Power Estimation Methods for Sequential Logic
Circuits

Chi-Ying Tsui José Monteiro Massoud Pedram Srinivas Devadas

Alvin M. Despain Bill Lin

Contents

1 Introduction

2 Preliminaries
2.1 A Power Dissipation Model

2.2 Combinational Circuits o e e

3 The Exact Method
3.1 Modeling Correlation
3.2 State Probability Computation 00 o

3.3 Power Estimation Given Exact State Probabilities

4 Basis of Approximation Strategies

4.1 Computing Present State Line Probabilities

4.2 Inaccuracy in Formulation

Improving Accuracy using k-Unrolled Networks

5.1 State Line Probability Computation

5.2 Switching Activity Computation

Improving Accuracy Using m-Expanded Networks

6.1 State Line Probability Computation

6.2 Switching Activity Computation

Solving the Non-Linear System of Equations

7.1 Picard-Peano Method o oL
7.2 Newton-Raphson Method
7.3 Signal Probability Evaluation

Experimental Results

Conclusions and Ongoing Work

11
11
12

12
12
13

13
14
15
17

17

25

List of Figures

(= N

A Synchronous Sequential Circuito oo 28
Example State Transition Graph oo o 29
Taking Correlation Into Account L L 30
k-unrolling of the next state logic 31
Calculation of signal and transition probabilities by network unrolling 32
An m-Expanded Network with m =2 o 0 0 0. 33

List of Tables

SOt e W N

Comparison of sequential power estimation methods 19

Absolute errors in present state line probabilities averaged over all present state lines 21

Absolute errors in switching activity averaged over all circuit lines 22
Comparison of Picard-Peano and Newton-Raphson 23
Results of power estimation based on k-unrolled and m-expanded networks 24

Percentage error in switching activity estimates averaged over all nodes in the circuit 24

ii

Abstract

Recently developed methods for power estimation have primarily focused on combinational
logic. We present a framework for the efficient and accurate estimation of average power dissi-
pation in sequential circuits.

Switching activity is the primary cause of power dissipation in CMOS circuits. Accurate
switching activity estimation for sequential circuits is considerably more difficult than that for
combinational circuits, because the probability of the circuit being in each of its possible states
has to be calculated. The Chapman-Kolmogorov equations can be used to compute the exact
state probabilities in steady state. However, this method requires the solution of a linear system
of equations of size 2"V where N is the number of flip-flops in the machine.

We describe a comprehensive framework for exact and approximate switching activity es-
timation in a sequential circuit. The basic computation step is the solution of a non-linear
system of equations which is derived directly from a logic realization of the sequential machine.
Increasing the number of variables or the number of equations in the system results in increased
accuracy. For a wide variety of examples, we show that the approximation scheme is within
1 — 3% of the exact method, but is orders of magnitude faster for large circuits. Previous

sequential switching activity estimation methods can have significantly greater inaccuracies.

C-Y Tsui and A. M. Despain were supported by the Advanced Research Projects Agency under contract J-FBI-91-194.
Massoud Pedram was supported in part by the Advanced Research Projects Agency under contract F33615-95-C-
1627 and by SRC under contract 94-DJ-559. J. Monteiro and S. Devadas were supported in part by the Advanced
Research Projects Agency under contract DABT63-94-C-0053 and in part by a NSF Young Investigator Award with
matching funds from Mitsubishi Corporation.

C-Y. Tsui, M. Pedram and A. Despain are with the Department of Electrical Engineering at the University of South-
ern California, Los Angeles.

J. Monteiro and S. Devadas are with the Department of Electrical Engineering and Computer Science at the Mas-
sachusetts Institute of Technology, Cambridge.

B. Lin is with IMEC, Belgium.

1 Introduction

For many consumer electronic applications low average power dissipation is desirable and for certain
special applications low power dissipation is of critical importance. For applications such as personal
communication systems and hand-held mobile telephones, low-power dissipation may be the tightest
constraint in the design. More generally, with the increasing scale of integration, we believe that
power dissipation will assume greater importance, especially in multi-chip modules where heat
dissipation is one of the biggest problems.

Power dissipation of a circuit, like its area or speed, may be significantly improved by changing
the circuit architecture or the base technology [3]. However, once these architectural or technological
improvements have been made, it is the switching of the logic that will ultimately determine the
power dissipation.

