Coarse-Grain MTCMOS Sleep Transistor Sizing Using Delay Budgeting
 Ehsan Pakbaznia and Massoud Pedram

University of Southern California
Dept. of Electrical Engineering DATE-08 Munich, Germany

Leakage in CMOS Technology

- $\mathrm{V}_{\text {dd }}$ is reduced with CMOS technology scaling
- V_{th} must be lowered to recover the transistor switching speed
- The subthreshold leakage current increases exponentially with decreasing V_{th}
- A highly effective leakage control mechanism has proven to be the MTCMOS technique

Overview of MTCMOS

O A high- $\mathrm{V}_{\text {th }}$ transistor is used to disconnect low- $\mathrm{V}_{\text {th }}$ transistors from the ground or the supply rails

Coarse-Grain MTCMOS

o Coarse-grain vs. fine-grain:

- Smaller sleep transistor area
- Lower leakage
- Regular standard cell library can be used (no need to characterize new cells)

Sleep Transistor Layout

Single transistor footer switch

Single transistor header switch

Double-transistor
(mother/daughter) footer switch

Sleep Transistor Placement

o Symmetric placement styles are preferred due to lower routing complexity for TVDD/TVSS and SLEEP/SLEEPB signals

Column-based

Staggered

Notion of Module

- (r, i) denotes the module that is formed around the $i^{\text {h }}$ sleep transistor in the $r^{\text {hh }}$ row of the standard cell layout
- The cells belonging to (r, i) are those that are in the $r^{\text {th }}$ row and are closest in distance to the $i^{\text {ih }}$ sleep transistor in that row

Time-dependant Current Source Model for Modules

- VVSS rail resistance between the cells inside each module is ignored
- $\mathbf{r}_{\text {vss }}^{\text {(t.) }}$ denotes the VVSS resistance between modules (r,i) and (r,i+1)
- $I_{m_{m e s}}(t)$ and $I_{\text {stem }}(t)$ denote the module discharging current and the sleep transistor current of module (r,i)

Motivational Example

o Circuit: FO4 inverter chain

- Modules: M1 and M2
- Sleep Transistors: replaced by their linear resistive models, R_{1} and R_{2}
- $\operatorname{CMOS}\left(R_{1}=R_{2}=0\right)$ delay:103ps

Module	Module Delay (pico sec)	Module Peak Current (mA)
$\mathbf{M}_{\mathbf{1}}$	46	0.3
$\mathbf{M}_{\mathbf{2}}$	57	4.65

Effect of Slack Distribution on Total Sleep Transistor Size

Circuit	Module Delay (ps)	Total Delay (ps)	Sleep Tx Resistance (Ω)	$\sum_{\left(\mathbf{\Omega}^{-1} \mathbf{R}^{-1}\right.}$
CMOS	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{M} 1}=46 \\ & \mathrm{~T}_{\mathrm{M} 2}=57 \end{aligned}$	103	$\begin{aligned} & \mathrm{R}_{1}=0 \\ & \mathrm{R}_{2}=0 \end{aligned}$	-
MTCMOS	$\begin{aligned} & \mathrm{T}_{\mathrm{M} 1}=50.6 \\ & \mathrm{~T}_{\mathrm{M} 2}=62.7 \end{aligned}$	113.3	$\begin{gathered} \mathrm{R}_{1}=250 \\ \mathrm{R}_{2}=9 \\ \hline \end{gathered}$	0.1151
	$\begin{gathered} \mathrm{T}_{\mathrm{M} 1}=52 \\ \mathrm{~T}_{\mathrm{M} 2}=61.3 \\ \hline \end{gathered}$	113.3	$\begin{gathered} \mathrm{R}_{1}=330 \\ \mathrm{R}_{2}=2 \\ \hline \end{gathered}$	0.5030
	$\begin{gathered} \mathrm{T}_{\mathrm{M} 1}=48 \\ \mathrm{~T}_{\mathrm{M} 2}=65.3 \\ \hline \end{gathered}$	113.3	$\begin{aligned} & \mathrm{R}_{1}=110 \\ & \mathrm{R}_{2}=25 \end{aligned}$	0.0491

