Power Estimation Methods for Sequential Logic Circuits

Chi-Ying Tsui
\(\begin{array}{cr}José Monteiro Massoud Pedram
Alvin M. Despain \& Bill Lin\end{array}\)
Srinivas Devadas

Contents

1 Introduction 1
2 Preliminaries 3
2.1 A Power Dissipation Model 3
2.2 Combinational Circuits 3
3 The Exact Method 4
3.1 Modeling Correlation 4
3.2 State Probability Computation 5
3.3 Power Estimation Given Exact State Probabilities 6
4 Basis of Approximation Strategies 8
4.1 Computing Present State Line Probabilities 9
4.2 Inaccuracy in Formulation 10
5 Improving Accuracy using k-Unrolled Networks 11
5.1 State Line Probability Computation 11
5.2 Switching Activity Computation 12
6 Improving Accuracy Using m-Expanded Networks 12
6.1 State Line Probability Computation 12
6.2 Switching Activity Computation 13
7 Solving the Non-Linear System of Equations 13
7.1 Picard-Peano Method 14
7.2 Newton-Raphson Method 15
7.3 Signal Probability Evaluation 17
8 Experimental Results 17
9 Conclusions and Ongoing Work 25

List of Figures

1 A Synchronous Sequential Circuit 28
2 Example State Transition Graph 29
3 Taking Correlation Into Account 30
$4 \quad k$-unrolling of the next state logic 31
5 Calculation of signal and transition probabilities by network unrolling 32
6 An m-Expanded Network with $m=2$ 33

List of Tables

1 Comparison of sequential power estimation methods19
2 Absolute errors in present state line probabilities averaged over all present state lines 21
3 Absolute errors in switching activity averaged over all circuit lines 22
4 Comparison of Picard-Peano and Newton-Raphson 23
5 Results of power estimation based on k-unrolled and m-expanded networks 24
6 Percentage error in switching activity estimates averaged over all nodes in the circuit 24

Abstract

Recently developed methods for power estimation have primarily focused on combinational logic. We present a framework for the efficient and accurate estimation of average power dissipation in sequential circuits.

Switching activity is the primary cause of power dissipation in CMOS circuits. Accurate switching activity estimation for sequential circuits is considerably more difficult than that for combinational circuits, because the probability of the circuit being in each of its possible states has to be calculated. The Chapman-Kolmogorov equations can be used to compute the exact state probabilities in steady state. However, this method requires the solution of a linear system of equations of size 2^{N} where N is the number of flip-flops in the machine.

We describe a comprehensive framework for exact and approximate switching activity estimation in a sequential circuit. The basic computation step is the solution of a non-linear system of equations which is derived directly from a logic realization of the sequential machine. Increasing the number of variables or the number of equations in the system results in increased accuracy. For a wide variety of examples, we show that the approximation scheme is within $1-3 \%$ of the exact method, but is orders of magnitude faster for large circuits. Previous sequential switching activity estimation methods can have significantly greater inaccuracies.

C-Y Tsui and A. M. Despain were supported by the Advanced Research Projects Agency under contract J-FBI-91-194. Massoud Pedram was supported in part by the Advanced Research Projects Agency under contract F33615-95-C1627 and by SRC under contract 94-DJ-559. J. Monteiro and S. Devadas were supported in part by the Advanced Research Projects Agency under contract DABT63-94-C-0053 and in part by a NSF Young Investigator Award with matching funds from Mitsubishi Corporation.

C-Y. Tsui, M. Pedram and A. Despain are with the Department of Electrical Engineering at the University of Southern California, Los Angeles.
J. Monteiro and S. Devadas are with the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, Cambridge.
B. Lin is with IMEC, Belgium.

1 Introduction

For many consumer electronic applications low average power dissipation is desirable and for certain special applications low power dissipation is of critical importance. For applications such as personal communication systems and hand-held mobile telephones, low-power dissipation may be the tightest constraint in the design. More generally, with the increasing scale of integration, we believe that power dissipation will assume greater importance, especially in multi-chip modules where heat dissipation is one of the biggest problems.

Power dissipation of a circuit, like its area or speed, may be significantly improved by changing the circuit architecture or the base technology [3]. However, once these architectural or technological improvements have been made, it is the switching of the logic that will ultimately determine the power dissipation.

Methods for the power estimation of logic-level combinational circuits based on switching activity estimation have been presented previously (e.g., [10], [2], [4], [9], [13], [7]). Power and switching activity estimation for sequential circuits is significantly more difficult, because the probability of the circuit being in any of its possible states has to be computed. Given a circuit with N flip-flops, there are 2^{N} possible states. These state probabilities are, in general, not uniform. As an example, consider the sequential circuit of Figure 1 and the example State Transition Graph of Figure 2. Assuming that the circuit was in state \mathbf{R} at time 0 , and that at each clock cycle random inputs are applied, at time ∞ (i.e., steady state) the probabilities of the circuit being in state $\mathbf{R}, \mathbf{A}, \mathbf{B}, \mathbf{C}$ are $\frac{1}{6}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{4}$ respectively. These state probabilities have to be taken into account during switching activity estimation of the combinational logic part of the machine. Power dissipation and switching activity of CMOS combinational logic is modeled by randomly applied vector pairs. In the case of sequential circuits, the vector pair $\left\langle v_{1}, v_{2}\right\rangle$ applied to the combinational logic is composed of a primary input part and a present state part (see Figure 1), namely $\left\langle i_{1} @ s_{1}, i_{2} @ s_{2}\right\rangle$. Given $i_{1} @ s_{1}$, the next state s_{2} is uniquely determined given the functionality of the combinational logic. For example, if i_{1} happens to be 0 and the machine of Figure 2 is in state \mathbf{R}, the machine will move to state \mathbf{B}. This correlation between the applied vector pairs has to be taken into account in order to obtain accurate estimates of the switching activity in sequential circuits.

A first attempt at estimating switching activity in logic-level sequential circuits was presented in [4]. This method can accurately model the correlation between the applied vector pairs, but assumes that the state probabilities are all uniform. Extensions of this method can produce accurate
estimates for acyclic sequential circuits such as pipelines, but not for more general cyclic circuits [8].

In this paper, we present results obtained by using the Chapman-Kolmogorov equations for discrete-time Markov Chains [12] to compute the exact state probabilities of the machine. The Chapman-Kolmogorov method requires the solution of a linear system of equations of size 2^{N}, where N is the number of flip-flops in the machine. Thus, this method is limited to circuits with relatively small number of flip-flops, since it requires the explicit consideration of each state in the circuit.

We next describe an approximate method for switching activity estimation in sequential circuits. The basic computation step is the solution of a non-linear system of equations which is derived directly from the logic realization of the next state logic of the machine under consideration. Increasing the number of variables or the number of equations in the system results in increased accuracy. For a wide variety of examples, we show that the approximation scheme is within $1-3 \%$ of the exact method, but is orders of magnitude faster for large circuits. Previous sequential switching activity estimation methods can have significantly greater inaccuracies.

The rest of this paper is organized as follows. In Section 2 we briefly review the physical model for power estimation and summarize the combinational estimation method of [4]. In Section 3, we describe an exact switching activity estimation method for sequential circuits. In Section 4, we first provide the basis for the approximation schemes we have developed and formulate the problem of estimating switching activity as that of solving a non-linear system of equations. We describe a scheme based on the notion of a k-unrolled network that can be used to improve the accuracy of estimation in Section 5. We describe a different method to improve the accuracy based on the notion of a m-expanded network in Section 6. In Section 7 we describe methods to solve the non-linear system of equations, namely, the Picard-Peano and the Newton-Raphson methods. In Section 8, we show that purely combinational logic estimation methods can provide inaccurate estimates, whereas the developed approximation methods produce accurate estimates while being applicable to large circuits.

2 Preliminaries

2.1 A Power Dissipation Model

Under a simplified model of the energy dissipation in CMOS circuits, the energy dissipation of a CMOS circuit is directly related to the switching activity.