Methods for the power estimation of logic-level combinational circuits based on switching activ-
ity estimation have been presented previously (e.g., [10], [2], [4], [9], [13], [7]). Power and switching
activity estimation for sequential circuits is significantly more difficult, because the probability of
the circuit being in any of its possible states has to be computed. Given a circuit with N flip-flops,
there are 2V possible states. These state probabilities are, in general, not uniform. As an example,
consider the sequential circuit of Figure 1 and the example State Transition Graph of Figure 2.
Assuming that the circuit was in state R at time 0, and that at each clock cycle random inputs are

applied, at time oo (i.e., steady state) the probabilities of the circuit being in state R, A, B, C are

11
6’ 3’

i and i respectively. These state probabilities have to be taken into account during switching
activity estimation of the combinational logic part of the machine. Power dissipation and switching
activity of CMOS combinational logic is modeled by randomly applied vector pairs. In the case
of sequential circuits, the vector pair (vy, ve) applied to the combinational logic is composed of a
primary input part and a present state part (see Figure 1), namely (i;@sq, 12@Qs3). Given i;@sy,
the next state sy is uniquely determined given the functionality of the combinational logic. For
example, if ¢; happens to be 0 and the machine of Figure 2 is in state R, the machine will move to
state B. This correlation between the applied vector pairs has to be taken into account in order to
obtain accurate estimates of the switching activity in sequential circuits.

A first attempt at estimating switching activity in logic-level sequential circuits was presented

in [4]. This method can accurately model the correlation between the applied vector pairs, but

assumes that the state probabilities are all uniform. Extensions of this method can produce accurate

estimates for acyclic sequential circuits such as pipelines, but not for more general cyclic circuits
[8].

In this paper, we present results obtained by using the Chapman-Kolmogorov equations for
discrete-time Markov Chains [12] to compute the exact state probabilities of the machine. The
Chapman-Kolmogorov method requires the solution of a linear system of equations of size 2V,
where N is the number of flip-flops in the machine. Thus, this method is limited to circuits with
relatively small number of flip-flops, since it requires the explicit consideration of each state in the
circuit.

We next describe an approximate method for switching activity estimation in sequential cir-
cuits. The basic computation step is the solution of a non-linear system of equations which is
derived directly from the logic realization of the next state logic of the machine under consider-
ation. Increasing the number of variables or the number of equations in the system results in
increased accuracy. For a wide variety of examples, we show that the approximation scheme is
within 1 — 3% of the exact method, but is orders of magnitude faster for large circuits. Previous
sequential switching activity estimation methods can have significantly greater inaccuracies.

The rest of this paper is organized as follows. In Section 2 we briefly review the physical model
for power estimation and summarize the combinational estimation method of [4]. In Section 3,
we describe an exact switching activity estimation method for sequential circuits. In Section 4,
we first provide the basis for the approximation schemes we have developed and formulate the
problem of estimating switching activity as that of solving a non-linear system of equations. We
describe a scheme based on the notion of a k-unrolled network that can be used to improve the
accuracy of estimation in Section 5. We describe a different method to improve the accuracy based
on the notion of a m-expanded network in Section 6. In Section 7 we describe methods to solve
the non-linear system of equations, namely, the Picard-Peano and the Newton-Raphson methods.
In Section 8, we show that purely combinational logic estimation methods can provide inaccurate
estimates, whereas the developed approximation methods produce accurate estimates while being

applicable to large circuits.

2 Preliminaries

2.1 A Power Dissipation Model

Under a simplified model of the energy dissipation in CMOS circuits, the energy dissipation of a
CMOS circuit is directly related to the switching activity.

In particular the three simplifying assumptions are:

e The only capacitance is at the output node of a CMOS gate (this capacitance includes the

source-drain capacitance of the gate itself and the input capacitances of the fanout gates).

e Current is flowing either from Vpp to the output capacitor or from the output capacitor to

ground (that is, there is no short-circuit current).

e Any change in a logic-gate output voltage is a change from Vpp to ground or vice-versa (that

is, there are no stable intermediate voltage levels).

