A Unified Framework for System-level Design: Modeling and Performance Optimization of Scalable Networking System

Hwisung Jung and Massoud Pedram

University of Southern California Dept. of Electrical Engineering

International Symposium on Quality Electronic Design 2007

Agenda

- Introduction
- Background
- A Unified Modeling Framework
- Performance Optimization
- Experimental Results
- Conclusion

Introduction

- Realistic system modeling is an important step toward:
 - optimizing performance and energy consumption
 - realizing the target system specification early in design process
- Scalable networking system requires:
 - time-to-market
 - highly efficient design cycle
- Implications of high-functionality / performance design:
 - □ high power densities
 - elevated temperature
 - □ low circuit reliability
- A unified system modeling framework enables:
 - Realization of reliable system design
 - Improvement in accuracy and robustness of energy optimization techniques

Selected Prior Work

- F. Bause (Proc. Petri Net 1993)
 - Petri Net + Queuing Model
- N. L. Benitez (Trans. Reliability 2000)
 - Petri-Net based performance evaluation
- Q. Qiu, et al. (TCAD 2001)
 - Stochastic system modeling w/ GSPN
- A. Bogliolo, et al. (IEEE 2004)
 - Continuous-Time Markov Decision Process (CTMDP) based Model
- S. Kim, et al. (TVLSI 2006)
 - Queuing model-based SOC design

Motivation

System modeling framework must handle:

□ Concurrency, synchronization, and heterogeneity

	Pros	Cons
Queuing Network	 Models resource contention and scheduling strategies 	 Not suitable for representing blocking and synchronization of processes
GSPN	 Suitable for modeling blocking and synchronization aspects Associated w/ CTMDP 	 Difficulty in representing scheduling strategies Assumes exponential distribution for state transition

- Extended queuing Petri net (EQPN)
 - □ ESPN (Extended SPN: semi-Markov process) + G/M/1 queuing model

Background (1)

Block diagram of a scalable networking system

(Refer to: D. Bertozzi, et al., "Xpipes: A Network-on-chip Architecture for Gigascale SOC", IEEE Magazine, 2004)

ISQED 2007

Background (2)

- ESPN (Extended Stochastic Petri Net), tuple (P, T, E, M, F, G)
 - □ *P* is a finite set of places
 - \Box T is a finite set of transitions
 - \Box *E* is a set of arcs
 - □ *M* is a marking
 - \Box F is a set of firing rates
 - \Box G is a firing function
- Immediate transition
- Timed transition

 The numerical solution for ESPN is based on the Semi-Markov Process (SMP) model

A Unified Modeling Framework (1)

ESPN model for a PE

Place	Description
P ₁	Inbound switching
P ₂	Inbound flow queue writing
P ₃	Writing done
P ₄	Instruction fetch
P ₅	Instruction cache accessing
P ₆	Instruction cache miss handling
P ₇	Instruction decode
P ₈	Issue queuing
P ₉	Memory inst. executing
P ₁₀	Integer & FP unit accessing
P ₁₁	Retirement
P ₁₂	Data cache accessing
P ₁₃	Outbound flow queue writing
P ₁₄	Writing done
P ₁₅	Outbound switching
P ₁₆	Data cache miss handling

A Unified Modeling Framework (2)

ESPN model for a PE

Trans	Description					
T ₁	Incoming switching delay					
T ₂	Queuing delay					
T ₃	Immediate transition					
T ₄	Immediate transition (cache hit)					
T ₅	Immediate transition (cache miss)					
T ₆	Immediate transition					
T ₇	Immediate transition					
T ₈	Memory access					
T ₉	Integer & FP unit access					
T ₁₀	Immediate transition (reg. update)					
T ₁₁	Immediate transition (reg. update)					
T ₁₂	Immediate transition					
T ₁₃	Queuing delay					
T ₁₄	Immediate transition					
T ₁₅	Inst. cache update					
T ₁₆	Data cache update					
T ₁₇	Immediate transition (cache hit)					
T ₁₈	Immediate transition (cache miss)					

A Unified Modeling Framework (3)

- Queuing and scheduling mechanisms handle resource contention.
- To facilitate the queuing strategy, we extend previous models.
- Definition 1: Extended Queuing Petri Net (EQPN) is a triplet (ESPN, PQ, W)
 - □ ESPN is the underlying Extended Stochastic Petri Net,
 - □ $PQ = \{PQ_1, PQ_2\}$, where PQ_1 is the set of timed *queuing places* and PQ_2 is the set of immediate queuing places,
 - $W = \{W_1, W_2\}$, where W_1 is the set of timed transitions and W_2 is the set of immediate transitions.
- Queuing place consists of a queue and a depository.

