Design of an Efficient Power Delivery Network in an SoC to Enable Dynamic Power Management

Behnam Amelifard Massoud Pedram

Department of Electrical Engineering University of Southern California

Outline

- Introduction
- VRM Allocation Supporting DVS
 Conventional Technique
 Proposed Technique
 Experimental Results
- Conclusions

Introduction

- Power delivery network (PDN) is a critical component of a state-of-the-art design
- PDN design comprises of three steps
 - Establishing a PDN target impedance
 - Target impedance should be met over a broad frequency range
 - Designing system-level decoupling network
 Decaps act as charge reservoirs
 - Allocating voltage regulator modules (VRM's)
 VRM provides constant DC output voltage

Voltage Regulator Modules (VRM's)

- VRM tasks
 Oltage regulation
 DC-DC conversion
- Power efficiency

- Different types of VRM's
 - Inductor-based VRM's
 - Charge-pump VRM's
 - Linear VRM's

Dynamic Voltage Scaling

- DVS: Dynamically adjust supply voltages of functional blocks (FB's) in a system-on-chip (SoC)
 - Objective: minimize power dissipation while meeting performance demands
- Power manager decides when to switch SoC's "power-performance state" (PPS)
 - Each PPS corresponds to a particular combination of voltage level assignments to various FB's

VRM Allocation Supporting DVS

 Conventional technique: each FB has its own variable-Vout VRM (a.k.a. dynamic VRM)

Drawbacks:

- Number of VRM's equals number of FB's
- Design of dynamic VRM is more challenging and its cost is higher than that of a static VRM
- Efficiency of static VRM is optimized for a specific Vout; efficiency of dynamic VRM varies as a function of chosen Vout

Proposed Technique

- The proposed PDN comprises of two parts:
 - A Power Conversion Network (PCN)
 - o Generate all voltage levels needed by FB's
 - A Power Switch Network (PSN)
 - o Dynamically connects FB's to appropriate VRM's in the PCN

Markov Model of the System

- PPS transitions modeled by a stationary timeindependent transition matrix [p_{ii}]
- In each state of Markov chain, supply voltage level of all FB's specified.
- Probability of being in state *i* is a constant value π_i

$$\pi_i = \sum_{j \in \mathcal{S}} \pi_j p_{ji}$$

PCN Optimization: Problem Definition

- PCN Optimization supporting DVS (PCODS) Problem:
 - Given is:
 - A library \mathcal{R} of VRM's; $\forall r \in \mathcal{R}$:
 - V_{out} , min and max V_{in} , max I_{out}
 - Efficiency $\eta_r = f(V_{in}, I_{out})$
 - Associated cost c_r
 - o A set \mathcal{F} of FB's; $\forall l \in \mathcal{L}: \{(V_l, I_l)\}$
 - A power source P, with nominal voltage V_P
 - A Markov chain model \mathcal{M} of system:
 - In each state of Markov chain, the supply voltage level of FB's specified.

• Objective is

o Build a network of VRM's b/w P and FB's to minimize

$$V_P I_P + \lambda \sum_{r \in PCN} c_r$$

PCN Optimization

- Definition: Voltage domain $\mathcal{D}(V_i)$ is the set of all FB's that require voltage level V_i in one of their PPS's
- Different options to deliver power to FB's in a voltage domain

- Partition of set \mathcal{D}_i : a collection of disjoint subsets, $\{\mathcal{D}_i^j\}$, whose union is \mathcal{D}_i
 - Each of subsets \mathcal{D}_{I}^{j} is a part
- Bell numbers: count the number of set partitions for a set of n elements

Power Consumption of a Fixed VRM Tree

- In state *s*, output current of VRM delivering power to $\mathcal{D}_i^{\ j} \subseteq \mathcal{D}_i$
- VRM input current
- Karr
- Average VRM input current

• Average current drawn by \mathcal{D}_i and cost of VRM's

Weighted sum of power and cost

Best VRM Selection

• Lemma: A VRM assignment to a partition of \mathcal{D}_i is optimum, if and only if, \mathcal{D}_i is minimized in each of its parts.

PCN Optimization: optPCN Algorithm

• Worst case running time of algorithm: $O(|\mathcal{R}| \cdot |\mathcal{M}| \cdot |\mathcal{F}| \cdot B_{|\mathcal{F}|+1})$

PSN Optimization

- PSN switches supply voltage of FB's when a new PPS is commanded by the power manager
- Power switches should be sized carefully to avoid IR-drop
 - From the alpha-power model

$$I_{DS} = k \frac{W}{L_{eff}} \left(\frac{V_{GS} - V_{th}}{V_{dd} - V_{th}} \right)^{\alpha/2} V_{DS}$$

• For an allowable voltage drop $\Delta V_{f,v}$

$$W_{f,v}^{\min} = \frac{I_{f,v} L_{eff}}{k \Delta V_{f,v}}$$

Power Switch

Controller

V1 V2 V3

Experimental Setup

- Algorithm is implemented in C++
- A set of 30 commercial VRM's from Texas Instruments and National Semiconductors are used to build a library of VRM's
 - VRM efficiency modeled as a PWL function
 - VRM cost assumed as the dollar cost for a 1000-unit purchase
- A set of test-benches (TB) used for evaluating proposed technique
 - TB1 specs

Experimental Results

• Minimizing power consumption (λ =0)

Circuit	No. FB	No. States	PDN Power Reduction (%)	PDN Cost Reduction (%)	Runtime (sec)
C1	5	4	38.5	1.1	<1
C2	6	4	40.4	5.0	<1
C3	8	5	34.2	-2.8	<1
C4	10	10	30.1	29.7	13
C5	12	10	27.9	8.1	70

- Trading off power for cost
 - Choose λ such that PDN power loss does not increase more than 10% of its optimal value

Circuit	PDN Power Increase over Power-optimal Solution (%)	PDN Cost Reduction over Power- optimal Solution (%)
C1	10.0	53.0
C2	4.3	46.9
C3	8.9	57.9
C4	9.6	26.1
C5	10.0	52.9

Summary

- Presented a new technique and an accompanying PDN architecture to realize an efficient PDN for SoCs with DVS capability
 - The proposed PDN is composed of two parts: PCN and PSN
- Described an algorithm to optimally select the best VRM's in the PCN
- The proposed solution reduces power loss of PDN by 34% while reducing its cost by 8%