Sizing and Placement of Charge Recycling Transistors in MTCMOS Circuits

Ehsan Pakbaznia Farzan Fallah^{*} Massoud Pedram

University of Southern California * Fujitsu Laboratories of America

Outline

Introduction

- Charge Recycling (CR) for Multi-Threshold CMOS (MTCMOS) Circuits
- Row-Based Layout Style for CR-MTCMOS
- Sizing and Placement of CR Transistors
- Experimental Results
- Conclusion

Leakage in CMOS Technology

- V_{dd} is reduced with CMOS technology scaling
- V_{th} must be lowered to recover the transistor switching speed
- The subthreshold leakage current increases exponentially with decreasing V_{th}
- A highly effective leakage control mechanism has proven to be the MTCMOS technique

Overview of MTCMOS

 A high-V_{th} transistor is used to disconnect low-V_{th} transistors from the ground or the supply rails

Some Drawbacks of MTCMOS

- State of internal nodes is corrupted, that is, with a footer sleep transistor, all internal nodes and the virtual ground (VGND) are charged up to a level near V_{dd}
- Energy is wasted when switching from the Sleep mode to the Active mode or vice versa
 - This means energy cannot be saved by the MTCMOS technique unless the sleep time is sufficiently long

Charge Recycling (CR) MTCMOS

- The charge recycling technique uses both nMOS and pMOS sleep transistors
- Circuit C is divided into two sub-circuits:
 - Sub-circuit C₁ is connected to the nMOS sleep transistor, S_N
 - Sub-circuit C₂ is connected to the pMOS sleep transistor, S_P

Mode Transition in MTCMOS

CR-MTCMOS

Energy Saving Ratio:

$$ESR(X) = \frac{E_{conv.} - E_{CR}}{E_{conv.}} = \frac{2X}{(1+X)^2}$$
$$ESR_{max} = ESR(X=1) = 50\%$$

X : ratio of the VGND to VV_{DD} capacitances

Row-Based Layout for CR-MTCMOS

Layout style for a single cell row:

Two adjacent rows use different types of sleep transistors e.g., nMOS for row *i*, and pMOS for row *i*+1

Problem Statement

- Objective:
 - Maximizing the ESR = Minimizing the CR overhead
- Constraint:
 - Maximum wakeup-time increase is limited to $\gamma\%$
- Oecision variables:
 - Widths of the CR transistors (which may also be set to zero)

$$\begin{cases} Min(E_{CR-overhead}) \\ s.t. \\ t_w^{CR} \le (1+\gamma) \times t_w \end{cases}$$

- *t_w^{CR}*: wakeup time of the CR-MTCMOS circuit
- γ: percentage increase in the wakeup time
- *t_w*: wakeup time of the original MTCMOS circuit

Power Overhead for CR-MTCMOS

- Dynamic power overhead
 - Due to switching ON and OFF the CR transistors
- Static power overhead
 - Due to extra sneak leakage path in CR-MTCMOS [Pakbaznia-DAC07]
- Total power dissipation overhead (dynamic + static):

$$P_{CR-overhead} = \sum_{i=1}^{M} C_{g_i} f V_{DD}^2 + \sum_{i=1}^{M} I_{leak_i} V_{DD}$$

- *M*: CR transistor count in the row under consideration
- *f* : mode transition frequency
- $C_{q,i}$: input gate capacitance of the ith CR transistor
- *I*_{leak,i}: sub-threshold leakage current of the ith CR transistor

Power Overhead (cont'd)

 It can be shown that the power dissipation overhead is proportional to the total width of CR transistors:

$$P_{CR-overhead} = \kappa \sum_{i=1}^{M} W_i$$

where κ is a constant coefficient which is calculated as:

$$\kappa = L C_{ox} f V_{DD}^2 + \frac{\mu_0 \varepsilon_{ox}}{L t_{ox}} V_{DD} v_T^2 e^{1.8} \exp\left(\frac{-V_{th}}{S v_T}\right)$$

• The new objective function is thus:

RC Model for Charge Recycling Operation

- VGND and VV_{DD} are replaced by equivalent RC models
- CR transistors are modeled as linear resistors

 R_i : ON drain-source resistance of the ith CR transistor, $R_i = \eta/W_i$ C_{G_i}, C_{P_i} : Diffusion + interconnect capacitances at G_i and P_i r_{w-G_i} : Wiring resistance between G_i and G_{i+1}

 r_{w-P_i} : Wiring resistance between P_i and P_{i+1}

Wakeup Time Constraints

The original wakeup-time constraint can be written as M separate constraints, one for each G_i node:

 $t_{w_i}^{CR} \le (1+\gamma) \times t_w \qquad \forall \ 1 \le i \le M$

- $t_{w,i}^{CR}$ is the summation of two terms:
 - Charge-recycling delay
 - Delay due to discharging the remaining charge in the VGND rail

$$t_{w_i}^{CR} = d_i^{CR} + t_i^{rem} \qquad \forall \ 1 \le i \le M$$

New set of equivalent constraints:

 $d_i^{CR} \le (1+\gamma) \times t_w - t_i^{rem} \qquad \forall \ 1 \le i \le M$

t_w and t^{rem} are easily obtained from Hspice simulations
 d^{CR}_i must be calculated

Simplified RC Model

• A single equivalent transistor with width $W_{eq,i}$ (and resistance $R_{eq,i}$) is defined for each G_i ; P_i pair:

Replacing Virtual Rails with Their Effective RC Models

- $R_i^{(G)}$, $C_i^{(G)}$: RC-lumped model of the VGND rail at G_i
- $R_i^{(P)}$, $C_i^{(P)}$: RC-lumped model of the VV_{DD} rail at P_i
 - For example, for G_i we have:

$$C_i^{(G)} = Y_{G,1i}$$
 and $R_i^{(G)} = -\frac{Y_{G,2i}}{Y_{G,1i}^2}$

Y_{G,1i} and Y_{G,2i} are the first and second moments of the total admittance at G_i which may be recursively calculated as in [Kahng-VLSI Design99]

Charge-Recycling Delay

• The 0- δ % CR delay for node G_i is:

$$d_{i}^{CR} = \frac{1}{\ln(\delta)} \times \frac{\left(R_{i}^{(G)} + R_{eq_{i}} + R_{i}^{(P)}\right)C_{i}^{(G)}C_{i}^{(G)}}{\left(C_{i}^{(G)} + C_{i}^{(P)}\right)}$$

• Recall that $d_i^{CR} \le (1 + \gamma) \times t_w - t_{rem_i}$

The set of the constraints can thus be re-written as:

$$\sum_{j=1}^{M} b_{ij} W_{j} \ge \eta \left[\left[(1+\gamma) t_{w} - t_{rem_{i}} \right] \ln \left(\delta \right) \frac{\left(C_{i}^{(G)} + C_{i}^{(P)} \right)}{C_{i}^{(G)} C_{i}^{(P)}} - R_{i}^{(G)} - R_{i}^{(P)} \right]^{-1} \quad 1 \le i \le M$$

where: $b_{ij} = 1 - \alpha \left| i - j \right|$

Modified Problem Statement

$$\begin{aligned}
\text{Minimize} \left(\sum_{i=1}^{M} W_i \right) \\
\text{s.t.:} \quad \sum_{j=1}^{M} \left(1 - \alpha \left| i - j \right| \right) W_j \ge \eta \left[\left[(1 + \gamma) t_w - t_{rem_i} \right] \ln \left(\delta \right) \frac{\left(C_i^{(G)} + C_i^{(P)} \right)}{C_i^{(G)} C_i^{(P)}} - R_i^{(G)} - R_i^{(P)} \right]^{-1}, \, \forall i \quad 1 \le i \le M \end{aligned}$$

 This is a linear Programming (LP) problem, which can be solved optimally in polynomial time

CR Transistors Placement

- The sizing problem is solved assuming there is one CR transistor between each G_i; P_i pair
- CR transistors that have a width less than W_{min} will be removed; this is called the rounding step (W_{min} is the minimum acceptable transistor width)
- The sizing problem will be solved again for the remaining CR transistors
- Sizing + rounding operations will be repeated until the improvement in the total CR transistor width is negligible

Simulation Approach

- The proposed approach was compared with two other approaches
 - Single CR-MTCMOS: one CR transistor placed at the leftmost corner of each row
 - Uniform CR-MTCMOS: 3 uniformly-distributed CR transistors placed on each row
- CR transistor(s) in both approaches are sized such that the maximum wakeup delay increase is γ %

Experimental Results in 90nm Technology for ISCAS Benchmarks

Circuit	# of cells	# of rows	Total sleep tx width (λ)	Tota	l CR TX wic	Total CR TX width comparison (%)		
				SCR	UCR	DCR	DCR vs. SCR	DCR vs. UCR
9Sym	276	4	7152	1667	833	417	75	50
C432	204	2	4600	625	382	208	67	45
C880	432	6	9936	2326	1458	625	73	57
C1355	526	6	11320	2118	1597	625	71	61
C3540	1295	10	30656	6458	4792	1875	71	61
C5315	1727	10	38992	11042	6458	2292	79	65
average	-	-	_	4039	2587	1007	75	61

• MT = MTCMOS

- SCR = Single CR-MTCMOS
- UCR = Uniform CR-MTCMOS
- DCR = Distributed CR-MTCMOS (proposed)

Experimental Results (cont'd)

Circuit	# of cells	# of rows	Total sleep tx width	Switching energy in one complete active-sleep cycle (pJ)				DCR	ESR comparison (%)	
				MT	SCR	UCR	DCR	ESR (%)	DCR vs.	DCR vs.
									SCR	UCR
9Sym	276	4	7152	14.4	12	9.6	8.4	42	25	8
C432	204	2	4600	9.6	6.6	5.9	5.4	44	13	5
C880	432	6	9936	20.4	16.9	14.4	12	41	24	12
C1355	526	6	11320	25.2	18.7	17.2	14.4	43	17	11
C3540	1295	10	30656	90	63.6	58.8	50.4	44	15	9
C5315	1727	10	38992	147.6	105.6	92.4	80.4	46	17	8
average	_	-	-	51.1	37.2	33	28.4	44.4	18.5	8.8

• MT = MTCMOS

- SCR = Single CR-MTCMOS
- UCR = Uniform CR-MTCMOS
- DCR = Distributed CR-MTCMOS (proposed)

Conclusion

- CR-MTCMOS is the only known method for reducing energy consumed during transitions between Sleep and Active modes
- The placement and sizing problem of CR transistors can be formulated and solved as an LP problem
- The proposed concurrent sizing and placement technique allows us to employ CR-MTCMOS for rowbased designs
- The technique achieves nearly the full potential of CR-MTCMOS in terms of saving switching energy during mode transitions (ideal 50%, in practice 44%)

Backup Slide: Recursive Admittance Calculation

