
Post-Layout Timing-Driven Cell Placement Using an Accurate Net
Length Model with Movable Steiner Points*

ABSTRACT – This paper presents a new algorithm for timing-
driven cell placement using the notion of movable Steiner points
that capture the net topology. The proposed algorithm improves the
timing closure at the backend of the EDA design flow. Unlike
conventional flows that perform placement and routing in two
separate steps and use rough estimates of the net lengths during
placement, our algorithm uses accurate net lengths by considering
the net topologies during the Elmore delay calculation step and
dynamically updates the routing during the concurrent placement
of Steiner points and cells. The simultaneous placement and
routing problem is formulated as a mathematical program with a
small number of variables and solved by the Han-Powell method.
Experimental results demonstrate the effectiveness of the new
approach compared to the conventional flows.

1 Introduction

The strong demand for complex high performance digital circuits
motivates a continuous reduction of the minimum feature size in
VLSI process technologies, which in turn introduces new
challenges. Specifically, the interconnect delay has become a
dominant factor in delay calculations. On the other hand, the strong
demand for faster clock speeds calls for more aggressive timing-
driven EDA tools. Inconsistency of the delay models that are used
in different stages of the EDA flow causes the timing-closure
problem (also known as the solution oscillation problem) in
conventional flows. In contrast, unification-based approaches,
which combine different stages of optimization flow into one
integrated step, solve the timing closure problem by using unified
timing and data models. To-date, the unification-based approaches
have mostly focused on the timing-closure problem between the
front-end (synthesis) and back-end (layout) of EDA flows [1].

This paper presents a unification-based approach to improve the
timing-closure inside the back-end of an EDA flow, which is
caused by the inconsistency between the delay calculations
performed during the placement and routing stages. In the past, this
inconsistency was ignored. However as the interconnect delays
become more dominant compared to the gate delays, this conflict
cannot be ignored anymore. Timing–driven placement has been
studied extensively in the literature. Existing techniques may be
classified into two major categories: net-based and path-based.

*This work was supported in part by the SRC under contract
number 98-DJ-606.

In the net-based approach, after assigning weights to nets and
updating these weights based on their timing criticality, the
placement algorithm seeks to minimize the total weighted net
length by placing the cells in an iterative manner [2] [3] [4] [5] [6]
[7]. In the path-based approach, the placement algorithm chooses a
fixed number of critical paths after performing timing analysis on
the circuit netlist and then seeks to minimize the delay of these
paths by placing the cells [8] [9] [10] [11] [12] [13]. Path-based
approaches formulate the timing-driven placement problem more
accurately than net-based approaches. Since path-based approaches
do not know the net topologies prior to the routing step, they often
approximate the net lengths using models such as the minimum
bounding-box or the source-sink edge model [12] [14].

By performing global routing after the placement step, the exact
topology of each net is determined due to the construction of its
Steiner routing tree. There are a number of different Steiner routers
based on the objective function used. Earlier works tried to
minimize the cost (i.e. the total edge length) of the resulting
Steiner routing tree [15]. More recent works attempt to
simultaneously minimize the cost and the radius (the longest
source-sink path length). In timing-driven global routing (which is
our concern in this paper), the objective is to keep the critical-sink
(CS) arrival time delay to a minimum while making the routing
cost of the net as low as possible [16].

Standard backend flow performs timing-driven placement
followed by timing-driven global routing. In this flow, the net
length model used during placement is based on the bounding-box
model or clique model whereas during global routing it is based on
the CS-Steiner routing trees. Due to this inconsistency in
determining the net lengths, after performing the global routing the
delay information of critical paths may significantly change.
Hence it becomes likely that newly created critical paths will be
introduced, which in turn must be handled by another level of
timing-driven placement. This solution oscillation happens to be
costly in terms of the design time. Worst of all, there is no
guarantee that it will eventually converge.

