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Abstract
In this paper, we present a new analytical approach for computing the ramp response of an RLC interconnect line
with a pure capacitive load. The approach is based on the two-port representation of the transmission line and
accounts for the output resistance of the driver and the line inductance. The results of our analysis are compared with
the results of HSPICE simulations demonstrating the high accuracy of our solution under various values of  driver,
interconnect, and load impedances.

1. INTRODUCTION

With the exponential reduction in the feature size, the delays due to interconnections have become the dominating
factor in determining the circuit performance. The minimum feature size of devices that can be etched on silicon has
decreased from about 8 microns in the late seventies to about 0.18 microns in deep submicron technologies right now.
This scaling has resulted in interconnect delay becoming the major bottleneck in today’s high speed circuits. Due to
aggressive scaling of interconnects even an average length metal line may have significant resistance compared to the
driver resistance. Thus the distributed nature of the interconnect must be modeled. Furthermore, the IC operating fre-
quency nears multi-gigahertz implies that the interconnect inductance also needs to be properly modeled.

Recently, some approximation techniques (e.g. AWE and REX) for estimating the time domain response of inter-
connect structures have been proposed. AWE  [1] provides a rapid approximation of general RLC interconnect model
and has been successfully applied to analyze on-chip signal propagation. AWE begins with the differential state equa-
tions of a lumped LTI (Linear Time-Invariant) circuit and then obtains the Laplace transform solution of the homoge-
neous equation. This solution is expanded in a McLaurin series, and the time-domain moments are computed from
this series and are matched to an approximating function. The approximating function is a linear combination of
exponential functions. REX [2] is another approach for rapidly estimating the transient response of lossy transmission
line which expands the reciprocal of transfer function of the system. For critical underdamped interconnects, this
method provides better result than AWE.

Both of these approaches suffer from inaccuracy especially in high speed integrated circuits. Liao, and Dai [3] pro-
posed using an S-parameter based macromodel as a two-port network for modeling the interconnect structures.
Another way of obtaining the time domain response of an interconnect line is to solve the Telegrapher’s equations.
Kahng and Muddu [4] used this approach for a distributed RC interconnection under the ramp excitation. They
assumed that a finite number of reflections (namely four) is sufficient for generating a result very close to SPICE sim-
ulation. The authors however do not consider the inductive effect of interconnect line in their model and assume that
the exciting voltage source has zero valued output resistance.

 In this paper, we begin with the two-port model of the transmission line and obtain the time-domain expression of
the ramp response for a finite-length RLC lines. The effect of wire inductance and the resistance of CMOS driver of
the interconnect is considered in our method. Section 2 summarizes the background knowledge about the Telegra-
pher’s equations. Section 3 presents our analytical method for computing the ramp response of a lossy transmission
line. We present our experimental results and concluding remarks in sections 4 and 5, respectively.
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2. BACKGROUND

Let’s give some definitions and terminology first. A linear circuit belongs to the class of linear time invariant systems.
Hence it can be completely characterized by its impulse response. The transient behavior of any linear system is con-
tained in its system function which is the Laplace transform of the impulse response. A uniform transmission line with
capacitive load has been depicted in Fig. 1. The transmission line has the property that a signal propagates over the
interconnection medium as a wave. The basic electrical parameters of a transmission line are resistance along the line,
inductance along the line, conductance shunting the line, and capacitance shunting the line. Fig. 1.b depicts the elec-
trical model of the transmission line.

                                                                             (a)

                                                                             (b)

Fig. 1. Uniform transmission line. (a)Distributed transmission line of length d with a load. (b) Electrical model

Let r, l, c, g be the resistance, inductance, capacitance, conductance values per unit length of a uniform transmis-
sion line. The Telegrapher’s equations for such a transmission line is [5]:

  (1)

  (2)

By combining equations (1) and (2), we can come up with the following equation:

  (3)

Equations (1), (2), (3) are the fundamental relationships governing wave propagation along a uniform transmission
line. The shunt conductance is often negligible, hence we set g=0. The boundary and initials condition for Eq. (3) are:
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Boundary Condition:

Initial Conditions: ,

At each point on the transmission line the voltage or current is the sum of incident and reflected components of the
wave. For instance the voltage at point x in Fig. (1) is obtained by the following equation:

Vf(x , t ) = The first incident wave + The first reflected wave + The second incident wave + . . . (4)

We point out that in the subsequent analysis we model the input voltage as a ramp in the [0,trise] interval and a step

function in the [trise, ) interval. We obtain the output response for each of the inputs separately. However when
obtaining the output response for second part we use the initial condition imposed by the first part of the input wave-
form.