In particular the three simplifying assumptions are:

- The only capacitance is at the output node of a CMOS gate (this capacitance includes the source-drain capacitance of the gate itself and the input capacitances of the fanout gates).
- Current is flowing either from $V_{D D}$ to the output capacitor or from the output capacitor to ground (that is, there is no short-circuit current).
- Any change in a logic-gate output voltage is a change from $V_{D D}$ to ground or vice-versa (that is, there are no stable intermediate voltage levels).

These assumptions are reasonably justified for well-designed CMOS gates [5] and when combined, imply that the energy dissipated by a CMOS logic gate each time its output changes is roughly equal to the change in energy stored in the output capacitance seen by the gate. If the gate is part of a synchronous digital system controlled by a global clock, it follows that the average power dissipated by the gate is given by:

$$
\begin{equation*}
P_{\text {avg }}=0.5 \times C_{\text {load }} \times\left(V_{d d}^{2} / T_{c y c}\right) \times E(\text { transitions }) \tag{1}
\end{equation*}
$$

where $P_{\text {avg }}$ denotes the average power, $C_{\text {load }}$ is the load capacitance, $V_{d d}$ is the supply voltage, $T_{c y c}$ is the global clock period, and E(transitions) is the expected value of the number of gate output transitions per global clock cycle [9], or equivalently the average number of gate output transitions per clock cycle. All of the parameters in (1) can be determined from technology or circuit layout information except E (transitions), which depends on the logic function being performed and the statistical properties of the primary inputs.

Eq. (1) is used by the power estimation techniques such as [4, 9] to relate switching activity to power dissipation.

2.2 Combinational Circuits

Average power can be estimated for combinational circuits by computing the average switching activity at every gate in the circuit.

It is assumed that we are given transition probabilities at each of the primary inputs to the circuit. That is, for every primary input the probability of the primary input staying at $0(0 \rightarrow 0)$, staying at $1(1 \rightarrow 1)$, making a $0 \rightarrow 1$ transition and making a $1 \rightarrow 0$ transition are given. Given these probabilities, the average switching activity at each gate in the circuit can be calculated.

A symbolic simulation method that performs this computation was given in [4]. Under the chosen gate delay model, the method first constructs a Boolean function representing the logical value at any gate output at each time point $\geq t$ based on the primary input variables $I 0$ applied at time 0 and It applied at time t. For instance, one may compute the functions $f_{i}(t+1)$ and $f_{i}(t+2)$ for a particular gate g_{i}. The Boolean conditions at the inputs that correspond to a $0 \rightarrow 1$ transition on g_{i} between times $t+1$ and $t+2$ are represented by the function $\overline{f_{i}(t+1)} \cdot f_{i}(t+2)$. The probability of a $0 \rightarrow 1$ transition occurring between time $t+1$ and $t+2$ given the transition probabilities at the primary inputs is the probability of the Boolean function $\overline{f_{i}(t+1)} \cdot f_{i}(t+2)$ evaluating to a 1. (This probability can be evaluated exactly using Binary Decision Diagrams [1] or approximately using Monte Carlo simulation.) For each gate, probabilities of transitions occurring at any time point can be evaluated efficiently, and these probabilities are summed over all the time points to obtain the average switching activity (at each gate).

Under the zero delay, unit delay, or a general delay model (where delays are obtained from library cells), the symbolic simulation method takes into account the correlation due to reconvergence of input signals and accurately measures switching activity.

The same computation can be performed more efficiently, although not exactly, using probabilistic simulation techniques such as [10] and [13] or Monte-Carlo simulation [2]. In the remainder of this paper, whenever we need to perform the above computation, we will refer to the symbolic simulation equations (which provide the exact solution). It should however be made clear that any other solution technique (probabilistic simulation, Monte-Carlo simulation, etc.) can be used instead.

3 The Exact Method

3.1 Modeling Correlation

To model the correlation between the two vectors in a randomly applied vector pair, we have to augment the combinational estimation method described in Section 2.2. This augmentation is summarized in Figure 3.

In Figure 3, we have a block corresponding to the symbolic simulation equations for the combinational logic of the general sequential circuit shown in Figure 1. The symbolic simulation equations have two sets of inputs, namely $\langle I 0, I t\rangle$ for the primary inputs and $\langle P S, N S\rangle$ for the present state lines. However, given $I 0$ and $P S, N S$ is uniquely determined by the functionality of the combinational logic. This is modeled by prepending the next state logic to the symbolic simulation equations.

The configuration of Figure 3 implies that the gate output switching activity can be determined given the vector pair $\langle I 0, I t\rangle$ for the primary inputs, but only $P S$ for the state lines. Therefore, to compute gate output transition probabilities, we require the transition probabilities for the primary input lines, and the static probabilities for the present state lines. This configuration was originally proposed in [4].

3.2 State Probability Computation

The static probabilities for the present state lines marked $P S$ in Figure 3 are spatially correlated. We therefore require knowledge of present state probabilities as opposed to present state line ($P S$) probabilities in order to exactly calculate the switching activity in the sequential machine. The state probabilities are dependent on the connectivity of the State Transition Graph (STG) of the circuit.

For each state $s_{i}, 1 \leq i \leq K$ in the STG, we associate a variable $\operatorname{prob}\left(s_{i}\right)$ corresponding to the steady-state probability of the machine being in state s_{i} at $t=\infty$. For each edge e in the STG, we have e.Current signifying the state that the edge fans out from, e.Next signifying the state that the edge fans out to, and e.Input signifying the input combination corresponding to the edge. Given static probabilities for the primary inputs to the machine, we can compute prob(Input), the probability of the combination Input occurring. ${ }^{1}$ We can compute prob(e.Input) using:

$$
\operatorname{prob}(e . I n p u t)=\operatorname{prob}(e . C u r r e n t) \times \operatorname{prob}(\text { Input })
$$

For each state s_{i} we can write an equation:

$$
\operatorname{prob}\left(s_{i}\right)=\sum_{\forall \in \text { such that e.Next }=s_{i}} \operatorname{prob}(\text { e.Input })
$$

Given K states, we obtain K equations out of which any one equation can be derived from the

[^0]remaining $K-1$ equations. We have a final equation:
$$
\sum_{i=1}^{K} \operatorname{prob}\left(s_{i}\right)=1
$$

This linear set of K equations can be solved to obtain the different $\operatorname{prob}\left(s_{i}\right)$'s.
This system of equations is known as the Chapman-Kolmogorov equations for a discrete-time discrete-transition Markov process. Indeed, if the Markov process satisfies the conditions that it has a finite number of states, its essential states form a single-chain and it contains no periodic-states, then the above system of equations will have a unique solution [12].

For example, for the State Transition Graph of Figure 2 we will obtain the following equations assuming a probability of 0.5 for the primary input being a 1 .

$$
\begin{aligned}
& \operatorname{prob}(\mathbf{R})=0.5 \times \operatorname{prob}(\mathbf{A}) \\
& \operatorname{prob}(\mathbf{A})=0.5 \times \operatorname{prob}(\mathbf{R})+0.5 \times \operatorname{prob}(\mathbf{B})+0.5 \times \operatorname{prob}(\mathbf{C}) \\
& \operatorname{prob}(\mathbf{B})=0.5 \times \operatorname{prob}(\mathbf{R})+0.5 \times \operatorname{prob}(\mathbf{A})
\end{aligned}
$$

The final equation is:

$$
\operatorname{prob}(\mathbf{R})+\operatorname{prob}(\mathbf{A})+\operatorname{prob}(\mathbf{B})+\operatorname{prob}(\mathbf{C})=1
$$

Solving this linear system of equations results in the state probabilities, $\operatorname{prob}(\mathbf{R})=\frac{1}{6}, \operatorname{prob}(\mathbf{A})=$ $\frac{1}{3}, \operatorname{prob}(\mathbf{B})=\frac{1}{4}$ and $\operatorname{prob}(\mathbf{C})=\frac{1}{4}$.

