Improving the Efficiency of Power Management Techniques by Using Bayesian Classification

Hwisung Jung and Massoud Pedram

University of Southern California Dept. of Electrical Engineering

ISQED 2008

Overview

- Introduction
- Motivation
- Learning-based DPM Framework
- Stochastic Policy Optimization
- Experimental Results
- Conclusion

Introduction

Power management becomes a first-order concern
 More functional blocks in SOC are being built with DVFS capability
 Different clock and voltage domains exist on the same chip

Challenges of dynamic power management (DPM)

- Intricate trade-off between power saving and performance loss
- □ Power manager (PM) can become a heavy duty task
 - Monitors the workloads of multiple processors
 - Analyzes the information to make decisions
 - Issues DVFS commands to each processor

DVFS-enabling techniques depend on:

- Configuration of voltage/frequency control circuits
- □ Efficiency of workload prediction mechanisms

Some Relevant Prior Work

A. Iyer, et al. (ICCAD 2002)

Online DVFS technique by utilizing an interface queue

R. Kumar, et al. (Micro 2003)

Analytical model for power management under performance constraints

Q. Wu, et al. (HPCA 2005)

Voltage island-based power management technique

E. Chung, et al. (ICCAD 1999)

Power management technique based on adaptive control mechanism

G. Dhiman, et al. (ICCAD 2006)

Machine learning based power management technique

Proposed Approach

Traditional approaches for DPM

- Non-negligible overhead for power management policy computations
 The DM needs to control each processor individually.
- The PM needs to control each processor individually
- Develop a learning-based power management framework
 - Improve the decision-making strategy which minimizes the overhead of PM
 - Quickly analyze available input features
 - Accurately predict the current system state
 - Select an optimal action to minimize a user-specified cost function

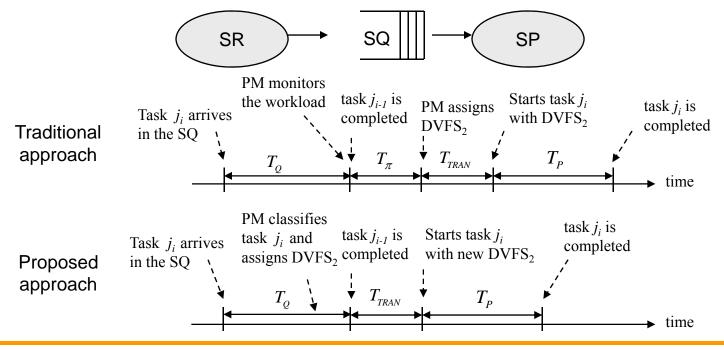
Key features of the proposed framework

- Supervised-learning based DPM
- Accurate predict ion of the system state

A First-Order Explanation

Proposed DPM framework

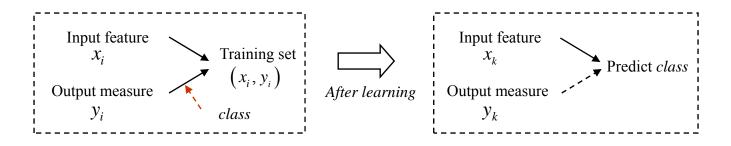
- □ Incoming tasks are labeled with the state information (power and delay)
- DVFS values are assigned to these tasks while in the service queue (SQ),
 - i.e., before it reaches the service provider (SP)
- $\hfill\square$ The overall task processing time is thus reduced



Learning-based DPM Framework (1/5)

Background on supervised learning

- □ A technique for discovering relations and extracting relevant knowledge
- □ Typically used to construct a *self-improving* decision-making strategy

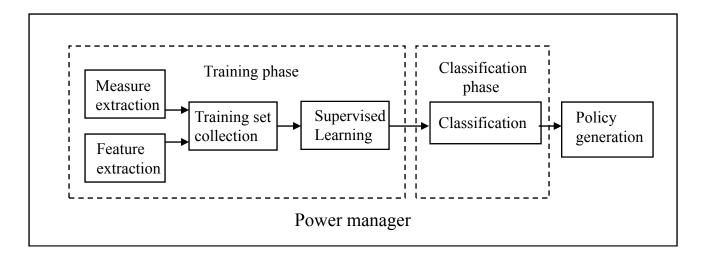


- □ *x*: input feature (quantifiable feature of the system under considerations)
- □ *y*: output measure (categorical measure labeled with a pre-defined class)
- \Box (*x*,*y*): elements of the training set
- Training a PM involves finding a mapping from input features to output measures
- PM predicts the class of an output measure when a new input feature is given

Learning-based DPM Framework (2/5)

Top-level organization of the proposed PM

- □ Learning framework consists of *training* and *classification* phases
- Classification is based on the Bayesian approach
- The goal is to discover the relations b/w input features and output measures and to predict the performance level by using classification



Learning-based DPM Framework (3/5)