3. INTERCONNECT TRANSFER FUNCTION

Since we are interested in calculating the waveform at the output of the interconnection, we do not go through com-
plicated details of wave reflections through the endpoints of transmission line. Instead we use the two port representa-
tion of transmission lines. We use chain parameters for relating the port variable. When two or more interconnect
lines are connected in cascade, their ABCD matrices are simply multiplied together1 [5], [6].

  (5)

where  , , and d denotes the length of the transmission line. L, R, and C

denote the total line inductance, line resistance, and line capacitance, i.e. L=dl, R=dr, and C=dc.

On the other hand, the voltage at port II, is related to the current at port II by the load capacitor equation (cf. Fig.
1.). Hence the transfer function of the interconnection loaded by a capacitor CL is obtained as:

  (6)

where . The inverse of the first parenthesis in the denominator term of Eq. (6) is a limit summation

of a power series. We exploit the related power series of this term since then we will be able to map the series to the
time domain with little effort. Consequently, the transfer function is written in the following form:

  (7)

As can be seen from Eq. (7), λ(s) and Z0(s) depend upon the square root of frequency variable, s. This makes the
inverse Laplace transform consist of the error function which does not give a simple formula for the time domain rep-
resentation of the output waveform. So we extend the McLaurin series of λ(s) and Z0(s), and then based on practical
values of parameters, truncate the series into the first two terms of the McLaurin series about s= . A good approxi-
mation for λ(s) and Z0(s) is given:

1. Notice that this property is very useful when analyzing the ramp response of a cascade of interconnect segments with different
widths.
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 and   (8)

Notice that neglecting resistive term in Z0(s) expression yields the well known characteristic impedance for a loss-
less transmission line and that the propagation delay of wave through the interconnect media is completely present in
the approximation to λ(s). Combining Eqs (7) and (8), the transfer function of a lossy transmission line is obtained as:

  (9)

The above approximation for λ(s) causes a large change in the DC value of the transfer function. We alleviate this
error by adding a gain compensation factor to the transfer function.

To find an effective gain, let H1(s) be defined as:

(10)

The output expression is then composed of the delayed versions of h1(t), the inverse Laplace transform of H1(s):

(11)

where T is the time of flight of the wave. Since T is very small compared to temporal changes of h1(t), we can approx-
imately assume that the delay is negligible, factorize h1(t), and put it outside the summation. We therefore come up
with the following equation:

(12)

The limit of the power series in Eq. (12) gives us an idea about the steady-state value of vout(t) which is interpreted
as Vout(0) in the s-domain (the final-value theorem [8]). Doing this we obtain:

(13)

The actual steady-state value of h1(t) is one. The error is due to the second term in right hand-side of Eq. (13).

Considering the practical values of interconnect parasitics, we can see that . Consequently the

compensating gain is set as . The modified transfer function after taking this multiplicative factor
into consideration is written as:

(14)

H1(s) depends upon the Laplace transform of voltage at port I. Now we do further manipulation to make the anal-
ysis more efficient. We propose the following piece-wise linear function as an approximation to tanh(.):

(15)
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interconnect in the following subsections.

H(s) in Eq. (14) denotes the relation between the voltages at the output port (i.e. port II) and the input port (i.e. port
I) of the interconnect line. If we wish to have the relation between the output voltage of the interconnect and the
source voltage e(t), we have to consider the voltage division between the driver impedance and the input impedance
Zi(s) seen by looking into the interconnect. We know from [6] that Zi(s) is:

(16)

where z11, z22, z21, z12 are the two-port open-circuit impedance parameters and ZL is the load impedance. By knowing
the chain parameters, any of the other sets of two-port parameters, such as the z-parameters, can be computed [6].
Hence the input impedance of the interconnect can be expressed in terms of the parameters of interconnect.

