Charge Recycling in MTCMOS Circuits: Concept and Analysis

Ehsan Pakbaznia, Farzan Fallah+ Massoud Pedram

> University of Southern California + Fujitsu Labs of America

> > IEEE SSCS DL Series Seoul, South Korea 10/26/2006

Realities

- Power has emerged as the #1 limiter of design performance beyond the 65nm generation.
- Dynamic and static power dissipation limit achievable performance due to fixed caps on chip or system cooling capacity.
- Power related signal integrity issues (IR drop, L di/dt noise) have become major sources of design re-spins.

Transistors (and silicon) are free. Power is the only real limiter. Optimizing for frequency and/or area may achieve neither.

Pat Gelsinger, Senior Vice President & CTO, Intel

Industry Views (Intel)

Industry Views

BusinessWeek online

BW HOME

BW MAGAZINE TOP NEWS INVESTING

GLOBAL BIZ TECHN

OCTOBER 4, 2004 · Editions: N. America | Europe | Asia | Edition Prefe

Customer Service Register Subscribe to BW

Get Four Free Issues

Full Table of Contents Cover Story International Cover Story Up Front The Great Innovators Readers Report Corrections & Clarifications Books Technology & You Economic Viewpoint Business Outlook

MLB.com[™] knows

TECHNOLOGY & YOU

Those Superfast Chips: Too Darn Hot

Without cooler new processors, PC makers could hit a speed bump

Intel's (INTC) recent announcement that it plans to produce new "dual-core" processors that amount to two Pentiums on a single chip drew attention mainly from hard-core techies. But it was an admission that the company's strategy for making PCs ever cheaper and faster has hit a wall: The chips are simply getting too hot. Further progress will require new technologies.

Find help

Constant-Field MOSFET Scaling

Source: B. Davari, IBM, 1999

- L, W, t_{ox} , x_D , V_{DD} , V_T , C, I, and τ scale by $1/\alpha$.
- Area, power dissipation, and charges scale by $1/\alpha$.
- Power dissipation and charges per unit area do not scale.

V_{dd} , V_{th} and t_{ox} Scaling

- V_{dd} scaling needed to reduce power and maintain device reliability
 - V_{th} scaling needed to maintain switching speeds
 - t_{ox} scaling needed to maintain the current drive and keep V_{th} variations under control when dealing with short-channel effects.
- V_{th} does not scale much since the inverse
 subthreshold slope, which represents transistor turn-off rate, is dominated by temperature, not V_{th} or V_{dd}.

Leakage Components in CMOS

- I₁ Diode reverse bias current
- I₂ Subthreshold current
- I₃ Gate induced drain leakage
- I₄ Gate oxide tunneling

Leakage vs. Total Power

A significant part of total power at 90nm and below

- Sub-threshold leakage is increasing due to V_{th} scaling.
- Gate leakage is increasing due to gate oxide scaling.
- Leakage in active mode is a major issue.

Source: Chandrakasan, et al 2002

Subthreshold Leakage Current

Transfer characteristics of MOSFET for V_{GS} near V_{th} :

$$I_{sub} = \frac{W}{L} \mu_e v_T^2 C_{sth} e^{\frac{V_{GS} - V_{th} + \eta V_{DS}}{nv_T}} \left(1 - e^{\frac{-V_{DS}}{v_T}}\right) \propto e^{\frac{V_{GS} - V_{th} + \eta V_{DS}}{nv_T}} = 10^{\frac{V_{GS} - V_{th} + \eta V}{S}}$$

- The inverse subthreshold slope, S, is equal to the voltage required to increase I_D by 10X, i.e., $S = \frac{nkT}{\ln 10}$
 - If n = 1, S = 60 mV/dec at 300 K
 - We want S to be small to shut off the MOSFET quickly
 - In well designed devices, S is 70 90 mV/dec at 300 K.