A Unified Modeling Framework (4)

EQPN model for a PE

A Unified Modeling Framework (5)

Queuing place may be represented by the G/M/1 queuing model:

 The more commonly used M/M/1 queuing model underestimates the occurrence probability of requests with long inter-arrival times.

A Unified Modeling Framework (6)

- Reachability graph contains two types of markings:
 - □ Vanishing marking enables only immediate transitions.
 - □ *Tangible marking* incurs timed transitions as a function of time.
- Marking process of an EQPN is equivalent to a SMP.
- SMP model enables mathematical programming techniques for performance optimization.

Analysis of EQPN Model

 Let W denote the number of waiting tasks in the PE just before a new task arrives, then we have

$$q_n = Prob\{W = n\} = (1 - \gamma)\gamma^n$$
, $n = 0, 1, ..., \infty$

where γ is the unique solution (real, $0 < \gamma < 1$) of Laplace-Stieltjes transform (LST) of the interarrival time distribution function.

• Let $T_{W,k}$ represent the *waiting time* in the k^{th} PE, given by

$$T_{W,k} = \gamma / [\mu(1-\gamma)]$$

• The *utilization ratio* of a PE is defined as:

 $u_k = BP_k / (BP_k + IP_k)$ where *BP* is duration of the busy period of k^{th} PE *IP* is its idle period.

• The *link utilization* (a measure of traffic workload) is defined as:

 $LU(e) = \sum_{G} D(e,c) / N_{clk} \qquad D(e,c) = \begin{cases} 1 & \text{if traffic passes on link } e \text{ at cycle } c \\ 0 & \text{otherwise} \end{cases}$

where G is the # of clock cycle, e is the link path between NIC and PE, and N_{clk} is the # of clock cycles of the link given to PE.

Performance Optimization (1)

The expected power dissipation is the summation of state-dependent power term and a transition dependent energy cost:

$$pow_{exp}(s,a) = pow_{k}(s) + \frac{1}{\tau(s,a)} \sum_{s \in S} Prob(s' \mid s,a)ene(s,s')$$

- K denotes the set of PE

- ene(s, s') is the energy required to transit from state s to s'

- $\tau(s, a)$ is the expected duration of the time that the PE spent in the state s if action a is chosen.
- Let a sequence of states s⁰, s¹, ..., s^k denote a processing path δ by which the PE moves from s⁰ to s^k.
- For a given policy π, the average total power dissipation can be given over the set of processing paths:

$$actpow_{avg}^{\pi}(\delta) = EXP[\sum_{i=0}^{k} \alpha^{t_i} pow_{exp}(s^i, a^i)] \quad (\alpha: \text{ discount factor, } 0 < \alpha < 1)$$

Performance Optimization (2)

To find optimal state-action sets, we must solve the following optimization problem:

$$\min \sum_{s} \sum_{a} actpow_{avg}^{\pi}(\delta)\varphi(s,a)$$

s.t.
$$\sum_{a} \varphi(s,a) - \sum_{s'} \sum_{a} \varphi(s',a)Prob(s' | s,a) = 0$$

$$\sum_{s} \sum_{a} \varphi(s,a)\tau(s,a) = 1$$

$$\sum_{k \in \delta} (T_{w,k} + T_{s,k}) \leq T_{d} \quad \forall \delta \in paths$$

$$BP_{k} / (BP_{k} + IP_{k}) \geq u_{k} \quad \forall k \in K$$

$$T_{W,k} = \sum_{i=1}^{n} i \cdot q_{i,k}, \quad T_{S,k} = 1/\mu_{k}$$

-
$$BP_{k} = \sum_{i=1}^{n} q_{i,k}, \quad IP_{k} = q_{0,k}$$

$$0 \le q_{i,k} \le 1 \quad i = 0, ..., n$$

$$- \varphi(s,a) \ge 0 \quad all \ s \in S, a \in A$$

- $\varphi(s, a)$ is the frequency that the system is in s and a is issued.
- The average energy dissipation of the PE may be calculated as:

$$ene_{avg} = actpow_{avg}^{\pi}(\delta) \cdot \sum_{l \in L} \sum_{k \in K} Texe_{l,k} + \sum_{k \in K} slpow_{k} \cdot (T_{d} - \sum_{l \in L} Texe_{l,k})$$
- *L* denotes the set of tasks
- *T_{d}* is the user-specified total time