- Total available slack: 10.3ps (10\% delay penalty)
- Case 1: uniformly distributed slack (medium)
- Case 2: 80\% for M1 and 20\% for M2 (worst)
- Case 3: 20\% for M1 and 80\% for M2 ()
- Current-aware optimization: must slow down modules with larger discharge current more

Delay-Budgeting Constraints for Sizing

o Delay-budgeting constraints: non-negative slack for all nodes

- d_{n}^{\prime} is the delay for cell $\mathrm{C}_{n} \in \mathrm{M}_{\mathrm{i}}$ with VVSS voltage v_{i}. We can show:

- To simplify the constraints we only consider the timing critical paths \rightarrow need to define the notion of path delay!

Path Delay in MTCMOS

- The delay increase for path π_{k} is the summation of delay increases for all the gates in π_{k} :
- $\theta\left(C_{n}\right)$ is the index of the module that cell C_{n} belongs to
- $R_{s, t}$ is the linear resistance value for i^{h} sleep transistor
- $R_{s t,}$ is inversely proportional to $W_{s, t}$ (width)
 during the time window $\left[t_{\text {man }}^{c_{n}}, t_{\text {max }}^{c_{n}}\right]$ when cell C_{n} is switching

Module Current Example

- The module current is the time-indexed summation of the expected currents for all the cells inside the module

Current profile for a module with 3 cells and time windows:

C1:[40,60]
C2:[60,80]
C3:[50,70]

Delay-Budgeting (DB) Sizing Problem

- Clock cycle is divided into N equal time intervals. t_{j} is the beginning time of the $j^{i h}$ interval. $I_{M_{i}}\left(t_{j}\right)$ is the switching current of module M_{i} at time t_{j}.

$\forall i, j: I_{s t_{0}}\left(t_{j}\right)=I_{s t_{t+1}}\left(t_{j}\right)=0$ and

BCM and MCM

- The delay-budgeting constraints can be written as:

$$
\sum_{i=1}^{M} a_{k i} R_{s t_{i}} \leq \text { DDR_MAX } \times d_{\max } ; \quad 1 \leq k \leq K
$$

o Definition 1- At any given step of the sizing algorithm, the most critical module (MCM) is the module with the maximum delay contribution in the K most critical paths:

$$
M C M=\underset{M_{i}}{\arg \max } \sum_{k=1}^{K} a_{k i} R_{s t_{i}}
$$

- Definition 2- At any given step of the sizing algorithm the best candidate module (BCM) is defined as the module whose sleep transistor upsizing by a certain percentage will result in the largest delay improvement for unsatisfied paths.
o One can show:

$$
B C M=M C M\left(\left\{\pi_{k} \mid 1 \leq k \leq K, \Delta d_{\pi_{k}} / d_{\pi_{k}}>\text { DDR_MAX }\right\}\right)
$$

Current-Aware Optimization

- Definition 3- Least-cost BCM (LBCM) is the BCM whose sleep transistor upsizing will result in the minimum increase in the objective function
- Lemma- LBCM can be calculated as:

$$
L B C M=\underset{M_{i}=B C M}{\arg \min }
$$

- At each step of the algorithm, this lemma makes the proposed algorithm a current-aware optimization algorithm