Modeling I_{sub} and I_{off} Currents

- Increases exponentially with reduction in V_{th} .
- Modulation of V_{th} in a short channel transistor.
 - $L \downarrow \Rightarrow V_{th} \downarrow$: "V_{th} Rolloff"
 - $V_{DS} \uparrow \Rightarrow V_{th} \downarrow$:"Drain Induced Barrier Lowering"
 - $V_{SB} \uparrow \Rightarrow V_{th} \uparrow$: "Body Effect".

$$V_{\rm DS} = 0 \implies I_{\rm sub} = 0$$

Long-channel device w/ V_{DS} > $3nv_T \Rightarrow I_{sub} = \frac{W}{I} \mu_e v_T^2 C_{sth} e^{\frac{V_{GS} - V_{th}}{nv_T}}$

With $n = 1 + \frac{\gamma}{2\sqrt{2\Phi_c}} = 1 + \frac{C_{sth}}{C_{or}} = 1 + \frac{C_{dep} + C_{it}}{C_{or}}$ $I_{off} = I_{sub}(V_{GS} = 0) = \frac{W}{L} \mu_e v_T^2 C_{sth} e^{-\frac{V_{th}}{nv_T}}$

- Key dependencies of the subthreshold slope:
 - $T_{ox} \downarrow \Rightarrow C_{ox} \uparrow \Rightarrow n \downarrow \Rightarrow$ sharper subthreshold
 - $N_A \uparrow \Rightarrow C_{sth} \uparrow \Rightarrow n \uparrow \Rightarrow$ softer subthreshold
 - $V_{SB} \uparrow \Rightarrow C_{sth} \downarrow \Rightarrow n \downarrow \Rightarrow$ sharper subthreshold
 - $T \uparrow \Rightarrow$ softer subthreshold.

Leakage Reduction Techniques

Device engineering

- Lowering and/or turning off V_{dd} (voltage islands and power domains)
- Non-minimum channel length transistors
- Dual-V_{th} design
- Transistor stacking
- Body bias control (static and/or adaptive)
- Cooling and/or refrigeration
- MTCMOS (sleep transistors, power gating)

Multi-Threshold CMOS (MTCMOS)

- It is also called power gating, using sleep transistor, etc.
- A high-V_{th} sleep transistor is used to disconnect low-V_{th} transistors from the ground (V_{dd}).

MTCMOS Technology

MTCMOS technology has proven to be one of the most effective technique for reducing subthreshold leakage in the standby mode of circuit operation.

Some Drawbacks of MTCMOS

There is potential for large ground bounce (noise).

- Energy is wasted when switching between the sleep mode and active mode of circuit operation
 - This means energy cannot be saved unless the sleep time is long enough.

Our Solution: Charge Recycling

Charge recycling technique uses both NMOS and PMOS sleep transistors.

Circuit C is divided into 2 sub-circuits:

- Sub-circuit C₁ is connected to S_N
- Sub-circuit C₂ is connected to S_P

Mode Transitions in This Configuration

Our Solution: Charge Recycling (CR)

Energy Consumption in CR

Replacing CR element with an ideal switch, M:

Energy Consumption in CR (cont.)

Energy consumption during mode transition:

$$E_{sleep-active} = (1-\alpha)C_P V_{DD}^2$$

$$E_{active-sleep} = (1 - \beta) C_G V_{DD}^2$$

where we have:

$$\alpha = \frac{C_G}{C_G + C_P}$$
 and $\beta = \frac{C_P}{C_G + C_P}$

 C_{P} = Total Virtual Power Capacitance

 C_G = Total Virtual Ground Capacitance

Energy Saving Ratio (ESR) in CR

Energy consumption in one cycle for the conventional MTCMOS and CR-MTCMOS:

 $E_{conv.} = C_G V_{DD}^2 + C_P V_{DD}^2$ $E_{CR} = \alpha C_G V_{DD}^2 + \beta C_P V_{DD}^2$

• The energy saving ratio is: $ESR(X) = \frac{E_{total} - E_{cr_{total}}}{E_{total}} = \frac{2X}{(1+X)^2}$

• ESR is maximum when X=1, i.e., when $C_G = C_P$.

Charge Recycling Operation

Effect of Transistor Sizing

The larger the transmission gate (TG), the faster the charge recycling operation

Trade off: larger TG switching power penalty
 C_{tg} denotes the input cap of NMOS and PMOS in TG.

Leakage Analysis

TG adds a new leakage path:

Transistors in the TG must be high V_t transistors.