3.3 Power Estimation Given Exact State Probabilities

We now describe a power estimation method that utilizes the exact state probabilities obtained using the Chapman-Kolmogorov method. As described in Section 2.2, the symbolic equations express the exact switching conditions for each gate in the circuit under the unit or general delay models. Prepending the next state logic block as illustrated in Figure 3 accounts for the correlation between the present and next states. Finally, computing the exact state probabilities models the steady-state behavior of the circuit.

As described in Section 2.2, power estimation of a given combinational logic circuit can be carried out by creating a set of symbolic functions such that summing the signal probabilities of the functions corresponds to the average switching activity in the original combinational circuit. Some of the inputs to the created symbolic functions are the present state lines of the circuit and the others are primary input lines. Each binary combination of the present state lines is a state in the circuit and we have a number corresponding to the state probability for each state after solving the Chapman-Kolmogorov equations.

The signal probability calculation procedure has to appropriately weight these combinations according to the given probabilities. Suppose n is a disjoint cover of the function f, i.e.,

$$
\begin{equation*}
f=\bigvee_{m \in \operatorname{Disjoint}+\operatorname{Cover}(n)} C_{m} \tag{2}
\end{equation*}
$$

where the C_{m} 's are cubes of the disjoint cover. Each C_{m} is a function of the present state lines and primary inputs. We partition the inputs to C_{m} into two groups: the symbolic state support $S S_{m}$ which includes all states s_{i} that have set the appropriate state bits, and the primary input support I_{m} which includes the PI inputs of C_{m}. Hence $\mathrm{C}_{m}=S S_{m} I_{m}$. The signal probability of n is thus given by:

$$
\begin{equation*}
\operatorname{prob}(n)=\sum_{m \in \text { Disjoint_Cover }(n)} \operatorname{prob}\left(C_{m}\right) . \tag{3}
\end{equation*}
$$

Since the primary inputs are independent of the state that the machine is currently in and states of the FSM are distinct, we can write

$$
\begin{align*}
\operatorname{prob}\left(C_{m}\right) & =\operatorname{prob}\left(I_{m}\right) \operatorname{prob}\left(S S_{m}\right) \\
& =\operatorname{prob}\left(I_{m}\right) \sum_{s_{i} \in S S_{m}} \operatorname{prob}\left(s_{i}\right) . \tag{4}
\end{align*}
$$

From equations (3) and (4), we have:

$$
\begin{equation*}
\operatorname{prob}(n)=\sum_{m \in \text { Disjoint_Cover }(n)} \operatorname{prob}\left(I_{m}\right) \sum_{s_{i} \in S S_{m}} \operatorname{prob}\left(s_{i}\right) . \tag{5}
\end{equation*}
$$

As an example, consider the following disjoint cover of a function whose signal probability is to be computed.

$$
f=i_{1} \wedge p s_{1} \vee i_{1} \wedge \overline{p s_{1}} \wedge p s_{2}
$$

Assume that the probability of i_{1} being a 1 is 0.5 , and state probabilities are $\operatorname{prob}(00)=\frac{1}{6}, \operatorname{prob}(01)$ $=\frac{1}{3}, \operatorname{prob}(10)=\frac{1}{4}$ and $\operatorname{prob}(11)=\frac{1}{4}$. (The first bit corresponds to $p s_{1}$ and the second to $p s_{2}$.) The probability of the first cube is:

$$
\begin{aligned}
\operatorname{prob}\left(i_{1} \wedge p s_{1}\right) & =\operatorname{prob}\left(i_{1}\right) \times(\operatorname{prob}(10)+\operatorname{prob}(11)) \\
& =0.5 \times\left(\frac{1}{4}+\frac{1}{4}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

Similarly the probability of the second cube is:

$$
\begin{aligned}
\operatorname{prob}\left(i_{1} \wedge \overline{p s_{1}} \wedge p s_{2}\right) & =\operatorname{prob}\left(i_{1}\right) \times \operatorname{prob}(01) \\
& =0.5 \times \frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Finally we have:

$$
\operatorname{prob}(n)=\frac{1}{4}+\frac{1}{6}=\frac{5}{12}
$$

Note that equation (5) requires explicit enumeration of the states and is very costly. In [14], a method which employs a partially implicit enumeration of states using OBDDs is described. The estimation method still has average-case exponential complexity - the probability of each state (resp. groups of states) is computed, and the number of states (resp. such groups) can be exponential in the number of flip-flops in the circuit. However, for the circuits that this method is applicable to, the estimates provided by the method can serve as a basis for comparison among different approximation schemes.

4 Basis of Approximation Strategies

Consider a machine with two flip-flops whose states are $00,01,10$ and 11 have state probabilities $\operatorname{prob}(00)=\frac{1}{6}, \operatorname{prob}(01)=\frac{1}{3}, \operatorname{prob}(10)=\frac{1}{4}$ and $\operatorname{prob}(11)=\frac{1}{4}$. We can calculate the present state line probabilities as shown below, where $p s_{1}$ and $p s_{2}$ are the first and second present state lines.

$$
\begin{aligned}
& \operatorname{prob}\left(p s_{1}=0\right)=\operatorname{prob}(00)+\operatorname{prob}(01)=\frac{1}{6}+\frac{1}{3}=\frac{1}{2} \\
& \operatorname{prob}\left(p s_{1}=1\right)=\operatorname{prob}(10)+\operatorname{prob}(11)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& \operatorname{prob}\left(p s_{2}=0\right)=\operatorname{prob}(00)+\operatorname{prob}(10)=\frac{1}{6}+\frac{1}{4}=\frac{5}{12} \\
& \operatorname{prob}\left(p s_{2}=1\right)=\operatorname{prob}(01)+\operatorname{prob}(11)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}
\end{aligned}
$$

Note that because $p s_{1}$ and $p s_{2}$ are correlated, $\operatorname{prob}\left(p s_{1}=0\right) \times \operatorname{prob}\left(p s_{2}=0\right)=\frac{5}{24}$ is not equal to $\operatorname{prob}(00)=\frac{1}{6}$.

We carried out the following experiment on 52 sequential circuit benchmark examples for which the exact state probabilities could be calculated. These benchmarks included finite state machine controllers, datapaths ${ }^{2}$ as well as pipelines. First, the power dissipation of the circuit was calculated using the exact state probabilities as described in Section 3.3. Next, given the exact state probabilities, the line probabilities were determined as described in the previous paragraph. Using the topology of Figure 3 and the computed present state line probabilities for the $P S$ lines,

[^1]approximate power dissipations were calculated for each circuit. The average error ${ }^{3}$ in the power dissipation measures obtained using the line probability approximation over all the circuits was only 2.8%. The maximum error for any one example was 7.3%. Assuming uniform line probabilities of 0.5 as in [4] results in significant errors of over 40% for some examples.

The above experiment leads us to conclude that if accurate line probabilities can be determined then using line probabilities rather than state probabilities is a viable alternative. We only have to determine N numbers for a N flip-flop machine, one for each present state line, rather than 2^{N} numbers, one for each possible state.

4.1 Computing Present State Line Probabilities

In our approximation framework we directly determine line probabilities without recourse to State Transition Graph extraction. The approximation framework is based on solving a non-linear system of equations to compute the state line probabilities. This system of equations is given by the combinational logic implementing the next state function of the sequential circuit.

Consider the set of functions below corresponding to the next state lines.

$$
\begin{gathered}
n s_{1}=f_{1}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right) \\
n s_{2}=f_{2}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right) \\
\cdots \\
n s_{N}=f_{N}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)
\end{gathered}
$$

We can write:

$$
\begin{gathered}
\operatorname{prob}\left(n s_{1}\right)=\operatorname{prob}\left(f_{1}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right) \\
\operatorname{prob}\left(n s_{2}\right)=\operatorname{prob}\left(f_{2}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right) \\
\cdots \\
\operatorname{prob}\left(n s_{N}\right)=\operatorname{prob}\left(f_{N}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right)
\end{gathered}
$$

where $\operatorname{prob}\left(n s_{i}\right)$ corresponds to the probability that $n s_{i}$ is a 1 , and $\operatorname{prob}\left(f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}\right.\right.$, $\left.p s_{1}, p s_{2}, \cdots, p s_{N}\right)$) corresponds to the probability that $f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)$ is a 1 , which is of course dependent on the $\operatorname{prob}\left(p s_{j}\right)$ and the $\operatorname{prob}\left(i_{k}\right)$.