These assumptions are reasonably justified for well-designed CMOS gates [5] and when com-
bined, imply that the energy dissipated by a CMOS logic gate each time its output changes is
roughly equal to the change in energy stored in the output capacitance seen by the gate. If the
gate is part of a synchronous digital system controlled by a global clock, it follows that the average

power dissipated by the gate is given by:

Pavg = 0.5 X Cloaq X (ded/Tcyc) X E(transitions) (1)

where F,,, denotes the average power, Cj,qq is the load capacitance, Vg, is the supply voltage, T.,.
is the global clock period, and F(transitions) is the expected value of the number of gate output
transitions per global clock cycle [9], or equivalently the average number of gate output transitions
per clock cycle. All of the parameters in (1) can be determined from technology or circuit layout
information except F(transitions), which depends on the logic function being performed and the
statistical properties of the primary inputs.

Eq. (1) is used by the power estimation techniques such as [4, 9] to relate switching activity to

power dissipation.

2.2 Combinational Circuits

Average power can be estimated for combinational circuits by computing the average switching

activity at every gate in the circuit.

It is assumed that we are given transition probabilities at each of the primary inputs to the
circuit. That is, for every primary input the probability of the primary input staying at 0 (0 — 0),
staying at 1 (1 — 1), making a 0 — 1 transition and making a 1 — 0 transition are given. Given
these probabilities, the average switching activity at each gate in the circuit can be calculated.

A symbolic simulation method that performs this computation was given in [4]. Under the
chosen gate delay model, the method first constructs a Boolean function representing the logical
value at any gate output at each time point > ¢ based on the primary input variables I0 applied
at time 0 and [t applied at time ¢. For instance, one may compute the functions f;(t + 1) and
fi(t 4 2) for a particular gate g;. The Boolean conditions at the inputs that correspond toa 0 — 1
transition on g; between times ¢t + 1 and ¢ + 2 are represented by the function m - filt +2).
The probability of a 0 — 1 transition occurring between time ¢t + 1 and ¢ + 2 given the transition
probabilities at the primary inputs is the probability of the Boolean function m - filt 4+ 2)
evaluating to a 1. (This probability can be evaluated exactly using Binary Decision Diagrams [1] or
approximately using Monte Carlo simulation.) For each gate, probabilities of transitions occurring
at any time point can be evaluated efficiently, and these probabilities are summed over all the time
points to obtain the average switching activity (at each gate).

Under the zero delay, unit delay, or a general delay model (where delays are obtained from library
cells), the symbolic simulation method takes into account the correlation due to reconvergence of
input signals and accurately measures switching activity.

The same computation can be performed more efficiently, although not exactly, using proba-
bilistic simulation techniques such as [10] and [13] or Monte-Carlo simulation [2]. In the remainder
of this paper, whenever we need to perform the above computation, we will refer to the symbolic
simulation equations (which provide the exact solution). It should however be made clear that
any other solution technique (probabilistic simulation, Monte-Carlo simulation, etc.) can be used

instead.

3 The Exact Method

3.1 Modeling Correlation

To model the correlation between the two vectors in a randomly applied vector pair, we have to
augment the combinational estimation method described in Section 2.2. This augmentation is

summarized in Figure 3.

In Figure 3, we have a block corresponding to the symbolic simulation equations for the combi-
national logic of the general sequential circuit shown in Figure 1. The symbolic simulation equations
have two sets of inputs, namely (10, It) for the primary inputs and (PSS, N.S) for the present state
lines. However, given I0 and PS, NS is uniquely determined by the functionality of the com-
binational logic. This is modeled by prepending the next state logic to the symbolic simulation
equations.

The configuration of Figure 3 implies that the gate output switching activity can be determined
given the vector pair (J0, It) for the primary inputs, but only PS for the state lines. Therefore, to
compute gate output transition probabilities, we require the transition probabilities for the primary
input lines, and the static probabilities for the present state lines. This configuration was originally

proposed in [4].

3.2 State Probability Computation

The static probabilities for the present state lines marked P.S in Figure 3 are spatially correlated.
We therefore require knowledge of present state probabilities as opposed to present state line (P.S)
probabilities in order to exactly calculate the switching activity in the sequential machine. The
state probabilities are dependent on the connectivity of the State Transition Graph (STG) of the
circuit.

