
 EXxpectation step + Maximization step

Initialization

[Initialize parameter (observation estimate): 9}

until

0" - 0<o

Expectation step «

A 4

[ Find expected value of log-likelihood of complete data: O(6) ]

Maximization step l

[Find 0" which maximize the expected value and set 9 =0"" ]

\ 4

Identifying the state

Identify the system state s based on the estimate of the
complete observation: o
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Policy Generation (1/2)

 Policy generation deals with the cost function

« A dynamic programming technique is used to solve the
problem since it exhibits the property of optimal sub-
structure cost

« The optimum cost is defined as follows:
« The expected discounted sum of cost that an agent

accrues . 0
¥i(s) = minE(Z 4 -c(z‘)j
4 1=0

« y:adiscountfactor,0<y<1
e c(f):. costattimet

 In our problem setup, the cost function is defined as:

¥i(s) = min(C(s, a)+y ) T(s'a,s)¥ (s ')j VseS
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Policy Generation (2/2)

 Given the cost function, the optimal action can be
obtained by
7 (s) =arg min(C(S, a)+y ) T(s'a,s)¥ (s ')j
a s'eS

« One way to solve Markov decision problem is to use
value iteration method
e Value iteration method
consists of a recursive

update of the value

1: initialize ‘P(s) arbitrarily
2 loop until a stopping criterion is met
3 loop for Vs € §
) 4: loop for Va € 4
function to choose 5. O(s.a) = C(s,a)+ 7Y T(s',a,5)¥(s)
an action 6 ¥(s) = min O(s, ) T
7 end loop
8 end loop
9 end loop

The value iteration algorithm
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Experimental Results (1/5)

« Apply the proposed DPM technique to a RISC
processor realized with 65nm CMOS

 Analyze possible variations of the processor power
 Vary process corners during simulation
 Probability density
function for power
~N(650, 3.1)

=
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=
[
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Power consumption (mi)
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Set the parameter values

Experimental Results (2/5)

State| Description || 5 | Description cost c(s, @) [pJ]
W] [°C] s 8283
S [0.5 0.8] 0, [75 83] a; | [541 500 470]
S2 (0.8 1.1] 02 (83 88] a, |[465 423 381]
S5 (1.1 1.4] 03 (88 95] a; |[450 508 550]

(a,=[1.08V/150MHz], a, = [1.20V/200MHz], a, = [1.29V/250MHz] )
« PBGA package thermal performance data (T,=70 °C)

DATE 2008

Air velocity
m/s ft/min TJ_max[OC] TT_max[OC] Yr [OC/W] 9]14 [OC/W]
0.51 100 107.9 106.7 0.51 16.12
1.02 200 105.3 104.1 0.53 15.62
2.03 300 102.7 101.2 0.65 14.21

*y,: Junction-to-top of package thermal characterization parameter

* 0,,: Thermal resistance for junction-to-ambient




Experimental Results (3/5)

« Trace of temperatures from the observation and from
the MLE estimate

« Calculate Ty, from T, = Ty + P(6,, - wyp),
where P~ N(P,_., (AP)?)

—=— Observed temperature
—4— Estimated temperature (EM])

Temperature

1 1 1
40 a0 B0
Tirme step (ms)
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Experimental Results (4/5)

« Effectiveness of the policy generation algorithm

« Optimal action is chosen to minimize the cost function by
using observations and the EM algorithm to determine the

MLE of the system state
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Experimental Results (5/5)

« Demonstrate the effectiveness of the DPM technique
« Compare with worst and best operating conditions

 Evaluate how the proposed approach can handle
variability

« The worst case assumption under-estimates the
performance and hence results in the largest EDP value for
the DPM solution

Minimum [ Maximum | Average Energy EDP

Power power Power (normalized] (normalized
Our approach || 0.71W 1.12W 0.97W 1.14 1.34
Worst case 0.77TW 1.26W 1.02W 1.47 2.30
Bestcase | 0.96W 1.31W [.15W 1.00 1.00

20
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Conclusion

« Proposed aresilient DPM technique which
guarantees to select an optimal policy under
variability

e The proposed DPM framework brings uncertainty to
the forefront of decision-making strategy

« Being able to handle various sources of uncertainty
would improve the accuracy and robustness of the
design

« The proposed DPM technique ensures energy
efficiency, while reducing the uncertain behavior of
the system
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