[^2]We are interested in the steady state probabilities of the present and next state lines implying that:

$$
\operatorname{prob}\left(p s_{i}\right)=\operatorname{prob}\left(n s_{i}\right)=p_{i} \quad 1 \leq i \leq N
$$

A similar relationship was used in the Chapman-Kolmogorov equations (cf. Section 3).
The set of equations given the values of $\operatorname{prob}\left(i_{k}\right)$ becomes:

$$
\begin{gather*}
y_{1}=p_{1}-g_{1}\left(p_{1}, p_{2}, \cdots, p_{N}\right)=0 \\
y_{2}=p_{2}-g_{2}\left(p_{1}, p_{2}, \cdots, p_{N}\right)=0 \\
\cdots \tag{6}\\
y_{N}=p_{N}-g_{N}\left(p_{1}, p_{2}, \cdots, p_{N}\right)=0
\end{gather*}
$$

where the g_{i} 's are non-linear functions of the p_{i} 's. We will denote the above equations as $Y(P)=0$ or as $P=G(P)$. In general the Boolean function f_{i} can be written as a list of minterms over the i_{k} and $p s_{j}$ and the corresponding g_{i} function can be easily derived. For example, given

$$
f_{1}=i_{1} \wedge p s_{1} \wedge \overline{p s_{2}} \vee i_{1} \wedge \overline{p s_{1}} \wedge p s_{2}
$$

and $\operatorname{prob}\left(i_{1}\right)=0.5$, we have

$$
\begin{equation*}
g_{1}=0.5 \cdot\left(p_{1} \cdot\left(1-p_{2}\right)+\left(1-p_{1}\right) \cdot p_{2}\right) \tag{7}
\end{equation*}
$$

We can solve the equation set $Y(P)=0$ or find a fixed point of $P=G(P)$ to obtain the present state line probabilities. We describe the use of the Picard-Peano method to obtain a fixed point of $P=G(P)$, and the use of the Newton-Raphson method to solve $Y(P)=0$ in Section 7. The uniqueness or the existence of the solution is not guaranteed for an arbitrary system of non-linear equations. However, since in our application we have a correspondence between the non-linear system of equations and the State Transition Graph of the sequential circuit, there will exist at least one solution to the non-linear system. Further, convergence is guaranteed under mild assumptions for our application.

4.2 Inaccuracy in Formulation

The above formulation does not capture the correlation between the state line probabilities. Let us consider the example State Transition Graph of Figure 2. The equations for the next state logic are:

$$
n s_{1}=i \cdot p s_{1} \cdot p s_{2}+\bar{i} \cdot \overline{p s s_{1}}+\bar{i} \cdot p s_{1} \overline{p s_{2}}
$$

$$
n s_{2}=p s_{1}+i \cdot \overline{p s_{1}} \cdot \overline{p s_{2}}
$$

Assuming the probability of input i being a 1 is 0.5 we obtain the nonlinear equations (after simplification):

$$
\begin{gathered}
n_{1}=0.5-0.5 p_{1}-0.5 p_{2} \\
n_{2}=p_{1}+0.5\left(1-p_{1}\right)\left(1-p_{2}\right)
\end{gathered}
$$

Setting $n_{1}=p_{1}$ and $n_{2}=p_{2}$ and solving the above equations gives us $p_{1}=0.191$ and $p_{2}=0.424$. However, if we obtain the exact line probabilities using the exact state probabilities as shown in the first paragraph of Section 4, we find that these approximate line probabilities are in error.

The above example is small (4 states) and contrived, and significant errors may be obtained for such examples. The state line probabilities obtained using the approximation method of this section are on average close to the exact line probabilities, and they typically result in switching activity estimates that are close to the exact method for most real-life examples (cf. Section 8). Nevertheless, it is worthwhile to explore ways to increasing the accuracy. We describe two such mechanisms in Section 5 and Section 6.

5 Improving Accuracy using k-Unrolled Networks

5.1 State Line Probability Computation

In the formulation of Section 4, the non-linear equations correspond to a single stage of next state logic. Consider the unrolled network of Figure 4(a). The next state logic has been unrolled k times. As illustrated in Figure $4(\mathrm{~b})$, we can construct a set of non-linear equations corresponding to this k-unrolled network, which will partially take into account the correlation between the state lines, when computing the state line probabilities.

The exact present state line probabilities can be obtained by unrolling the next state logic ∞ times (Figure $4(\mathrm{a})$). This is however impractical. We thus approximate the signal probabilities by unrolling the next state logic k times where k is a user defined parameter.

The equations corresponding to $k=2$ will be:

$$
\begin{aligned}
n s_{1}{ }^{1} & =f_{1}\left(i_{1}{ }^{1}, \cdot \cdot, i_{M}{ }^{1}, p s_{1}{ }^{1}, \cdot \cdot p s_{N}{ }^{1}\right) \\
& =f_{1}\left(i_{1}{ }^{1}, \cdot \cdot, i_{M}{ }^{1}, n s_{1}{ }^{0}, \cdot \cdot, n s_{N}{ }^{0}\right) \\
& =f_{1}\left(i_{1}{ }^{1}, \cdot \cdot, i_{M}{ }^{1}, f_{1}\left(i_{1}{ }^{0}, \cdot \cdot, i_{M}{ }^{0}, p s_{1}{ }^{0}, \cdot \cdot p s_{N}{ }^{0}\right), \cdot \cdot, f_{N}\left(i_{1}{ }^{0}, \cdot \cdot, i_{M}^{0}, p s_{1}^{0}, \cdot \cdot, p s_{N}{ }^{0}\right)\right) \\
& \cdots \\
n s_{N}{ }^{1} & =f_{N}\left(i_{1}{ }^{1}, \cdot \cdot, i_{M^{1}}, f_{1}\left(i_{1}{ }^{0}, \cdot \cdot, i_{M}{ }^{0}, p s_{1}{ }^{0}, \cdot \cdot, p s_{N}{ }^{0}\right), \cdot \cdot, f_{N}\left(i_{1}{ }^{0}, \cdot \cdot, i_{M}{ }^{0}, p s_{1}{ }^{0}, \cdot \cdot, p s_{N}{ }^{0}\right)\right)
\end{aligned}
$$

The number of equations is the same. The number of primary input variables has increased, but the probabilities for these variables are known.

Figure 5(a) shows the method used to calculate signal probability of the internal nodes of the FSM using the k-unrolled network with signal probability feedback.

5.2 Switching Activity Computation

The topology of Figure 3 was proposed as a means of taking into account the correlation between the applied input vector pair when computing the transition probabilities. This method takes one cycle of correlation into account.

It is possible to take multiple cycles of correlation into account by prepending the symbolic simulation equations with the k-unrolled network. This is illustrated in Figure 5(b). Instead of connecting the next state logic network to the symbolic simulation equations, we unroll the next state logic network k times and connect the next state lines of the $k^{\text {th }}$ stage of the unrolled network, the next state lines of the $k-1^{\text {th }}$ stage, and the primary input of the $k-1^{\text {th }}$ stage to the symbolic simulation equations.

6 Improving Accuracy Using m-Expanded Networks

6.1 State Line Probability Computation

We describe a different method to improve the accuracy of the basic approximation strategy outlined in Section 4. This method models the correlation between m-tuples of present state lines. The method is pictorially illustrated in Figure 6 for $m=2$.