In this paper we use a placed and routed circuit as the initial
solution. In contrast to the conventional techniques, which estimate
the length of the nets, our algorithm computes the net delays based
on the exact length of each net by considering its topology as
defined by the relative arrangement of the Steiner points in its
routing tree. Next, by simultaneously moving the Steiner points
and the cells on the most critical paths while preserving the
topology of each critical net, our algorithm minimizes the arrival
times of the primary outputs by considering the k most critical
paths. Optimizing the cycle time is subject to satisfying delay
constraints on the fanout branches connected to the set of critical

Amir H. Ajami and Massoud Pedram
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089

{aajami, massoud}@zugros.usc.edu

paths so as to reduce the probability of introducing new critical
paths in the process. Our algorithm performs topological fix-ups
during the optimization routine to ensure the correct construction
of a minimum critical-sink routing tree and limit the potential
increase in the total cost of the Steiner trees.

The remainder of the paper is as follows. Section 2 covers
background issues such as a review of currently used delay models
in timing-driven placers and the delay model used in this paper.
Section 3 introduces the problem formulation, while section 4
describes the proposed algorithm and optimization techniques.
Experimental results and concluding remarks are given in sections
5 and 6, respectively.

2 Background

2.1 Wire length Model
Path-based timing-driven placers attempt to minimize the delay of
the critical path, which in turn is dependent on the length of the
nets on the path. They often approximate this length using the
minimum bounding box model. Consider neti with the source S0

and n sinks {S1, S2, …, Sn} (Figure 1):

Figure 1: Minimum-Bounding box for neti.

URnet and LLnet denote the upper-right corner and lower-left corners
of the minimum-bounding box, respectively. The length of the
bounding box is defined as the Manhattan distance between these
two corners times a variable ρ which is a function of the number of
sinks contained in the bounding box and is used to adjust the
estimation error of this interconnect model [17]. The length of each
net can be written as:

[() ()]net UR LL UR LLx x y yρ= ⋅ − + −! (1)

Using the bounding box model, however, gives rise to high
inaccuracy of delay estimates. This fact motivates us to use a more
detailed net length model, which takes the topology of the net into
account. We know the exact topology of the Steiner routing tree
and can write the exact length of each source-to-sink path based on
the locations of the source node, the Steiner points and the sink
node. Assume the routing tree of neti and its equivalent lumped RC
model as shown in Figure 2:

Figure 2: A sample Steiner tree of neti.

The exact net length lk between gate Gi and Steiner point Sj can be
computed as:

i j ji
G S SGk x x y y− −= +! (2)

The lumped resistance and capacitance for neti are defined as:

. .
i i ix x y yR r r= +! ! ! , . .

i i ix x y yC c c= +! ! ! (3)

where , , , yx y xc c r r are capacitance per unit length in x and y

directions and resistance per unit length in x and y directions,
respectively. We use the Elmore delay model to calculate the delay
between two gates and model the interconnect by using a lumped
circuit model. In Figure 2, rd is the output resistance of the driver
gate, Cin’s are the input capacitance of sinks and Cl’s and Rl’s are
the lumped capacitance and resistance of each interconnect
segment, respectively.

2.2 Delay Calculation
Consider a net with a source node and k sink nodes. Elmore delay
seen from the source to the ith sink is computed as follows:

int
1 1

.
m n

i ij jk
j k

delay d R C
= =

= +∑ ∑ (4)

where m is the number of intermediate nodes on the path from the
source to the ith sink, Rij is the total sum of resistances from the
source node up to the jth node on the path from the source to the ith

sink, and Cjk is the capacitance seen at node j on the path i plus the
summation of downstream capacitances seen at n side-branches
going out of the jth node. We denote the intrinsic delay of the source
gate as dint. To use the exact value of both lumped capacitances and
resistances for individual segments of nets, we need to consider the
topology of each net, which is known after the routing phase. We
consider two forms of delay calculation based on their complexity
and accuracy.

2.2.1 Delay Formulation I
Assume we want to write the delay between source gate G1 and
sink gate G2 in Figure 2. By rearranging the delay equation, we
obtain:

1 1

5 4 5 4

1 2
1 2 2 2

(,) () ()
i i i id in in

i i i i

d G G r C C R C C
= = = =

= ⋅ + + ⋅ +∑ ∑ ∑ ∑! ! !

