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Introduction

• PVT variations pose a major challenge
• Design of reliable systems
• Robustness of DPM techniques

• Stress/aging results in unacceptable safety margins
• Stress (HCI, NBTI, TDDB) changes Vth of Trans.
• Trans. characteristics change > 10% over 10 years

f• Lack of proper modeling and optimization tools
• Transforms low-level variability into system-level 

uncertainty

• Improving accuracy and robustness of the decision 
making strategy
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• Important step to guarantee the quality of DPM solutions



Some Relevant Prior Work

• S. Borkar, et al. (DAC 2003)
• Parameter variations and impact on architecture

• K. Kang, et al. (DAC 2007)
• Variation resilient circuit design technique 

• H. Su, et al. (ISLPED 2003)
• Leakage estimation under V & T variations

• M. Lie, et al. (ISLPED 2004)
• Probabilistic analysis for impact of variations

• F. Marc, et al. (Trans. On Device Reliability 2006)
• Circuit aging simulation technique based on behavioral 

d l
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High Level Explanation of the Problem

• Many researchers have examined techniques for:
• Variability modeling and control at the low levels

(e.g., physical design optimization and/or logic synthesis) 
• Dynamic power management with system variables being

– Directly observabley
– Deterministic

• These techniques suffer from the following:These techniques suffer from the following:
• System state is not fully observable
• Conventional DPM approaches tend to be less effective 

because uncertainty modeling is not donebecause uncertainty modeling is not done
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Overview of the Proposed Solution
• Develop a resilient power management framework

• The framework accounts for parameter variations during 
power managementp g

• Effects of uncertainties due to variability/stress are 
captured by stochastic processes

• Our proposed DPM framework is based on:• Our proposed DPM framework is based on:
• Stochastic process model
• Dynamic programming
• Expectation-maximization algorithm

– Enables a power manager to predict uncertain state of a 
system in a dynamic environment

• Roles of the power manager 
• Interact with uncertain stochastic environments
• Select appropriate actions (i.e., V-F values)
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pp p ( , )
• Minimize the long term cost (i.e., energy dissipation)



POMDP

• POMDP is a tuple (S, A, O, T, Z, c) such that
• S is a finite set of states (power)
• A is a finite set of actions (V-F value)
• O is a finite set of observations (temperature)
• T is a transition probability functionp y

–
• Z is an observation function

( ', , ) ( ' | , )= = = =t+1 t tT s a s Prob s s a a s s

( ' ' ) ( ' | ')t+1 t t+1Z o s a Prob o o a a s s–
• c is a cost function

– action a in state s incurs some cost, c(s, a)

( ', ', ) ( ' | , ')= = = =Z o s a Prob o o a a s s

• POMDP maintains a belief state (vector)
• A probability distribution over the possible states
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A probability distribution over the possible states



POMDP-based Power Manager

• Structure of the proposed power manager
PVT variations Aging (stress)

State

ao
System

PolicyState
estimation

power manager

Policy
generation

h i

Observation 
(temperature) System

1. Issue a command (V-F value)

2 M k b tiStochastic
Power

manager
Command 
(V-F value) s3

s1 s2

3. Compute maximum likelihood state

2. Make an observation
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(V F value)
4. Determine the next command



Power Management Framework (1/2)

• Partial observation and its effect on the probability 
density function  

∑• Computing the belief state:

• Complexity of computing the belief state grows rapidly

1

, "
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• Complexity of computing the belief state grows rapidly 
with the number of states

• Solving a belief-state based DPM problem is quite 
expensiveexpensive

s3 current belief state
[ b1 b2 b3 ]

ob
ab

ili
ty

Using belief state b

uncertaintyo = N(μ , σ2)

s1: [0.5W 0.8W]
s2: [0 8W 1 1W]

s1

s2

b1 + b2 + b3 = 1

pr
o

μ

s2: [0.8W 1.1W]
s3: [1.1W 1.4W]
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most probable observation



Power Management Framework (2/2)

• To avoid the complexity of solving the belief-state 
based DPM problem  

W d i i h i b d h• We adopt a state estimation technique based on the 
expectation-maximization (EM) algorithm

• The EM algorithm deals with uncertain information when 
computing the maximum likelihood estimate (MLE) of thecomputing the maximum likelihood estimate (MLE) of the 
system state

• Forming the complete observation with MLEForming the complete observation with MLE
• MLE enables determination of the system state without 

using belief states
N( 2) Maximum Complete S stem

Pr
ob

ab
ili

ty

o = N(μ , σ2)

Identify the state s

Likelihood
Estimate

Complete
observation

System 
state

mapping

o1

o2

s1

s2
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EM-based State Estimation (1/3)

• The goal is to obtain estimation of the complete 
observation by using the EM algorithm

b d d (i i )• o: observed data (i.e., noisy measurement)
• m: missing date (i.e., hidden source of variation that 

affects the power state of the system)
• Together o and m constitute the complete data
• EM algorithm finds an observation estimate θ that 

maximizes the complete-data likelihood, which is defined 
as:

• Identify the system state from the complete data 
th h d fi d b ti t t i

( , | ) ( | , ) ( | )p o m p m o p oθ θ θ=

through a pre-defined observation-state mapping 
table

• The mapping table is obtained by doing extensive 
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simulation at design time



Backup slide: EM algorithm (2/3)

• The EM algorithm iteratively improves an 
observation estimate θ as follows:

θ t 1 h l h i i h di i l i

1 arg max ( )t Q
θ

θ θ+ =

• θ t+1 : the value that maximizes the conditional expectation 
of log-likelihood of the complete data given the observed 
variables