Leakage Paths in Conventional Technique

The equivalent leakage model for the sleep mode:
V_{DD}
V_{DD}

• Leakage is calculated by writing KVL equations $(R_N = R_P = R)$: $P_{leakage-conv.} = \frac{2V_{DD}^2}{R}$

Leakage Paths in CR Technique

The equivalent leakage model in the sleep mode:
VDD
VDD
The equivalent leakage model in the sleep
VDD
The equivalent leakage model in the sleep
The equivalent leakage model in the sleep
The equivalent leakage model in the sleep

R_P

 \mathbf{r}_2

∆ **→ ⋏**

where $(R_N = R_P = R \text{ and } R_{TG} = nR)$:

R_{TG}

 \mathbf{r}_1

R_N

$$r_{1}^{*} = \frac{r_{1}R_{P}}{r_{1} + R_{TG} + R_{P}} = \frac{1}{n+1}r_{1}$$

$$r_{2}^{*} = \frac{r_{1}R_{TG}}{r_{1} + R_{TG} + R_{P}} = \frac{n}{n+1}r_{1}$$

$$r_{3}^{*} = \frac{R_{P}R_{TG}}{r_{1} + R_{TG} + R_{P}} = \frac{n}{n+1}R$$

 r_1^{*}

 r_{3}^{*}

 \mathbf{r}_2

 r_{2}^{*}

 $\mathbf{R}_{\mathbf{N}}$

Leakage in CR Technique

• Leakage is calculated by writing KVL equations: $P_{leakage - CR} = \left(2 + \frac{1}{n}\right) \frac{V_{DD}^2}{R}$

Leakage has increased by a factor of 1/2n.

Leakage in CR Technique (cont.)

If n=2, there is 25% increase in the leakage:

- For short and medium sleep periods, this increase is negligible compared to the saving that we get from the CR technique
- For long sleep periods, we must use larger n by choosing transistors with smaller W/L ratios in the TG
- This is also beneficial from the layout area point of view
- Potential disadvantage: CR takes longer to complete.

Ground Bounce (GB) Analysis

Simple wake-up circuit model for GB analysis:

For conventional MTCMOS: V₀=V_{DD}
 For CR MTCMOS: V₀=V_{DD}/2

Ground Bounce Analysis (cont.)

It is well known that:

- The positive GB peak occurs when S_N operates in saturation region
- When operating in the saturation region, drain-source current of S_N, and thus the GB value, dose not depend on the V₀ value
- In CR-MTCMOS, the positive GB peak value remains unchanged
- The negative GB peak occurs when S_N operates in linear region. This changes in CR-MTCMOS.

Ground Bounce Analysis (cont.)

Equivalent circuit model when the negative GB peak happens (r_{DS} is the ON resistance of S_N):

 $= C_G V_G(t=0) = V_0$

RLC circuit with initial voltage value V₀ on C_G.

- In CR-MTCMOS:
 - V₀ is reduced by 50%
 - Negative GB peak value is reduced

r_{DS}

R

Settling time is lowered.

Ground Bounce

Experimental Results for the 90nm CMOS Node

Circuit	Wake up Time (ps)		Mode Transition Energy Cons. (pJ)		Energy Saving	Wake Up Time Reduction
	Conv.	CR	Conv.	CR	(70)	(%)
9Sym	494	489.61	29	16	45%	0.9%
C432	240	232.73	10	5.7	43%	3%
C1355	132	125.42	12	7.2	40%	5%
C1908	267	275.63	38	20.5	46%	-3%
C2670	578	573	123	72.6	41%	0.9%
C3540	1500	1545	490	276.9	43%	-3%
C5315	1320	1307	638	357.3	44%	0.1%
C6288	2100	2047	1047	628.2	40%	2.5%
C7552	2310	2402	1532	842.6	45%	-4%

Application to Row-based Designs

Circuit Model of a MTCMOS Row

We need to decide whether we need a sleep transistor for a specific node G_i, and if needed, what the "optimal" size of the sleep transistor is.

Circuit Model of CR-MTCMOS Rows

We must decide on the number and positions of the connection points of charge recycling transistors connecting two adjacent cell rows.

Conclusion

The only known method for reducing energy consumed during transition from the sleep mode to active mode and vice versa

- Results in about 45% saving in transition mode energy
- It reduces the negative peak of the ground bounce and the settling time of the ground bounce.
 - It does not, in most cases, increase the wakeup time of the circuit.
- Careful sizing needed to control the leakage current path through CR path in sleep mode.