Key functions of the proposed PM

- □ Feature extraction: choose the input feature
 - (e.g., characteristics of the tasks, and the state of the SQ)
- □ **Measure extraction**: choose the output measure

(e.g., power dissipation and execution time of the tasks)

- □ **Training set generation**: assemble input-output data into a training set
- □ **Supervised learning**: map the input to output based on training set
- □ **Classification**: select the most likely class given the input
- Policy generation: map the output classes to actions

Our proposed DPM framework generally requires

- Training
- Classification
- Policy generation

Learning-based DPM Framework (4/5)

Input feature and output measure extraction

- □ PM gathers input features, which affect performance level of the system
 - □ Type of tasks (e.g., high-priority or low-priority)
 - □ State of the SQ (e.g., queue occupancy)
 - □ Arrival rate of tasks (e.g., 0 < arrival rate < 1)
- PM collects output measures
 - Power dissipation
 - Execution time of task
- Class is considered as an attribute chosen from enumerated type sets:
 - $\Box L_1 = \{pow_1, pow_2, pow_3\}$
 - $\Box \ \mathsf{L}_2 = \{\mathsf{exe}_1, \, \mathsf{exe}_2, \, \mathsf{exe}_3\}$

	Input features	Output measures		
Task type	Queue occupancy	Arrival rate of task	Power dissipation	Execution time
high-priority	med	low	pow ₂	exe ₁
high-priority	low	med	pow ₃	exe ₁
low-priority	med	low	pow ₂	exe ₃
low-priority	low	med	pow_1	exe ₃
high-priority	low	med	pow_1	exe ₁
low-priority	med	med	pow ₂	exe ₂
low-priority	med	med	pow ₁	exe ₂
low-priority	med	high	pow ₂	exe ₂
low-priority	med	med	pow_1	exe_1

Learning-based DPM Framework (5/5)

Classification

Classification task is the assignment of Maximum A Posteriori (MAP)

Input feature x and the prior class / assignment are given

$$y_{MAP} = \arg \max_{l} Prob(y_{i} = l | x_{1}, x_{2}, ..., x_{n})$$

= $\arg \max_{l} \frac{Prob(x_{1}, x_{2}, ..., x_{n} | y_{i} = l) \cdot Prob(y_{i} = l)}{Prob(x_{1}, x_{2}, ..., x_{n})}$
= $\arg \max_{l} Prob(y_{i} = l) \cdot \prod_{j=1}^{n} Prob(x_{j} | y_{i} = l)$

Example: Suppose a new input (x₁=low, x₂=med, x₃=med) is given, and
P(y₁=pow₁)P(x₁=low,x₂=med,x₃=med | y₁=pow₁) = 1/6
P(y₁=pow₂)P(x₁=low,x₂=med,x₃=med | y₁=pow₂) = 1/12
P(y₁=pow₃)P(x₁=low,x₂=med,x₃=med | y₁=pow₃) = 1/144
Thus, MAP class of power level for the given input feature is pow₁

Stochastic Policy Optimization (1/4)

Develop autonomous decision-making

- Map the output classes to actions
 - Actions commanded by PM lead to quantifiable costs
- Devise a policy for issuing a command that minimizes the expected cost
- Target processor has k states, each characterized by a power-delay product (PDP)
 - Each state is annotated by its PDP value
 - □ PM chooses an action from voltage-frequency set, $A = \{a_1, \dots, a_n\}$
 - □ State transition probability, T(s', a, s) = Prob(s' | a, s)



Stochastic Policy Optimization (2/4)

- Find an optimal action which minimizes the total energy dissipation
 - \Box Assume that predicted classes for output measures are *p* and *d*

 $\square p = [p_p_+] \text{ and } d = [d_d_+]$

□ The expected cost of current state, where *a* is given in state *s*

$$C(s,a) \in \left[p_- \cdot d_- + e(s,a) \quad p_+ \cdot d_+ + e(s,a) \right]$$

- \Box *e*(*s*,*a*): the expected energy dissipation to transit from state *s* to some next state under action *a*
- We define a scalar cost function

$$C(s,a) = \frac{p_{-} \cdot d_{-} + p_{+} \cdot d_{+}}{2} + e(s,a)$$

Stochastic Policy Optimization (3/4)

Policy generation deals with the cost function

- A dynamic programming technique is used to solve the problem since it exhibits the property of optimal substructure cost
- The optimal cost is defined as:

□ The expected discounted sum of cost that an agent accrues

$$\Psi^*(s) = \min_{\pi} E\left(\sum_{t=0}^{\infty} \gamma^t \cdot c(t)\right)$$

□ γ : a discount factor, $0 \le \gamma < 1$

 \Box *c(t)*: cost at time *t*

In our problem setup, the cost function is defined as

$$\Psi^*(s) = \min_{a} \left(C(s,a) + \gamma \sum_{s' \in S} T(s',a,s) \Psi^*(s') \right) \quad \forall s \in S$$