• Q(θ) : the expected value of the log likelihood of complete• Q(θ) : the expected value of the log-likelihood of complete 
data

• We cannot determine the exact value of the log-
lik lih d i d t k th l t d tlikelihood since we do not know the complete data 

• We calculate an expected value of the log-likelihood of 
complete data for the given values o

( )( ) log ( , | )

( | ) log ( , | )

m
Q E p o m o

p m o p o m dm

θ θ

θ
∞

=

= ∫
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EM-based State Estimation (3/3)

• The flow of the state estimation by the EM algorithm
• Expectation step + Maximization step

Initialization

Initialize parameter (observation estimate): θ

Expectation step

Find expected value of log-likelihood of complete data: 

+1  tθ θ ω− ≤until

( )Q θ

Maximization step

Find         which maximize the expected value and set       1tθ + 1tθ= θ +

Identifying the state

Identify the system state s based on the estimate of the 
complete observation: *θ
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complete observation: θ



Policy Generation (1/2) 

• Policy generation deals with the cost function 
• A dynamic programming technique is used to solve the 

problem since it exhibits the property of optimal subproblem since it exhibits the property of optimal sub-
structure cost

• The optimum cost is defined as follows:The optimum cost is defined as follows:
• The expected discounted sum of cost that an agent 

accrues
*( ) min ( )ts E c tγ

∞⎛ ⎞
Ψ = ⋅⎜ ⎟

⎝ ⎠
∑

• γ : a discount factor, 0 ≤ γ < 1
• c(t): cost at time t

0

( ) ( )
tπ
γ

=
⎜ ⎟
⎝ ⎠
∑

• In our problem setup, the cost function is defined as:
* *( ) i ( ) ( ' ) ( ')C T S⎛ ⎞Ψ + Ψ ∀⎜ ⎟∑
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Policy Generation (2/2) 

• Given the cost function, the optimal action can be 
obtained by

⎛ ⎞

• One way to solve Markov decision problem is to use 

* *

'

( ) arg min ( , ) ( ', , ) ( ')
a s S

s s ss C s a T aπ γ
∈

⎛ ⎞= + Ψ⎜ ⎟
⎝ ⎠

∑

y p
value iteration method

• Value iteration method 
consists of a recursive

1:  initialize Ψ(s) arbitrarily
2 l til t i it i i tconsists of a recursive 

update of the value 
function to choose 

2:      loop until a stopping criterion is met
3:          loop for ∀s ∈ S
4:               loop for ∀a ∈ A
5:                         

'

( , ) ( , ) ( ', , ) ( ')
s S

s s sQ s a C s a T aγ
∈

= + Ψ∑
an action 6:                          

7: end loop
8:           end loop
9:       end loop

s S∈
( ) min ( , )

a
s Q s aΨ =
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The value iteration algorithm



Experimental Results (1/5)

• Apply the proposed DPM technique to a RISC 
processor realized with 65nm CMOS

• Analyze possible variations of the processor power
• Vary process corners during simulation
• Probability density 

function for power 
~N(650, 3.1)N(650, 3.1)
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Experimental Results (2/5)

• Set the parameter values

State Description Obs. Description cost c(s, a) [pJ]

(0.8   1.1]

[0.5   0.8]

State
[W]

s1

s2 (83    88]

[75    83]

Obs.
[°C]

o1

o2

[541   500   470]

[465   423   381]

a1

a2

s1 s2 s3

• PBGA package thermal performance data (TA=70 °C)

(1.1   1.4]s3 (88    95]o3 [ 450  508   550]a3

( a1 = [1.08V/150MHz], a2 = [1.20V/200MHz], a3 = [1.29V/250MHz] )

p g p ( A )

[°C]
Air velocity

m/s ft/min TJ_max [°C]TT_max θJAψJT [°C/W] [°C/W]

107.90.51
1.02

2.03

100

200

300

105.3

102.7

106.7

104.1

101.2

0.51

0.53

0.65

16.12

15.62

14.21
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•ψJT : Junction-to-top of package thermal characterization parameter
• θJA : Thermal resistance for junction-to-ambient



Experimental Results (3/5)

• Trace of temperatures from the observation and from 
the MLE estimate

C l l T f T T P ( )• Calculate Tchip from Tchip = TA + P⋅(θJA - ψJT), 
where P ~ N(Psim, (ΔP)2)
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Experimental Results (4/5)

• Effectiveness of the policy generation algorithm
• Optimal action is chosen to minimize the cost function by 

using observations and the EM algorithm to determine theusing observations and the EM algorithm to determine the 
MLE of the system state
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Experimental Results (5/5)

• Demonstrate the effectiveness of the DPM technique
• Compare with worst and best operating conditions
• Evaluate how the proposed approach can handle 

variability
• The worst case assumption under-estimates the 

f d h lt i th l t EDP l fperformance and hence results in the largest EDP value for 
the DPM solution

Minimum
Power 

Average
Power

Energy
(normalized)

Maximum
power

EDP
(normalized)

Our approach

Worst case

Best case

0.77W 1.26W

0.96W 1.31W

0.71W 1.12W 0.97W

1.02W

1.15W

1.14

1.00

1.47

1.34

1.00

2.30
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0.96W 1.31W 1.15W 1.00 1.00



Conclusion

• Proposed a resilient DPM technique which 
guarantees to select an optimal policy under 
variabilityvariability

• The proposed DPM framework brings uncertainty to 
th f f t f d i i ki t tthe forefront of decision-making strategy

• Being able to handle various sources of uncertainty 
fwould improve the accuracy and robustness of the 

design

• The proposed DPM technique ensures energy 
efficiency, while reducing the uncertain behavior of 
the system
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