(17)

We can use a similar piece-wise linear approximation for tanh(.) which was used in Eq. (15). Using this approxi-
mation however yields a forth-order source to output transfer function which make the output waveform so compli-
cated. In order to avoid this complexity, we use different approximation as explained next.

Therefore we can ignore the  term in comparison with the  term. Now we should show that this approxima-
tion does not cause a large amount of error. We can rewrite Eq. (17) as the following form:

(18)

Since we are concerned about the magnitude of errors we can write the magnitude of the frequency response of
Eq. (18) as explained below:

(19)

is very small for current high-speed circuits. As frequency increases obviously  becomes even

smaller. Any error in approximating H1(s) is multiplied by this small value, and henceforth we get a small error even

if tanh(.) is estimated as a unity value over the whole range of λ(s). In practical cases usually  is at least 3 times

greater than . For instance using the interconnect parameters for 0.18μ CMOS technology, and assume a 1mm of
Metal1 wire, a typical value for λd at 500MHz clock frequency would be around 1.3 [7]. For global interconnect

lines, this value is even larger. This causes  to be 13 times larger than . Based on the above approximation,
we come up with the following expression for Zi(s):

(20)

Consequently the output voltage of the interconnect line is related to source voltage, e(t), by a simple voltage divi-
sion made by Zi(s) and Rs.

(21)
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CASE I. :

In this case H1(s) is represented by a first-order rational function of s as follows:

(22)

Comparing Eq. (22) with the actual value of H1(s), again we see that the actual DC value of H1(s) differs from the
DC value of the approximated expression of H1(s). This difference will affect the steady state value of the output volt-
age. To overcome this we can add up a constant multiplicative gain so that the DC value of Eq. (22) becomes unity
value. Therefore we will have:

(23)

As said before we break up the input waveform into two parts: (i). ramp input er(t) (ii). step input es(t). Hereafter
we use the convention that any voltage variable with index r is related to the ramp input, and any voltage variable with
index s is related to the step section of the input. Output response is computed for each of these parts.

Let’s consider the first part of the input. From Eq. (21) we are able to obtain the input voltage to transmission line:

(24)

We apply partial fraction expansion to Vr(s) and then, after obtaining the response to each of the fractional terms,
we simply utilize the superposition property to calculate the final value of the output response as follows. Eq. (25)
represents the partial fraction expansion of Vr(s):

(25)

As can be seen from the above equation, three terms are present in the partial fraction expansion of the voltage at
port I. We name each of the terms as Vr1(s), Vr2(s), and Vr3(s), respectively. The Laplace transform of the output volt-

age at  port II is composed of the response to each of the three terms. We name each of the output terms as Vr1
o(s),

Vr2
o(s), and Vr3

o(s), respectively. We know from signal and system analysis that the Laplace transform of the system
response is a product of the system transfer function and the Laplace transform of the input[8]. Consequently we
have:
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Applying partial fraction expansion, then taking inverse Laplace transformation, we come up with the temporal
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(27)

where:  and .

Similarly, we repeat the above steps to obtain the temporal waveforms of vr2
o(t), vr3

o(t) as follows:

(28)
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time. The same relationship exists for voltages at all other points especially the voltage at the input port of the inter-
connect, that is,
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(34)

We take the same steps as was taken for obtaining the response for interval [0,trise] to derive the response for

[trise, ). vs(t) is composed of two terms. One is exponentially rising in time and asymptotically goes toward a con-

stant value, while the other is constant in time. We name vs1
o(t), vs2

o(t) as the system responses to each of the above
portions of the vs(t). The interconnect response to each of these signals are:
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The final expression of the output voltage is composed of the two functions of Eq. (35), and Eq. (36):
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CASE II. :
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where .

(41)

where .