2 3 5 2 4 3 2 int()in in inR C C C C R C d+ ⋅ + + + + ⋅ +! ! ! ! (5)

To simplify the notation we only consider the 1-D space (extension
to both x and y directions is straightforward). In general, by
considering Figure 2, if there are k movable Steiner points on the
path between two gates Gi and Gj, the number of variable length net
segments between them has a lower bound of 2k+1 and an upper
bound of 3k+1, depending on the number of fanouts going out of
each Steiner point. If we assume that there are p variable-length
segments, then we can rewrite the propagation delay d(i,j) between
gates Gi and Gj based on the segment lengths by using equations (3)
and (4) as follows:

1 1 1

(,) ()
p p p

i i i i ij j
i i j

d i j M Kα κ
= = =

= ⋅ + ⋅ ⋅ ⋅ +∑ ∑ ∑! ! ! (6)

S

URnet

S1

S0

S2

LLnet

G

Cin4

Cin2

Cin3

Cl1

Cl2

Cl3

Cl5

Cl4

Rl1

Rl2

Rl4

Rl5

rd1

G2

S1 S2

G4

G3

l1

l2 l3

l4

l5

where α1xp, κ1xp , Mpxp and K1x1 are two constant vectors, a constant
matrix, and a constant scalar value, respectively. If we allow k
movable Steiner points on the path between every pair of cells, the
number of variables used in equation (6) will be k+2 (2k+4 in 2-D
space).

2.2.2 Delay Formulation II
We make an important observation with respect to the computation
of the d(i,j) between Gi and Gj. In practice rd is much larger than
Rl’s where Cl’s are comparable to Cin values. Consequently, it is
more important to have an accurate value for Cl’s than for Rl’s. For
this reason, we use the Steiner points to obtain accurate values for
the capacitance of partial nets (Cl’s), but use the minimum
bounding box to derive the resistance of the whole net. In this way
the delay equation (5) is simplified to:

1

5 4 4

1 2 int
1 2 2

(,) ()
i i id in net in

i i i

d G G r C C R C d
= = =

= ⋅ + + ⋅ +∑ ∑ ∑! (7)

where Rnet is computed using the length of the minimum bounding
box as in equation (1) and Cl’s are calculated from equation (3) in
which each li is calculated from equation (2). By introducing new
notation, the propagation delay derived in equation (7) can be
simply written as:

(,)
ii i net

i

d i j α β κ= ⋅ + ⋅ +∑ ! ! (8)

where αi, β and κ are constants and lnet is calculated from equation
(1). If we allow k movable Steiner points on the path between
every two cells, the number of variables used in equation (8) will
be k+4 (2k+8 in 2-D space).

2.3 Timing Calculation in the Circuit
Let a directed graph G(V,E) represent the circuit netlist in which
vertex set V is a one-to-one correspondence with the gates on the
netlist, and edge set E represents the directed connections between
vertices. Associated with each arc between two vertices i,j , there is
a d(i,j) value which denotes the propagation delay between i,j. Also
for each gate Gi on the net there is an associated arrival time ai and
a required time ri. The worst-case arrival time aj and the required
arrival time ri at the two end points of an arbitrary arc (i,j) on the
graph are given by:

max{ (,) | (,) }j ia a d i j i j E= + ∀ ∈ (9)

min{((,) | (,))i jr r d i j i j E= − ∀ ∈ (10)

Given the arrival times at the circuit inputs, Tstart, and required
times at the circuit outputs, Treq, we can easily compute the arrival
and required times for all the gates in the vertex set V. Based on
these values, a slack si for vertex i is defined as si = ri-ai. A
negative slack represents a timing violation over that vertex. A
critical path Γ is a sequence of vertices (vs,….ve) along a path from
primary input vs to primary output ve where all vertices have
negative slacks.