Algorithm (step 1)

o Step 1- Initialization (NM constraints)
Algorithm: Slp_Initialize($\mathrm{I}_{\text {Mi }}(\mathrm{t})$, VVSS_MAX)
: /*Initializing variables*/
2: for $i=1$ to M do
3: $R_{s t_{i}}=R_{M A X}$;
4: end for
5: calculate $I_{s t_{i}}\left(t_{j}\right)$ and $v_{i}\left(t_{j}\right)=R_{s t_{i}} I_{s_{i}}\left(t_{j}\right)$ for all i, j;
6: while $\left(v_{i}\left(t_{j}\right)>\right.$ VVSS_MAX for some i or $\left.j\right)$ do
7: $\quad \mathrm{M}_{\mathrm{m}}=$ FindMinModule $\left\{\right.$ VVSS_MAX $\left.-v_{i}\left(t_{j}\right)\right\}$;
8: $\quad R_{s t_{m}}=V V S S_{-} M A X / I_{s t_{m}}\left(t_{j}\right)$ for all j;
9: update $I_{s t_{i}}\left(t_{j}\right)$ and $v_{i}\left(t_{j}\right)=R_{s t_{i}} I_{s t_{i}}\left(t_{j}\right)$ for all i, j;
10: end while
11: return $R_{s t_{i}}$ for all i;

Algorithm (step 2)

- Step 2- Optimization (DB constraints)

```
Algorithm: Slp_Sizing(R (Rti-initial,}\mp@subsup{I}{Mi}{}(t),VVSS_MAX)
    1: calculate }\mp@subsup{I}{s\mp@subsup{t}{i}{}}{(}(\mp@subsup{t}{j}{})\mathrm{ and }\mp@subsup{v}{i}{}(\mp@subsup{t}{j}{\prime})=\mp@subsup{R}{s\mp@subsup{t}{i}{}-\mathrm{ initial }}{}\mp@subsup{I}{s\mp@subsup{t}{i}{}}{}(\mp@subsup{t}{j}{})\mathrm{ for all i,j;
    2: while (min slack <0)
    3: find LBCM and m=LBCM;
    4: }\quad\mp@subsup{R}{s\mp@subsup{t}{m}{}}{}=\mp@subsup{R}{s\mp@subsup{t}{m}{}}{}-\alpha\mp@subsup{R}{s\mp@subsup{t}{m}{}}{}\mathrm{ ;
    update }\mp@subsup{I}{s\mp@subsup{t}{i}{}}{}(\mp@subsup{t}{j}{})\mathrm{ and v}\mp@subsup{v}{i}{}(\mp@subsup{t}{j}{})=\mp@subsup{R}{s\mp@subsup{t}{i}{}}{}\mp@subsup{I}{s\mp@subsup{t}{i}{}}{}(\mp@subsup{t}{j}{})\mathrm{ for all }i,j\mathrm{ ;
    min_slack = \infty;
    for }k=1\mathrm{ to }K,j=1\mathrm{ to }
        if ( }\Delta\mp@subsup{d}{\mp@subsup{\pi}{k}{}}{}\mathrm{ - DDR_MAX < min_slack )
        min_slack}=\Delta\mp@subsup{d}{\mp@subsup{\pi}{k}{}}{}-\mathrm{ DDR_MAX }\times\mathrm{ dmax;
        end if
    11: end for
    12: end while
    13: return( }\mp@subsup{R}{s\mp@subsup{t}{i}{}}{})\mathrm{ for all }i\mathrm{ ;
```


Simulation Approach

- Max delay degradation ratio, DDR_MAX=10\%
- Virtual rail resistance, $r_{\text {VSS }}=0.1 \Omega$
- Max number of the critical paths, $\mathrm{K}=100$
- Resistance decrement factor, $\alpha=0.1$

Conclusion

o A new sleep transistor sizing approach is proposed

- The algorithm takes a max circuit slowdown factor and produces the sizes of various sleep transistors while considering the DC parasitics of the virtual ground
- The problem can be formulated as a sizing with delaybudgeting and solved efficiently using a heuristic sizing algorithm
- The algorithm approaches the optimum solution by slowing down the modules with larger amount of discharging current more than the ones with smaller amount of discharging current, current-aware optimization
- The proposed technique uses at least 40\% less total sleep transistor width compared to other approaches