The number of equations in the case of $m=2$ is $\frac{3 N}{2}$. We have:

$$
\begin{aligned}
n s_{i, i+1}[11] & =n s_{i} \wedge n s_{i+1} \\
n s_{i, i+1}[10] & =n s_{i} \wedge \overline{f_{i+1}} \\
n s_{i, i+1}[01] & =\overline{n s_{i+1}}
\end{aligned}=f_{i} \wedge \overline{f_{i+1}}, \overline{s_{i+1}}=\overline{f_{i}} \wedge f_{i+1} .
$$

We have to solve for $\operatorname{prob}\left(n s_{i, i+1}[11]\right), \operatorname{prob}\left(n s_{i, i+1}[10]\right)$, and $\operatorname{prob}\left(n s_{i, i+1}[01]\right)$ (rather than $\operatorname{prob}\left(n s_{i}\right)$ and $\operatorname{prob}\left(n s_{i+1}\right)$ as in the case of $\left.m=1\right)$. We use:

$$
\begin{aligned}
& \operatorname{prob}\left(p s_{i} \wedge p s_{i+1}\right)=\operatorname{prob}\left(n s_{i, i+1}[11]\right) \\
& \operatorname{prob}\left(p s_{i} \wedge \overline{p s_{i+1}}\right)=\operatorname{prob}\left(n s_{i, i+1}[10]\right) \\
& \operatorname{prob}\left(\overline{p s_{i}} \wedge p s_{i+1}\right)=\operatorname{prob}\left(n s_{i, i+1}[01]\right)
\end{aligned}
$$

in the evaluation of the $\operatorname{prob}\left(f_{i}\right)$'s.
The signal probability evaluation methods of Section 7.3 can be easily augmented to use the above probabilities. In the case of the OBDD-based method placing each $p s_{i}$ and $p s_{i+1}$ pair adjacent in the chosen ordering allows signal probability computation by a linear-time traversal.

The number of equations for $m=3$ is $\frac{7 N}{3}$. When $m=N$, the number of equations will become 2^{N} and the method will degenerate to the Chapman-Kolmogorov method.

The choice of the m-tuples of present and next state lines is made by grouping next state lines that have the maximal amount of shared logic into each m-tuple. Note that the accuracy of line probability estimation will depend on the choice of the m-tuples.

6.2 Switching Activity Computation

To estimate switching activity given m-tuple present state line probabilities, the topology of Figure 3 is used as before. The difference is that for $m=2$ the $\operatorname{prob}\left(p s_{i} \wedge p s_{i+1}\right), \operatorname{prob}\left(p s_{i} \wedge \overline{p s_{i+1}}\right)$ and $\operatorname{prob}\left(\overline{p s_{i}} \wedge p s_{i+1}\right)$ values are used to calculate the switching activities.

7 Solving the Non-Linear System of Equations

We describe two methods to solve the non-linear system of equations obtained using k-unrolled or m-expanded networks. We will assume that the non-linear system can be represented as $P=G(P)$ or as $Y(P)=0$ as described in Section 4.

7.1 Picard-Peano Method

The Picard-Peano method is used to find a fixed point of the $P=G(P)$ system. This system is reproduced below.

$$
\begin{gathered}
p_{1}=g_{1}\left(p_{1}, p_{2}, \cdots, p_{N}\right) \\
p_{2}=g_{2}\left(p_{1}, p_{2}, \cdots, p_{N}\right) \\
\cdots \\
p_{N}=g_{N}\left(p_{1}, p_{2}, \cdots, p_{N}\right)
\end{gathered}
$$

We can start with an initial guess P^{0}, and iteratively compute $P^{k+1}=G\left(P^{k}\right)$ until convergence is reached. Convergence is deemed to be achieved if $P^{k+1}-P^{k}$ is sufficiently small. The above iteration is known as the Picard-Peano iteration for finding a fixed-point of a system of non-linear equations.

We are only given the Boolean functions $f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)$. There exist several methods to compute $g_{i}\left(p_{1}, p_{2}, \cdots, p_{N}\right)=\operatorname{prob}\left(f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right)$ for given $p_{j}=\operatorname{prob}\left(p s_{j}\right)$'s and $\operatorname{prob}\left(i_{k}\right)$'s. We describe these methods in Section 7.3.

Theorem 7.1 [6] If G is contractive, i.e., $\left|\frac{\partial g_{i}}{\partial p_{j}}\right|<1$, for all i, j, then the Picard-Peano iteration method converges at least linearly to a unique solution P^{*}.

Theorem 7.2 If each next state line is a non-trivial logic function of at least two present state lines, then g_{i} is contractive on the domain $(0,1)$.

Proof. Choose any p_{j}. In order to perform the evaluation of $\frac{\partial g_{i}}{\partial p_{j}}$ we cofactor f_{i} with respect to $p s_{j}$.

$$
f_{i}=p s_{j} \wedge f_{i p s_{j}} \vee \overline{p s_{j}} \wedge f_{i} \overline{p s_{j}}
$$

$f_{i p s_{j}}$ and $f_{i \overline{p s_{j}}}$ are the cofactors of f with respect to $p s_{j}$, and are Boolean functions independent of $p s_{j}$. We can write:

$$
g_{i}=p_{j} \cdot \operatorname{prob}\left(f_{i p s_{j}}\right)+\left(1-p_{j}\right) \cdot \operatorname{prob}\left(f_{i \overline{p s_{j}}}\right)
$$

Differentiating with respect to p_{j} gives:

$$
\frac{\partial g_{i}}{\partial p_{j}}=\operatorname{prob}\left(f_{i p s_{j}}\right)-\operatorname{prob}\left(f_{i} \overline{p s_{j}}\right)
$$

Since we are considering the domain $(0,1)$, which is not inclusive of 0 and 1 , and the $n s_{i}$'s are non-trivial Boolean functions of at least two present state lines for every i, this partial differential is strictly less than one, because we are guaranteed that $\operatorname{prob}\left(f_{i p s_{j}}\right)>0$ and $\operatorname{prob}\left(f_{i} \overline{p s_{j}}\right)>0$.

From Theorems 7.1 and 7.2 , we can see that the iterated signal probability calculation is guaranteed to converge to a solution, provided some mild assumptions are made with respect to the functionality of the next state logic.

7.2 Newton-Raphson Method

The Newton-Raphson method can be used to solve a non-linear system of equations given an initial guess at the solution. The advantage of the Newton-Raphson method is the quadratic rate of convergence. However, each iteration is more computationally expensive than the Picard-Peano method.

Given $Y(P)=0$ and a column matrix corresponding to an initial guess P^{0}, we can write the $k^{\text {th }}$ Newton iteration as the linear system solve shown below.

$$
\begin{equation*}
J\left(P^{k}\right) \times P^{k+1}=J\left(P^{k}\right) \times P^{k}-Y\left(P^{k}\right) \tag{8}
\end{equation*}
$$

where J is the $N \times N$ Jacobian matrix of the system of equations. Each entry in J corresponds to a $\frac{\partial y_{i}}{\partial p_{j}}$ evaluated at P^{k}. The P^{k+1} correspond to the variables in the linearized system and after solving the system P^{k+1} is used as the next guess. Convergence is deemed to be achieved if each entry in $Y\left(P^{k}\right)$ is sufficiently small.

We use the methods of Section 7.3 to evaluate:

$$
g_{i}\left(p_{1}, p_{2}, \cdots, p_{N}\right)=\operatorname{prob}\left(f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right)
$$

for given $p_{j}=\operatorname{prob}\left(p s_{j}\right)$'s and $\operatorname{prob}\left(i_{k}\right)$'s. The $Y\left(P^{k}\right)$ of Eqns. 8 can easily be evaluated using the $p_{j}{ }^{k}$ values and using Eqns. 6.

We need to also evaluate $J\left(P^{k}\right)$. As mentioned earlier, each entry of J corresponds to $\frac{\partial y_{i}}{\partial p_{j}}$ evaluated at P^{k}. If $i \neq j$, then $\frac{\partial y_{i}}{\partial p_{j}}$ equals $-\frac{\partial g_{i}}{\partial p_{j}}$, and $\frac{\partial y_{i}}{\partial p_{i}}$ equals equals $1-\frac{\partial g_{i}}{\partial p_{i}}$.

In order to perform the evaluation of $\frac{\partial g_{i}}{\partial p_{j}}$ we use the method in the proof of Theorem 7.2.

$$
\frac{\partial g_{i}}{\partial p_{j}}=\operatorname{prob}\left(f_{i p s_{j}}\right)-\operatorname{prob}\left(f_{i} \overline{p s_{j}}\right)
$$

We can evaluate $\operatorname{prob}\left(f_{i p s_{j}}\right)$ and $\operatorname{prob}\left(f_{i \overline{p s_{j}}}\right)$ for a given P^{k} using the methods of Section 7.3.