3 Mathematical Problem Formulation

We start with a placed and routed circuit, so we are given the initial

coordinates for all cells and Steiner points along the critical path.
We also know all the arrival times at the primary inputs (PI’s) and
the required times at the primary outputs (PO’s). By performing
timing analysis on the circuit, we identify the timing-critical
primary output (CPO) by finding the PO with the most negative
slack. We also know the arrival time at the output of the last gate
on each path branching into the critical path and the required time
at the input of the first gate on each path branching out of the
critical path. Let M define the set of movable objects (which are
cells and Steiner points that are on the critical path) and Fin and
Fout denote the set of all immediate fanin and fanout nodes of the
critical path, respectively (notice that nodes may be gates or
Steiner points). The mathematical programming formulation of the
problem is as follows:

Maximize (rCPO - aCPO) (11)
s.t.

(,) 0 (,) : ,i j ina d i j a i j E i j M F+ − ≤ ∀ ∈ ∈ ∪
(,) 0 (,) : ,j ir d i j r i j E i j M− − ≥ ∀ ∈ ∈

i i CPO CPO outr a r a i F− ≥ − ∀ ∈

i starta T i PI≥ ∀ ∈

i reqr T i PO≤ ∀ ∈

min maxix x x i M≤ ≤ ∀ ∈

min maxiy y y i M≤ ≤ ∀ ∈

where aCPO and rCPO are the arrival and required times at the CPO
and xmin, xmax, ymin and ymax are the coordinates of the lower left and
upper right corners of the chip. As we stated before, the arrival
times at output of fanin gates and required times at input of fanout
gates and are known values after a timing analysis pass (Figure 3).
The first and second sets of constraints simply describe the
equations used to capture the timing calculation in the circuit. The
third set of constraints states that the slack on any path branching
out of the current critical path should be no more negative than the
slack of the critical path itself. This constraint therefore minimizes
the chance that a new critical path will be generated after
optimizing the current critical path. Notice that this constraint
cannot guarantee that no new critical path will be created because
of the possibility that the fanout branches may reconverge in the
circuit after they leave the current critical path. The remaining sets
of constraints describe the boundary conditions for timing
calculation and for placement.

Figure 3: Fanin and Fanout constraints (critical path is shown in
thick lines).

CPO

Fout

Fin
ai=known

ri=known

PI

Consider a circuit with N nodes (including PI’s, PO’s, internal
gates, and Steiner points for the nets connecting these gates).
Suppose that the current critical path has n nodes (a PI, a PO, and
n-2 movable nodes in between) and that the cardinalities of the
corresponding Fin and Fout sets are p and q, respectively. Thus the
mathematical optimization problem formulation described by
system of equations (11) only has n+p arrival time variables, n
required time variables, and 2n position variables.

As we saw in section 2.2, d(i,j) can be written as a polynomial of
partial sums of resistances and capacitances on the intermediate
nodes of the path connecting gates Gi and Gj. These partial sums
are functions of net segment lengths that comprise the arc (vi,vj)
and its fanout branches. In general d(i,j) is a function of the
physical coordinates of gate Gi, gate Gj and all intermediate
Steiner points over the arc (vi,vj). Note that d(i,j) is not a
polynomial (because of the absolute values presented by the
Manhattan distances between two intermediate nodes).

Observation: Problem formulation (11) is a non-convex program.
Computing the Hessian matrix of the timing constraints proves
this. More precisely, we can show that the Hessian is not positive-
semi definite and hence the system of equations (11) is a non-
convex optimization problem. Consequently, using the simplex
method or any kind of quadratic programming technique cannot
solve this problem formulation.

Notice that by using (8) in section 2.2.2, we introduce more
variables into formulation (11), so using (8) instead of (6) has little
impact on reducing the computation time for solving the
optimization problem. For these reasons we will use delay
formulation I of section 2.2.1 for calculating the delay between
two gates. Each length li is the absolute value of the difference
between the x-coordinates of the two endpoints of the
corresponding net segment. Note that one or both of the x-
coordinates can be variables. We approximate the absolute value
function with a differentiable smooth function as follows:

2()k i j i j kx x x x β= − ≅ − +! (12)

βk is called the regularization factor, which has a very small
magnitude and is set based on the required precision of the final
results [18]. By substituting equation (12) into equation (6), the
constraints in problem formulation (11) will become a function of
arrival times and required times at each gate on the critical path
and its first neighbors and the physical coordinates of the Steiner
points and the cells on the critical path.