The output voltage is again stated as an algebraic summation of vr1
o(t), vr2

o(t), vr3
o(t). The response for the step

portion of the input is determined by the same methodology which was used for the step portion of the input in case I.

Similar to case I, the output is composed of two terms, vs1
o(t), vs2

o(t), due to the two separable parts of the input:

(42)

(43)

where . Again .

Finally the system response is .

From Eq. (11), the final value of the output is a summation of delayed versions of the computed output voltage.
Since the attenuation factor is large, we only consider a few terms of Eq. (11) to calculate the final value of the volt-
age. Experiments have shown that four terms are sufficient to produce high accuracy. With this approximation the
final value of the output voltage will be:

(44)
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Fig. 2 through Fig. 5. The remaining rows represent new data points. In table 1. WD represents the width of each con-
ductor, HT is the height of conductor, and TH is thickness of the conductor.

5. CONCLUSION

In this paper we proposed a new method for obtaining the analytical expression for the ramp response of a lossy inter-
connect. The inductive effects of the wire line, and most importantly the output resistance of the wire driver were con-
sidered in our analysis. We started with the two-port representation of the transmission line. Among various two-port
parameters the chain matrix was selected. This kind of two-port matrix allows us to obtain the two port matrix of any
number of cascade connections of different wires with different wire sizes very easily by simply multiplying their
two-port chian matrices. We then obtained the ramp response of the system by doing some further simplification. The
results show that this method is able to obtain the ramp response of the lossy interconnect with small error.

Table 1: Comparison between rise-times of our analysis and HSPICE

WD
(μm)

HT
(μm)

TH
(μm)

Rs
kΩ

CL
pF

R
Ω

C
pF

L
nH

d
mm

trise
(ours)

nsec

trise
(HSPICE)

nsec

error

3 2 0.8 2 0.03 70.8 1 3.05 10 0.49 0.65 24.6%

0.2 2.5 0.25 2 0.01 680 0.0736 1.45 2 0.3 0.39 23%

0.3 2.5 0.25 2 0.01 227 0.043 0.635 1 0.23 0.22 4.35%

0.25 2.5 0.25 2 0.01 540 0.077 1.4 2 0.38 0.4 5%

0.2 3 1 2 0.01 170 0.068 1.29 2 0.45 0.4 11%

0.6 2 0.5 2 0.01 113 0.1053 1.035 2 0.74 0.63 14.9%

0.6 2 0.1 2 0.01 567 0.0965 1.21 2 0.46 0.5 8%

0.25 1.0 0.25 2 0.01 544 0.1 1.07 2 0.5 0.55 9.1%

0.25 1.75 0.25 2 0.05 544 0.086 1.26 2 0.57 0.69 17.4%



 Submitted to ISPD’98

11

(a)

(b)

Fig. (2). Ramp response of a lossy interconnect (Length=1cm, R=70.8, C=1PF, L=3.05nH) excited by a ramp input
with Rs=2K as the source resistance, and CL=0.03PF as the load capacitance. (a) The result obtained by our method.
(b) The result obtained from HSPICE simulation.
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(a)

(b)

Fig. (3). Ramp response of a lossy interconnect (Length=2mm, R=680, C=0.0736PF, L=1.45nH) excited by a ramp
input with Rs=2K as the source resistance, and CL=0.01PF as the load capacitance. (a) The result obtained by our
method. (b) the result obtained from HSPICE simulation.
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(a)

(b)

Fig. (4). Ramp response of a lossy interconnect (Length=1mm, R=227, C=0.043PF, L=0.635nH) excited by a ramp
input with Rs=2K as the source resistance, and CL=0.01PF as the load capacitance. (a) The result obtained by our
method. (b) the result obtained from HSPICE simulation.
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(a)

(b)

Fig. (5). Ramp response of a lossy interconnect (Length=2mm, R=540, C=0.077PF, L=1.4nH) excited by a ramp
input with Rs=2K as the source resistance, and CL=0.01PF as the load capacitance. (a) The results obtained by our
method. (b) the result obtained from HSPICE simulation.
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