As an example consider:

$$
\begin{gathered}
f_{1}=i_{1} \wedge p s_{1} \wedge \overline{p s_{2}} \vee i_{1} \wedge \overline{p s_{1}} \wedge p s_{2} \\
\frac{\partial g_{1}}{\partial p_{1}}=\operatorname{prob}\left(i_{1} \wedge \overline{p s_{2}}\right)-\operatorname{prob}\left(i_{1} \wedge p s_{2}\right) \\
\frac{\partial g_{1}}{\partial p_{1}}=0.5 \cdot\left(1-p_{2}\right)-0.5 \cdot p_{2}=0.5-p_{2}
\end{gathered}
$$

which is exactly what we would have obtained had we differentiated Eqn. 7 with respect to p_{1}.

Theorem 7.3 [11] The Newton iterates:

$$
P^{k+1}=P^{k}-J\left(P^{k}\right)^{-1} Y\left(P^{k}\right), k=0,1, \ldots
$$

are well-defined and converge to a solution P^{*} of $Y(P)=0$ if the following conditions are satisfied:

1. Y is F-differentiable.
2.

$$
\|J(A)-J(B)\| \leq \gamma\|A-B\|, \forall A, B \in D_{0}
$$

where D_{0} is the domain $0 \leq p_{i} \leq 1, \forall i$.
3. There exists $P^{0} \in D_{0}$ such that $\left\|J\left(P^{0}\right)^{-1}\right\| \leq \beta, \eta \geq\left\|J\left(P^{0}\right)^{-1} Y\left(P^{0}\right)\right\|$ and $\alpha=\beta \gamma \eta \leq \frac{1}{2}$.

Condition 1 of the theorem is satisfied in our application because the y_{i} functions are continuous and differentiable. We need to prove that the parameter γ is finite to show that Condition 2 is satisfied.

Theorem 7.4 If Y is given by Eqn. 6, then $\gamma \leq 2$.

Proof. In order to show that:

$$
\|J(A)-J(B)\| \leq \gamma\|A-B\|, \forall A, B \in D_{0}
$$

is satisfied for $\gamma=2$, we will show that the derivative of each entry of J is less than or equal to 2 .
Recall that J is a matrix with each entry corresponding to $\frac{\partial y_{i}}{\partial p_{j}}$. Using the equations provided in the proof of Theorem 7.2 we can write:

$$
\frac{\partial y_{i}}{\partial p_{j}}=\operatorname{prob}\left(f_{i} \overline{p s_{j}}\right)-\operatorname{prob}\left(f_{i p s_{j}}\right) \quad i \neq j
$$

Differentiating with respect to p_{k} we have:

$$
\frac{\partial^{2} y_{i}}{\partial p_{j} \partial p_{k}}=\operatorname{prob}\left(f_{i} \overline{p s_{j} p s_{k}}\right)-\operatorname{prob}\left(f_{i} \overline{p s_{j}} \overline{p s_{k}}\right)-\operatorname{prob}\left(f_{i p s_{j} p s_{k}}\right)+\operatorname{prob}\left(f_{i p s_{j} \overline{p s_{k}}}\right)
$$

Given that the probabilities are between 0 and 1, we have:

$$
\left|\frac{\partial^{2} y_{i}}{\partial p_{j} \partial p_{k}}\right| \leq 2
$$

Condition 3 in Theorem 7.3 is a constraint on the initial guess for the Newton iteration, and this initial guess can be picked appropriately, provided γ is finite. Essentially, we have to choose P^{0} such that $\left\|Y\left(P^{0}\right)\right\|$ is small.

7.3 Signal Probability Evaluation

In the non-linear equation solver, regardless of whether we are using the Picard-Peano method or the Newton-Raphson method, we have to repeatedly evaluate the signal probability of a Boolean function given input probabilities, i.e., compute $\operatorname{prob}\left(f_{i}\left(i_{1}, i_{2}, \cdots, i_{M}, p s_{1}, p s_{2}, \cdots, p s_{N}\right)\right)$ given the $\operatorname{prob}\left(i_{k}\right)$'s and the $\operatorname{prob}\left(p s_{j}\right)$'s.

There exist several methods to evaluate signal probability. An exact method corresponds to using Ordered Binary Decision Diagrams (OBDD's) [1]. If an OBDD can be created for f_{i}, then $\operatorname{prob}\left(f_{i}\right)$ can be evaluated in linear time in the size of the OBDD for f_{i}. OBDD's can be cofactored in linear time, allowing for the efficient evaluation of the Jacobian entries.

An alternative is to use Monte Carlo simulation. Approximate signal probabilities can be computed using random logic simulation on the multilevel network corresponding to f_{i}. Our experience has been that the signal probabilities quickly converge to the exact results obtained using OBDD's. In order to evaluate a particular Jacobian entry, the appropriate input to f_{i} has to be set to 0 (1) and random simulation is performed on the remaining inputs.

8 Experimental Results

In this section we present experimental results that illustrate the following points:

- Exact and explicit computation of state probabilities is possible for controller type circuits. However, it is not viable for datapath circuits.
- Purely combinational logic estimates result in significant inaccuracies.
- Assuming uniform probabilities for the present state line probabilities and state probabilities as in [4] can result in significant inaccuracies in power estimates.
- Computing the present state line probabilities using the technique presented in the previous sections results in 1) accurate switching activity estimates for all internal nodes in the network implementing the sequential machine; 2) accurate, robust and computationally efficient power estimate for the sequential machine.

In Table 1, results are presented for several circuits. In the table, combinational corresponds to the purely combinational estimation method of [4] and uniform-prob corresponds to the sequential estimation method of [4] that assumes uniform state probabilities. The column line-prob corresponds to the technique of Section 4 and using the Newton-Raphson method with a convergence criterion of 0.0001% to solve the equations. These equations correspond to $k=0$ or $m=1$. Finally, state-prob corresponds to the exact state probability calculation method of Section 3. The zero delay model was assumed, however, any other delay model could have been used instead.

The first set of circuits corresponds to finite state machine controllers. These circuits typically have the characteristic that the state probabilities are highly non-uniform. Restricting oneself to combinational power dissipation (combinational) or assuming uniform state probabilities (uniform-prob) results in significant errors. However, the line probability method of Section 4 produces highly accurate estimates when compared to exact state probability calculation.

The second set of circuits corresponds to datapath circuits, such as counters and accumulators. The exact state probability evaluation method requires huge amounts of CPU time for even the medium-sized circuits, and cannot be applied to the large circuits. For all the circuits that the exact method is viable for, our line-prob method produces identical estimates. The uniformprob method does better for the datapath circuits - in the case of counters for instance, it can be shown that the state probabilities are all uniform, and therefore the uniform-prob method will produce the right estimates. Of course, this assumption is not always valid.

The third set of circuits corresponds to pipelined adders and a pipelined multiplier. For pipelined circuits, exact power estimation is possible without resort to Chapman-Kolmogorov equation solving [8]. The fourth set corresponds to mixed datapath/control circuits from the ISCAS-89 benchmark set. Exact state probability evaluation is not possible for these circuits.