For each state s;, 1 <14 < K in the STG, we associate a variable prob(s;) corresponding to the
steady-state probability of the machine being in state s; at { = oo. For each edge e in the STG,
we have e.C'urrent signifying the state that the edge fans out from, e.Next signifying the state
that the edge fans out to, and e.Input signifying the input combination corresponding to the edge.
Given static probabilities for the primary inputs to the machine, we can compute prob(Input), the

probability of the combination Input occurring. ! We can compute prob(e.Input) using:
prob(e.Input) = prob(e.C'urrent) X prob(Input)
For each state s; we can write an equation:

prob(s;) = Z prob(e.Input)

V e such that e Next = s;

Given K states, we obtain K equations out of which any one equation can be derived from the

LStatic probabilities can be computed from specified transition probabilities.

remaining K — 1 equations. We have a final equation:

K
Z prob(s;)) =1
=1

This linear set of K equations can be solved to obtain the different prob(s;)’s.

This system of equations is known as the Chapman-Kolmogorov equations for a discrete-time
discrete-transition Markov process. Indeed, if the Markov process satisfies the conditions that it has
a finite number of states, its essential states form a single-chain and it contains no periodic-states,
then the above system of equations will have a unique solution [12].

For example, for the State Transition Graph of Figure 2 we will obtain the following equations

assuming a probability of 0.5 for the primary input being a 1.
prob(R) 0.5 X prob(A)
prob(A) = 0.5x prob(R) + 0.5 x prob(B) + 0.5 x prob(C)
prob(B) = 0.5 x prob(R) + 0.5 x prob(A)

The final equation is:

prob(R) 4 prob(A) + prob(B) + prob(C) = 1

Solving this linear system of equations results in the state probabilities, prob(R) =
L. prob(B) = % and prob(C) = i.

3.3 Power Estimation Given Exact State Probabilities

We now describe a power estimation method that utilizes the exact state probabilities obtained
using the Chapman-Kolmogorov method. As described in Section 2.2, the symbolic equations
express the exact switching conditions for each gate in the circuit under the unit or general delay
models. Prepending the next state logic block as illustrated in Figure 3 accounts for the correlation
between the present and next states. Finally, computing the exact state probabilities models the
steady-state behavior of the circuit.

As described in Section 2.2, power estimation of a given combinational logic circuit can be
carried out by creating a set of symbolic functions such that summing the signal probabilities of
the functions corresponds to the average switching activity in the original combinational circuit.
Some of the inputs to the created symbolic functions are the present state lines of the circuit and
the others are primary input lines. Each binary combination of the present state lines is a state in
the circuit and we have a number corresponding to the state probability for each state after solving

the Chapman-Kolmogorov equations.

The signal probability calculation procedure has to appropriately weight these combinations

according to the given probabilities. Suppose n is a disjoint cover of the function f, i.e.,
= V Cn (2)

mé€Disjoint_Cover(n)
where the C',’s are cubes of the disjoint cover. Each), is a function of the present state lines and
primary inputs. We partition the inputs to), into two groups: the symbolic state support 5.5,
which includes all states s; that have set the appropriate state bits, and the primary input support
I, which includes the PI inputs of C,,. Hence C,, = S5,,1,,. The signal probability of n is thus
given by:

prob(n) = > prob(Ch,). (3)

mé€Disjoint_Cover(n)

Since the primary inputs are independent of the state that the machine is currently in and states

of the FSM are distinct, we can write

prob(Cy) = prob(l,)prob(SS.,,)

= prob(l,) Z prob(s;). (4)
5{€S5Sm

From equations (3) and (4), we have:
prob(n) = Z prob(1,,) Z prob(s;). (5)
mé€Disjoint_Cover(n) 5;€SSm
As an example, consider the following disjoint cover of a function whose signal probability is to
be computed.

S =1 Apst V i APST A psy

Assume that the probability of i1 being a 1 is 0.5, and state probabilities are prob(00) = é, prob(01)
=1, prob(10) = 1 and prob(11) = 1. (The first bit corresponds to ps; and the second to ps;.) The
probability of the first cube is:

prob(iy A psy) = prob(iy) x (prob(10) 4 prob(11))
= 05x (141
1
4
Similarly the probability of the second cube is:
prob(iy APsy Apsy) = prob(iy) X prob(01)

_ 1

o=

Finally we have:

1 1 5
prob(n) = Z—I_E =5
Note that equation (5) requires explicit enumeration of the states and is very costly. In [14],
a method which employs a partially implicit enumeration of states using OBDDs is described.
The estimation method still has average-case exponential complexity — the probability of each
state (resp. groups of states) is computed, and the number of states (resp. such groups) can be
exponential in the number of flip-flops in the circuit. However, for the circuits that this method

is applicable to, the estimates provided by the method can serve as a basis for comparison among

different approximation schemes.