- Texe_{I.k} is the execution time of task I on kth PE
- T_d is the user-specified total time
- slpow_k is the sleep power on kth PE

Experimental Results (1)

- Performance characteristics of the NIC
 - Maximum 1000Base-T full duplex bandwidth for each packet size is achieved.
 - □ The IP packet size is varied; The inter-packet gap is kept at 0.0096us.

Packet size (bytes)	Service rate (pkt/sec)	Inter-arrival time (sec)	Arrival rate (pkt/sec)	Service time (sec)
1518	84819	12.2E-6	81699	11.7E-6
1024	124936	8.28E-6	120656	8.00E-6
512	245100	4.19E-6	238549	4.08E-6
256	317400	2.14E-6	466417	3.15E-6
128	325200	1.12E-6	892857	3.07E-6
64	338000	0.60E-6	1644736	2.95E-6

Performance characteristics

Experimental Results (2)

- Consider UltraSPARC-II model as the PE
 - □ Consumes 17.6W (active) at 1.7V, 650MHz, and 20mW (sleep)
 - □ PE has DVFS set (1.7V/650MHz, 1.6V/325MHz, and 1.5V/108MHz)
 - PE accepts both high and low priority data, where a high-priority data move ahead of all the low-priority data.

	Original model			SMP-based Optimization				
Arrival Rate of High- Priority Threads	Waiting Time at High- Priority Queue	Waiting Time at Low- Priority Queue	Energy	$ \begin{array}{c c} \mbox{Frequency that the system} & \mbox{Power} & \mbox{Power} \\ \mbox{is in state s and action a} \\ \mbox{(high-priority case)} & \mbox{High-} & \mbox{Low-} \\ \mbox{Priority} & \mbox{Priority} \\ \mbox{Priority} & \mbox{Threads} \end{array} \right. \\ \mbox{Energy} $	Energy Savings			
0.02	0.53	1.11	64.1	0.61 0.31 0.10 13.1 6.6 62.1	3.3%			
0.04	0.56	1.22	66.5	0.59 0.28 0.10 12.9 6.0 65.3	1.8%			
0.06	0.60	1.35	69.6	0.55 0.27 0.09 11.9 5.6 64.8	6.9%			
0.08	0.63	1.50	72.7	0.53 0.26 0.06 11.4 4.8 65.1	10.5%			
0.10	0.67	1.67	76.4	0.49 0.25 0.08 10.8 4.1 64.9	15.1%			

SMP-based energy optimization (normalized)

Experimental Results (3)

- Set the performance constraints on T_d and u_k
 - □ E.g., $T_d = 9$ and u_k varies on arrival rate
 - Consider different task arrival rates

	Original model				Proposed approach			
Arrival rate of data	Response Time <i>T_R</i>	Busy + Idle Period	Util. of PE	Energy	Response Time T_R	Util. of PE	Energy	Energy Savings
0.7	1.02	2.08	0.49	17.9	2.04	0.98	15.9	11.4%
0.6	0.89	2.12	0.42	15.7	1.78	0.83	13.9	11.5%
0.5	0.79	2.21	0.35	13.9	1.58	0.71	12.3	11.4%
0.4	0.74	2.64	0.28	13.0	1.48	0.56	11.6	11.4%
0.3	0.71	3.39	0.21	12.5	1.42	0.42	11.2	11.4%
0.2	0.70	5.00	0.14	12.4	1.40	0.28	10.9	11.3%
0.1	0.70	9.99	0.07	12.5	1.40	0.14	11.1	11.2%

Energy optimization under performance constraints (normalized)

Conclusion

- A unified modeling framework, EQPN, improves the modeling accuracy of the system.
- By modeling the system with EQPN, the model parameters become more realistic.
- Performance optimization problem based on a corresponding SMP was formulated and solved.
- Simulation results demonstrate system-wide energy savings up to 11.5% under performance constraints.