The CPU times in the tables correspond to seconds (s) or minutes (m) on a SUN-SPARC-2. The CPU times correspond to times required for symbolic simulation to estimate combinational

Circuit Name	\#lit	\#ff	Combinational			Uniform Prob.			Line Prob.			State Prob.	
			power	err	cpu	power	err	cpu	power	err	cpu	power	cpu
cse	132	4	610.0	58.7	1s	578.1	50.3	7 s	380.3	1.0	9s	384.4	11s
dk16	180	5	1077.5	3.1	1s	1097.2	5.0	10s	1045.0	0.0	13s	1044.8	15s
dfile	119	5	923.2	32.5	1s	701.5	0.6	7 s	701.4	0.6	8 s	696.8	10s
keyb	169	5	749.8	43.3	1s	724.9	38.6	12s	517.6	1.0	14 s	523.0	15s
mod12	25	4	245.2	21.7	0 s	195.9	2.7	1 s	199.1	1.1	1s	201.4	1 s
planet	327	6	1640.6	2.5	2 s	1709.4	1.5	17s	1685.9	0.1	24 s	1683.9	28s
sand	336	5	1446.0	33.1	2 s	1165.5	7.2	24s	1078.2	0.7	27 s	1086.4	34s
sreg	9	3	127.5	1.4	0 s	129.4	0.0	0s	129.4	0.0	0 s	129.4	1 s
styr	313	5	1394.8	45.3	2 s	1208.2	25.8	22s	996.9	3.8	28 s	959.9	30s
tbk	478	5	1958.1	24.1	4s	1903.6	20.7	48s	1538.2	2.4	52 s	1577.0	71 s
accum4	45	4	360.9	3.5	0 s	374.3	0.0	2 s	374.3	0.0	2 s	374.3	5 s
accum8	89	8	720.6	4.2	1 s	752.6	0.0	7 s	752.6	0.0	8 s	752.6	875s
accum16	245	16	1521.2	-	2 s	1596.3	-	234s	1596.3	-	239s	unable	
count4	19	4	256.2	20.1	0 s	213.3	0.0	1s	213.3	0.0	1s	213.3	2 s
count7	35	7	474.2	12.2	0 s	422.6	0.0	2 s	422.6	0.0	3 s	422.6	5 s
count8	40	8	560.1	10.2	0 s	507.9	0.0	3s	507.9	0.0	4 s	507.9	8 s
cbp32.4	489	223	8719.1	12.2	15s	8731.9	12.3	45s	7745.4	0.3	119s	7769.1	84s
add16	214	98	3772.3	5.1	3 s	3780.5	5.4	13s	3568.0	0.5	22 s	3586.5	23 s
mult8	176	87	5985.6	22.8	12s	5962.6	22.4	82s	4866.9	0.1	110s	4871.1	344s
s953	418	29	762.4	76.8	1 s	672.7	56.0	10s	438.7	1.7	12s	431.1	15s
s1196	529	18	2557.6	-	4 s	2538.4	-	484s	2293.8	-	488s	unable	
s1238	508	18	2709.4	-	4 s	2688.3	-	156s	2439.2	-	151s	unable	
s1423	657	74	6017.1	-	251s	4734.2	-	271s	7087.1	-	289s	unable	
s5378	4212	164	12457.4	-	74s	12415.1	-	455s	6496.0	-	478 s	unable	
s13207	11241	669	37842.1	-	5 m	27186.4	-	11m	10572.7	-	338 m	unable	
s15850	13659	597	40016.2	-	8 m	23850.7	-	14 m	10534.1	-	167 m	unable	
s35932	28269	1728	122131.2	-	20m	118475.3	-	36 m	62292.0	-	152m	unable	
s38584	32910	1452	112705.6	-	24 m	85842.1	-	44 m	63995.1	-	922m	unable	

Table 1: Comparison of sequential power estimation methods

Circuit Name	Combinational err	Uniform Prob. err	Line Prob. err
cse	0.427	0.427	0.00788
dk16	0.0782	0.0782	0.0125
dfile	0.075	0.075	0.047
keyb	0.414	0.414	0.0133
mod12	0	0	0.03
planet	0.031	0.031	0.09
sand	0.12	0.12	0.044
sreg	0	0	0
styr	0.3138	0.3138	0.0357
tbk	0.2614	0.2614	0.026
accum4	0	0	0
accum8	0	0	0
accum16	0	0	0
count4	0	0	0
count7	0	0	0
count8	0	0	0
cbp32.4	-	-	-
add16	-	-	-
mult8	-	-	-
s953	-	-	-
s1196	-	-	-
s1238	-	-	-

Table 2: Absolute errors in present state line probabilities averaged over all present state lines activity plus the time required for the calculation of state/line probabilities. For all the circuits BDDs were used to obtain the line probabilities. However, Monte-Carlo simulation was used for combinational activity estimation for the large ISCAS- 89 circuits.

In Table 2, present state line probability estimates for the benchmark circuits are presented. The error value provided in each column shows the absolute error (i.e., absolute value of the difference between exact and a pproximate values) of the signal probabilities averaged over all present state lines in the circuit. The exact values were calculated by the method described in Section 3. (We could not generate the exact values for circuits in Groups 3 and 4 as the size of ChapmanKolmogorov system of equations becomes too large.) It is evident from these results that the error averaged over all benchmark circuits is well below 0.05 (see the line-prob column entries which correspond to the method described in Section 4). Note that this error is due to ignoring correlation as exemplified in Section 4.2, and not due to convergence error of the Newton-Raphson method. The convergence criterion for line probabilities was set to 0.0001% to generate these results.

We present the switching activity errors for the benchmark circuits in Table 3. Again, the error value provided in each column represents the absolute error averaged over all internal nodes in the circuit. It can be seen that this error is quite small. These two tables demonstrate that the approximate procedure provided in Section 4 leads to very accurate estimates for both the present state line probabilities and for the switching activity values for all circuit lines.

Next, we present results comparing the Picard-Peano and Newton-Raphson methods to solve the non-linear equations of Section 4. These results are summarized in Table 4. The number of iterations required for the Picard-Peano and Newton-Raphson methods are given in Table 4 under the appropriate columns, as are the CPU times per iteration and the total CPU time. NewtonRaphson typically takes fewer iterations, but each iteration requires the evaluation of the Jacobian and is more expensive than the Picard iteration. The results obtained by the two methods are identical, since the convergence criterion used was the same.

To generate the results in Table 4, the convergence criterion allowed a maximum error of 1% in the line probabilities. In this case, the Picard-Peano method outperforms the Newton-Raphson method for virtually all the examples. If the convergence criterion is tightened, e.g., to allow for a maximum error of $.01 \%$, the Picard-Peano method requires substantially more iterations than the Newton-Raphson and in several examples, the Newton-Raphson method outperforms the PicardPeano method. However, since the error due to ignoring correlation (cf. Section 4.2) can be more than 1%, in practice it does not make sense to tighten the convergence criterion beyond a 1% allowed error.

In some pathological examples, where the conditions of Theorem 7.1 are not satisfied, the Picard-Peano method may exhibit oscillatory behavior, and will not converge. In these cases, the

Circuit Name	Combinational err	Uniform Prob. err	Line Prob. err
cse	0.402	0.053	0.003
dk16	0.354	0.020	0.010
dfile	0.268	0.019	0.015
keyb	0.363	0.067	0.009
$\bmod 12$	0.387	0.149	0.156
planet	0.375	0.034	0.034
sand	0.400	0.015	0.010
sreg	0	0	0
styr	0.415	0.058	0.022
tbk	0.423	0.020	0.008
accum4	0.084	0	0
accum8	0.086	0	0
accum16	0.096	0	0
count4	0.169	0	0
count 7	0.189	0	0
count8	0.192	0	0
cbp32.4	-	-	-
add16	-	-	-
mult8	-	-	-
s953	-	-	-
s1196	-	-	-
s1238	-	-	-

Table 3: Absolute errors in switching activity averaged over all circuit lines
strategy we adopt is to use Picard-Peano for several iterations, and if oscillation is detected, the Newton-Raphson method is applied. The Newton-Raphson method does not require the domain to be contractive, however, the initial guess has to be "close" to the solution P^{*} in a manner quantified by Theorem 7.3.