Stochastic Policy Optimization (4/4)

Given the cost function, the optimal action can be obtained

DY
$$\pi^*(s) = \arg\min_{a} \left(C(s,a) + \gamma \sum_{s' \in S} T(s',a,s) \Psi^*(s') \right)$$

- One way to solve optimal decision problem is to use value iteration method
 - Value iteration method consists of a recursive update of the value function to choose an action
- 1: initialize $\Psi(s)$ arbitrarily
- 2: loop until a stopping criterion is met
- 3: loop for $\forall s \in S$
- 4: loop for $\forall a \in A$
- 5: $Q(s,a) = C(s,a) + \gamma \sum_{s' \in S} T(s',a,s) \Psi(s')$
- 6: $\Psi(s) = \min_{a} Q(s, a)$
- 7: end loop
- 8: end loop
- 9: end loop

The value iteration algorithm

Experimental Results (1/4)

The technique is applied to a multicore processor

- Dynamic load balancing block guarantees in-order delivery
- □ TCP/IP-related task (e.g., TCP segmentation and checksum offloading)
- Power and delay measurement with TSMC 65nmLP library
- □ $a_1 = [1.00V, 150MHz], a_2 = [1.08V, 200MHz], a_3 = [1.20V, 250MHz]$

Define a set of input feature / output measure

- Input measure = {occupancy state of SQ, arrival rate of task}
- Output measure = {power dissipation [mW], execution time [nS]}

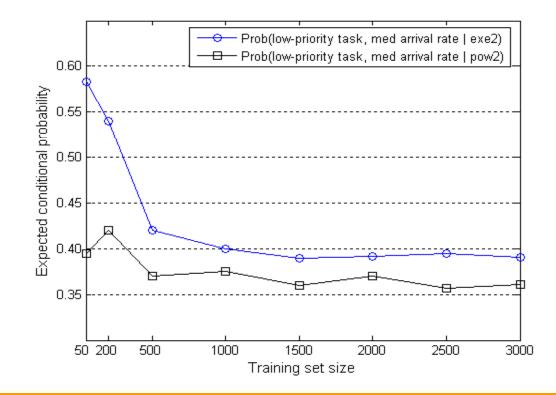
The classes of output measure

- □ $pow_1 = [34 41.0], pow_2 = (41.0 47.0], pow_3 = (47.0 54.0]$
- □ $exe_1 = [14.1 \ 21.5], exe_2 = (21.5 \ 28.5], exe_3 = (28.5 \ 35.7]$

Experimental Results (2/4)

Selection of the training set size

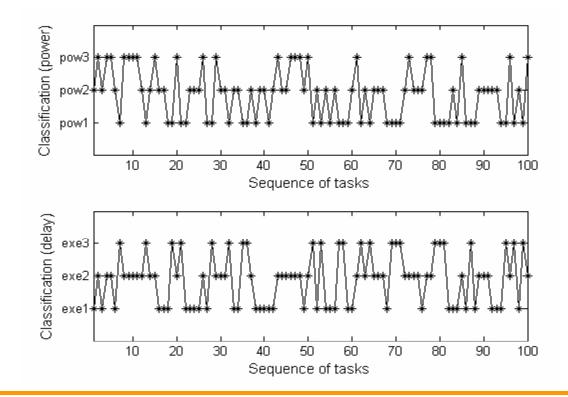
- □ The training set size affects the classification accuracy
- □ Results show that a training set size of 1000 is adequate for our purpose



Experimental Results (3/4)

Classification of tasks

- □ Randomly generates 100 tasks that arrive in the SQ of the processor
- □ After predicting the system state, the PM chooses the best action to issue



Experimental Results (4/4)

Investigate energy-efficiency of the proposed technique

□ Greedy - apply a greedy DPM strategy as follows

 \Box Use the lowest a_1 value for low workload (i.e., arrival rate)

- \Box Likewise, use a_2 and a_3 for med and high workloads
- □ Bayesian apply the optimal actions based on the proposed technique

Generate a number of tasks (e.g., 50, 100, 150, and 200)

Processor	Number of tasks			Total energy (normalized)		Energy saving
	High-pri	Low-pri	Total	Greedy	Bayesian	Over Greedy
Proc1	27	23	50	77.8	64.1	17.6%
Proc2	52	48	100	170.9	113.8	33.4%
Proc3	67	83	150	258.4	175.7	32.1%
Proc4	103	97	200	340.9	231.5	32.0%

Randomly select the priority and arrival rate of tasks

Conclusion

- Addressed the problem of system-level DPM
 - Reduce the computational overhead and latency associated with regular activities of the PM
- Proposed a supervised learning based DPM framework
 - Enable the PM to predict the performance state of incoming tasks by using a Bayesian classification technique
 - Reduce the overhead of traditional decision-making strategy
- Experimental results demonstrate that the proposed technique achieves system-wide energy savings up to 28.7% (average) compared to a greedy approach