4 Problem Optimization

We first provide the theoretical background to motivate the way
we solve problem formulation (11).

4.1 Background
Theorem 1: (Kuhn-Tucker’s first order necessary condition)
Consider the following problem:

Min f(x) (13)
s.t. g(x) ≤ 0

Let α be a relative minimum point for problem (13) and suppose α
is a regular point for the constraints. There is a vector λ∈ EM such
that:

() () 0
() 0

T

T

f g
g
α λ α

λ α
∇ + ∇ =

=
(14)

The Lagrangian for system of equations (14) can be defined as
L(x)=f(x)+λTg(x). As noted before problem formulation (11) is
non-convex, i.e. the Hessian of its Lagrangian is not positive
definite. For this reason we try to “convexify” the Lagrangian in
the local sub-space and find a descent direction toward the global
minimum. One common way is to define a merit function that is
defined for the purpose of measuring the progress toward the
global optimum. The merit function must be defined so as to be a
minimum at the solution of the original problem, and at the same
time, its value to decrease at each optimization step. Another
effective method approximates the Lagrangian matrix such that the
new matrix is positive semi-definite and updates it iteratively
during optimization steps.

4.2 Optimization Technique
The basis of our optimization technique is the quasi-Newton
method, which is a structured, modified Newton algorithm using
an approximation and successive updates of the Lagrangian matrix.
The iterative process is stated as follows:

1

1 k

1

B () (,)

() 0 ()

T T
k k k k k

k k k k

x x g x L x

g x g x

λα
λ λ

−
+

+

   ∇ ∇   
= −        ∇       

(15)

where Bk is a positive semi-definite approximation for Lagrangian
L and will be updated at each iteration. By solving the above linear
system of equations, we find the values of x and λ for the next
step. This process is then repeated. α is a factor defined by the
specified merit function to improve the convergence rate of the
iteration. In the quasi-Newton method, the value of α is usually set
to 1. The value of matrix B can be updated as follows:

k k
k+1 k

k

1 1 1 1

B B
B B

B

, (,) (,)

T T
k k k k
T T

k k k k

T T
k k k k k k k k

q q p p

q p p p

p x x q L x L xλ λ+ + + +

= + −

= − = ∇ − ∇

(16)

It has been shown that if the initial guess is sufficiently close to the
solution (x,λ), this method converges to this solution super
linearly. However, it is obvious that this “closeness” condition is
unsatisfactory when looking for a general method to solve system
(13). Also notice that after updating Matrix B, there will be no
guarantee that the matrix remains positive semi-definite.

The Han-Powell method is a variant of the quasi-Newton method
in which a quadratic merit function is used to update α as well as
B. It can be shown that during the Han-Powell method, the matrix
B always remains positive semi-definite and that the Han-Powell
method is a globally convergent method since the search direction
given by the merit function is a descent direction [19].

4.3 Topology Correction
Due to the movements of Steiner points along the critical path
during the optimization steps, it is possible to find that some of the
fanout net lengths become large. This may occur, for example, in
order to shorten a particular source to sink path in the routing tree
at the expense of increasing the overall routing length. This
situation is described by an example in Figure 4. Assume that gate
G2 has a very large input capacitance in comparison to the other
gates, which is possible when using a rich library of gates. At the
same time assume that because of some physical constraints
imposed by other fanins of gate G2 or because we may increase the
output load of G2, it is not possible to move gate G2 toward gate
G1. Having relatively small driver strength for gate G1 forces us to
reduce the length of the path between gate G1 and G2 as much as
possible, which in turn forces gate G1 to move toward G2 and
hence increases l4 and l5 (Figure 4b).

(a) (b)

Figure 4: (a) The original net topology and (b) the net topology
after moving cells and Steiner points.

Notice that the topology of the routing tree subsequently needs to
be changed to improve the delay and wire length. Indeed by
overlapping l4 and l5 routes and removing the shared part of one of
them and introducing a new Steiner point we will improve the
delay of the critical path as well as reduce the total wire lengths
(Figure 5). In general we can do this kind of fix-up when it does
not violate the timing constraints at the outputs of gates G3 and G4.