Circuit Name	Picard-Peano			Newton-Raphson		
	\#iter	cpu/iter	total cpu	\#iter	cpu/iter	total cpu
cse	5	0.1	0.5	3	1	3
dk16	4	0.18	0.7	3	1	3
dfile	5	0.12	0.6	2	1.5	3
keyb	10	0.07	0.7	6	0.33	2
$\bmod 12$	3	0.03	0.1	2	0.1	0.2
planet	11	0.13	1.4	3	2.33	7
sand	6	0.22	1.3	3	1	3
sreg	1	0.1	0.1	1	0.1	0.1
styr	7	0.2	1.4	3	2	6
tbk	4	0.5	2.0	3	1.33	4
accum4	1	0.1	0.1	1	0.1	0.1
accum8	1	0.3	0.3	1	1	1
accum16	1	1.0	1.0	1	6	6
count4	1	0.1	0.1	1	0.1	0.1
count7	1	0.2	0.2	1	1	1
count8	1	0.2	0.2	1	1	1
cbp32.4	3	0.8	2.4	4	18.5	74
add16	3	0.3	0.9	3	3	9
mult8	2	3.25	6.5	4	9.25	37
s953	30	0.04	1.1	4	0.5	2
s 1196	2	1.1	2.2	2	2	4
s1238	2	1.15	2.3	2	2.5	5

Table 4: Comparison of Picard-Peano and Newton-Raphson
In Table 5, we present results that indicate the improvement in accuracy in power estimation when k-unrolled or m-expanded networks are used. Results are presented for the finite state machine

Circuit Name	Initial Error	k-Unrolled Error				m-Expanded Error			
		$k=1$		$k=2$		$m=2$		$m=4$	
		err	cpu	err	cpu	err	cpu	err	cpu
cse	1.06	0.33	18	0.02	51	0.42	10	0.00	10
dfile	0.67	0.20	16	0.20	29	0.23	9	0.17	10
keyb	1.02	0.02	44	0.04	53	1.01	14	0.32	14
mod12	1.13	0.85	2	0.30	3	1.13	1	0.00	2
planet	0.11	0.15	40	1.72	45	0.10	25	0.08	25
sand	0.76	0.61	64	0.29	109	0.64	28	0.43	30
styr	3.85	0.16	67	0.41	113	0.58	29	0.52	29
tbk	2.46	1.52	207	0.12	597	2.17	58	0.12	59

Table 5: Results of power estimation based on k-unrolled and m-expanded networks

Circuit Name	average \% error					
	$k=0$	$k=1$	$k=2$	$m=1$	$m=2$	$m=4$
cse	6.79	2.26	0.57	6.79	3.40	0.00
dfile	14.05	5.37	3.10	14.05	4.82	3.56
keyb	7.18	1.68	0.70	7.18	7.09	2.25
mod12	10.24	6.36	5.00	10.24	10.05	0.00
planet	43.08	30.22	28.97	43.08	41.26	35.22
sand	16.65	12.20	11.78	16.65	14.02	9.42
styr	43.51	12.99	6.31	43.51	6.55	5.97
tbk	18.04	4.48	2.95	18.04	15.91	1.88

Table 6: Percentage error in switching activity estimates averaged over all nodes in the circuit
circuits of Table 1 for $0 \leq k \leq 2$ and $1 \leq m \leq 4$. ${ }^{4}$ The percentage differences in power from the exact power estimate are given. In general, if $k \rightarrow \infty$, the error will reduce to 0%, however, increasing k when k is small is not guaranteed to reduce the error in total power estimates (e.g.,

[^3]consider styr). This phenomenon can be explained as follows. The total power estimate is obtained by summing power consumptions of all nodes in the circuit. The individual power estimates may be under- or over-estimated, yet when they are added together, the overall error may become small due to error cancelation. Increasing k improves the accuracy of power estimates for individual nodes (see Table 6), but does not necessarily improve the accuracy of power estimate for the circuit due to the unpredictability of the error cancelation during the summing step. The m-expansionbased method behaves more predictably for this set of examples, however, again no guarantees can be made regarding the improvement in accuracy (of total power estimates) on increasing m, except that when m is set to the number of flip-flops in the machine, the method produces the Chapman-Kolmogorov equations, and therefore the exact state probabilities are obtained. The Newton-Raphson method with a convergence criterion of 0.0001% was used to obtain the line probabilities in Tables 5 and 6 .

The CPU times for power estimation are in seconds on a SUN SPARC-2. These times can be compared with those listed in Table 1 under the "Line Prob." column as those times correspond to $k=0$ and $m=1$. Based on these results, we conclude that $k=1$ and $m=2$ provide a good compromise between accuracy and run-time.

During the synthesis process, we often want to know the switching activity of individual nodes instead of a single power consumption figure. Table 6 presents the percentage error in individual node's switching activity from the exact values as a function of k and m, averaged over all the nodes in the circuit. It is seen that the accuracy of switching activity estimates consistently increases with the value of k and m. For example, the error in switching activity estimates for styr decreases from 13% to 6.3% when k increases from 1 to 2 and from 6.6% to 6.0% when m increases from 2 to 4. A similar trend exists with respect to the maximum error and the root-mean-squared error criteria.

9 Conclusions and Ongoing Work

We presented a framework for sequential power estimation in this paper. In this framework, state probabilities can be computed using the Chapman-Kolmogorov equations, and present state line probabilities are computed by solving a system of non-linear equations. We have shown that the latter is significantly more efficient for medium to large circuits, and does not sacrifice accuracy.

Given the present state line probabilities, the switching activity and power dissipation of the
circuit can be accurately computed. Any combinational logic estimation method that can accurately model the correlation between the applied input vector pairs can be used.

References

[1] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8):677-691, August 1986.
[2] R. Burch, F. Najm, P. Yang, and T. Trick. McPOWER: A Monte Carlo Approach to Power Estimation. In Proceedings of the Int'l Conference on Computer-Aided Design, pages 90-97, November 1992.
[3] A. Chandrakasan, T. Sheng, and R. W. Brodersen. Low Power CMOS Digital Design. In Journal of Solid State Circuits, pages 473-484, April 1992.
[4] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of Average Switching Activity in Combinational and Sequential Circuits. In Proceedings of the $29^{\text {th }}$ Design Automation Conference, pages 253-259, June 1992.
[5] L. Glasser and D. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-Wesley, 1985.
[6] H. M. Lieberstein. A Course in Numerical Analysis. Harper \& Row Publishers, 1968.
[7] R. Marculescu, D. Marculescu, and M. Pedram. Logic level power estimation considering spatiotemporal correlations. In Proceedings of the Int'l Conference on Computer-Aided Design, pages 294-299, November 1994.
[8] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for Low Power. In Proceedings of the Int'l Conference on Computer-Aided Design, pages 398-402, November 1993.
[9] F. Najm. Transition Density, A Stochastic Measure of Activity in Digital Circuits. In Proceedings of the $28^{\text {th }}$ Design Automation Conference, pages 644-649, June 1991.
[10] F. N. Najm, R. Burch, P. Yang, and I. Hajj. Probabilistic simulation for reliability analysis of CMOS VLSI circuits. IEEE Transactions on Computer-Aided Design, 9(4):439-450, April 1990.
[11] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, Inc., Boston, MA, 1970.
[12] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill, $3^{\text {rd }}$ edition, 1991.
[13] C. Y. Tsui, M. Pedram, and A. Despain. Efficient Estimation of Dynamic Power Dissipation under a Real Delay Model. In Proceedings of the Int'l Conference on Computer-Aided Design, pages 224-228, Nov 1993.
[14] C. Y. Tsui, M. Pedram, and A. Despain. Exact and approximate methods for calculating signal and transition probabilities in FSMs. In Technical Report CNEG 93-42, Electrical Engineering-System Department, University of Southern California, October 1993.

Figure 1: A Synchronous Sequential Circuit

Figure 2: Example State Transition Graph

Figure 3: Taking Correlation Into Account

Figure 4: k-unrolling of the next state logic

Figure 5: Calculation of signal and transition probabilities by network unrolling

Figure 6: An m-Expanded Network with $m=2$

[^0]: ${ }^{1}$ Static probabilities can be computed from specified transition probabilities.

[^1]: ${ }^{2}$ We were restricted to 8 -bit datapaths since the state probability computation requires explicitly enumerating the states of the machine.

[^2]: ${ }^{3}$ This error is caused by ignoring the correlation between the present state lines.

[^3]: ${ }^{4}$ The initial error for dk 16 and sreg benchmarks is 0 , thus, there is no need to improve the accuracy by using larger values of k and m.