Figure 5: Routing tree after topology correction.

4.4 Flow of the Proposed Method
The complete flow of the proposed algorithm will be as follows:

1. Start with an initial solution produced by a timing-driven
placement and global routing tool.

2. Perform timing analysis on the circuit to extract the k most
critical paths.

3. Construct the problem formulation (11) using the physical
location of each cell and Steiner point on the critical path and
the arrival times at each gate as the system variables.

4. Perform one step of the quasi-Newton or Han-Powell
iteration methods.

5. Correct the topology of fanout nets as described in section
4.3.

6. Update problem formulation (11) to reflect any net topology
changes in step 5.

7. Go back to step 4 and repeat unless a satisfactory result has
been generated.

8. Stop if all the critical path delays are optimized; otherwise, go
back to step 2 and repeat.

5 Experimental Results

To show the effectiveness of the proposed algorithm, we applied it
to a number of benchmark circuits. The experiments were done on
a 700MHz P-III with 256MB of memory. The results are reported
on Table 1. In the first three columns the netlist information of
each circuit is given. To test our algorithm we first place the
circuits with a simulated annealing based placer (TimberWolf 1.0)
followed by a timing-driven placement step [12] that uses the
bounding-box estimation for each net. Then we perform a C-ERT
global routing over the circuit [15]. The delay (ns), area (mm2) and
running time (sec) after these steps are reported under P&R
columns of the Table 1. Note that the reported delay is the
propagation delay after placement and routing using the topology
of the constructed Steiner trees and based on the exact net lengths.
Our results after doing timing-driven placement with movable
Steiner points are given in the TPGR columns. As one can see,
there is a timing performance improvement between 9 to 14
percent, at the cost of a slight increase in the chip area. As was
expected, the run time is higher for TPGR due to the nonlinearity
of the optimization objective and the iterative nature of the Han-
Powell method.

Even though the running time of one pass of P&R flow is shorter,
performing the global routing stage will change the timing
information of the circuit due to the inconsistency of the delay
model in the placement and routing stages. Hence, for obtaining
the same performance improvement as TPGR, we need to perform
multiple iterations of P&R, which can be more costly in terms of
running time than TPGR and there is no guarantee that this
iterative process converges at the end. In contrast, the TPGR flow
is a one-shot optimization process based on a stable and rather
efficient optimization method.

6 Conclusion

This paper presented a new algorithm for performing timing-driven
placement with global routing information using the notion of
movable Steiner points. The proposed algorithm uses accurate net
lengths by considering the net topologies during the Elmore delay
calculation step and dynamically updates the routing during the
concurrent placement of Steiner points and cells. The simultaneous
placement and routing problem was formulated as a mathematical
program with a small number of variables and solved by the Han-
Powell method. Experimental results demonstrated the
effectiveness of the new approach compared to the conventional
flows. Future work consists of integrating this algorithm with a
post-layout buffer insertion technique.

G1 G2

G4 l4

G3 l5

G1 G2

G3

l4

G4

l5

G2

G4

G1

G3

l4

l5

Table 1: Comparing TPGR with conventional P&R flow.

References:

[1] A. Salek, J. Lou, M. Pedram, “A Simultaneous Routing Tree
and Fanout Optimization Algorithm,” Proc. Intl. Conf. on
CAD, pp. 625-630, 1988.

[2] A.E. Dunlop, V.D. Agrawal, D.N. Deutsch, M.F. Jukl, P.
Kozak, M. Weisel, “Chip Layout Optimization using Critical
Path Weighting,” Proc. Design Automation Conf., pp.133-
136, 1984.

[3] P. Hauge, R. Nair, E. Yoffa, “Circuit Placement for
Predictable Performance,” Proc. Intl. Conf. on CAD, pp. 88-
91, 1987.

[4] S. Ou, M. Pedram, “Timing-Driven Placement Based on
Partitioning with Dynamic Cut-Net Control,” Proc. Design
Automation Conf, pp. 472-476, 2000.

[5] T. Gao, P.M. Vidya, C.L. Liu, “A Performance Driven Macro-
Cell Placement Algorithm,” Proc. Design Automation Conf.,
pp. 147-152, 1992.

[6] M. Marek-Sadowska, S. Lin, “Timing Driven Placement,”
Proc. Int. Conf. On CAD, pp. 94-97, 1989.

[7] M. Sarrafzadeh, D. Knol, G. Tellez, “Unification of
Budgetting and Placement,” Proc. Design Automation
Conference, pp. 758-761, 1997.

[8] W. Donath, R. Norman, B. Agrawal, S. Bello, S. Han, J.
Kurtzberg, P. Lowy, R. MacMillan, “Timing Driven
Placement using Complete Path Delays,” Proc. Design
Automation Conf., pp. 84-89, 1990.

[9] W. Swartz, C. Sechen, “Timing Driven Placement for Large
Standard Cell Circuits,” Proc. Design Automation Conf., pp.
211-215, 1995.

[10] A. Srinivasan, “An Algorithm for Performance-Driven Initial
Placement for Small-Cell ICs,” Proc. Int. Conf. on CAD, pp.
94-97, 1989.

[11] M.A.B. Jackson, E.S. Kuh, “Performance-Driven Placement
of Cell Based IC’s,” Proc. Design Automation Conf., pp. 370-
375, 1989.

[12] T. Koide, M. Ono, S. Wakabayashi, Y. Nishimaru, N. Yoshida,
“A New Performance Driven Placement Method with Elmore
Delay Model for Row Based VLSI,” Proc. Asia and South
Pacific DAC, pp. 405-412, 1995.

[13] J.M. Kelinhans, G. Sigl, F.M. Johannes, K. Anterich,
“GORDIAN: VLSI Placement by Quadratic Programming
and Slicing Optimization,” IEEE Trans. Computer-Aided
Design, vol.10, No.3, pp. 356.365, Mar 1991.

[14] B.M. Reiss, G.C. Ettelt, “SPEED: Fast and Efficient Timing
Driven Placement,” Proc. Intl Symp. of Circuits and Systems
pp. 377-380, 1995.

[15] A.B. Kahng, G. Robbins, “A New Class of Iterative Steiner
Tree Heuristics with Good Performance,” IEEE Trans.
Computer-Aided Design, vol.11, pp. 893-902, July 1992.

[16] K.D. Boese, A.B. Kahng, B.A. McCoy, G. Robins, “Near-
Optimal Critical Sink Routing Tree Construction,” IEEE
Trans. Computer-Aided Design, vol.14, No.12, pp. 1417-
1436, 1995.

[17] W. Chen, C. Hsieh, M. Pedram, “Simultaneous Gate Sizing
and Placement,” IEEE Trans. Computer-Aided Design, vol.
19, No.2, pp. 206-214, Feb. 2000.

[18] C.J. Alpert, T.F. Chan, A.B. Kahng, I.L. Markov, P. Mulet,
“Faster Minimization of Linear Wirelength for Global
Placement,” IEEE Trans. Computer-Aided Design, vol.17,
No.1, Jan. 1998

[19] D. Luenberger, Linear and Nonlinear Programming, 2nd

edition, Addison-Wesley Pub. Company, 1984.

P & R TPGR
Circuit #cells

#cells
CP area delay runtime area delay runtime

Delay
Imp. %

Area
Inc.%

C499 385 13 2.82 12.05 26.7 2.90 10.36 327 13.8 2.9
C2670 811 15 6.53 14.45 40.1 6.69 13.1 411 9.34 1.8
C1908 453 21 3.21 19.60 32.7 3.34 17.24 342 12.01 4.2
C5315 1720 17 8.14 23.17 109.2 8.31 20.73 1112 10.5 2.1
C3540 1149 22 7.15 26.53 81.2 7.28 23.55 615 11.2 1.9
C7552 2158 24 27.41 29.2 152.2 27.82 26.50 2120 9.23 1.5

des 3059 21 33.21 21.8 270.8 34.53 19.03 3910 11.3 4.0
biomed 6417 22 52.08 32.1 501.5 53.69 28.88 5214 10.03 3.2