4 Basis of Approximation Strategies

Consider a machine with two flip-flops whose states are 00, 01, 10 and 11 have state probabilities
prob(00) = %, prob(01) = %, prob(10) = 1 and prob(11) = 1. We can calculate the present state

line probabilities as shown below, where ps; and psy are the first and second present state lines.

1 1 1
prob(psy = 0) = prob(00) + prob(01) = G + 3 =3
1 1 1
prob(psy = 1) = prob(10) + prob(11) = I + 1= 3
b(pss = 0) = prob(00) + prob(10) = ~ 4 = >
proo\psa = = pro pro = 5 1 - T
rob(psy = 1) = prob(01) + prob(11) = 14_1 _ 7
e ey P T34 12
Note that because ps; and psy are correlated, prob(ps; = 0) X prob(ps; = 0) = % is not equal to

prob(00) = %.

We carried out the following experiment on 52 sequential circuit benchmark examples for which
the exact state probabilities could be calculated. These benchmarks included finite state machine
controllers, datapaths? as well as pipelines. First, the power dissipation of the circuit was calcu-
lated using the exact state probabilities as described in Section 3.3. Next, given the exact state
probabilities, the line probabilities were determined as described in the previous paragraph. Us-

ing the topology of Figure 3 and the computed present state line probabilities for the PS lines,

2We were restricted to 8bit datapaths since the state probability computation requires explicitly enumerating the

states of the machine.

approximate power dissipations were calculated for each circuit. The average error® in the power
dissipation measures obtained using the line probability approximation over all the circuits was only
2.8%. The maximum error for any one example was 7.3%. Assuming uniform line probabilities of
0.5 as in [4] results in significant errors of over 40% for some examples.

The above experiment leads us to conclude that if accurate line probabilities can be determined
then using line probabilities rather than state probabilities is a viable alternative. We only have
to determine N numbers for a N flip-flop machine, one for each present state line, rather than 2V

numbers, one for each possible state.

4.1 Computing Present State Line Probabilities

In our approximation framework we directly determine line probabilities without recourse to State
Transition Graph extraction. The approximation framework is based on solving a non-linear system
of equations to compute the state line probabilities. This system of equations is given by the
combinational logic implementing the next state function of the sequential circuit.

Consider the set of functions below corresponding to the next state lines.

ns; = fl(ilv 7:27) iM7 ps1, ps2, -0, pSN)
nsy = f2(i17 7:27) iM7 ps1, ps2, -0, pSN)
nsy = fN(ih 7:27) iM7 ps1, ps2, -0, PSN)
We can write:
pT‘Ob(TLSl) = prOb(fl(ilv 7:27 Ty iM7 ps1, ps2, -0, pSN))
pT‘Ob(nSQ) = prOb(f?(ilv 7:27 Ty iM7 ps1, ps2, -0, pSN))
pT‘Ob(nSN) = prOb(fN(ilv 7:27 Ty iM7 ps1, ps2, -0, pSN))
where prob(ns;) corresponds to the probability that ns; is a 1, and prob(fi(i1, t2, ---, im,
ps1, psa, -+, psn)) corresponds to the probability that f;(i1, 2, -+, tar, psi, pSz, -+, PsSn) is

a 1, which is of course dependent on the prob(ps;) and the prob(iy).

#This error is caused by ignoring the correlation between the present state lines.

We are interested in the steady state probabilities of the present and next state lines implying
that:
prob(ps;) = prob(ns;) = p; 1<i<N
A similar relationship was used in the Chapman-Kolmogorov equations (¢f. Section 3).

The set of equations given the values of prob(ix) becomes:

Y1 =p1— g1(p1, p2, -+, pN) = 0
Y2 = p2 — g2(p1, p2, -+, pN) = 0
yn =pN — gn(p1s P2, -0, pN) = 0 (6)

where the g;’s are non-linear functions of the p;’s. We will denote the above equations as Y (P) =0
or as P = G(P). In general the Boolean function f; can be written as a list of minterms over the

i), and ps; and the corresponding g; function can be easily derived. For example, given
Ji =1 Apsyt ADSy V iy APSL A psy
and prob(i1) = 0.5, we have

g1="05-(p1- (1 —=p2)+ (1= p1)-p2) (7)

We can solve the equation set Y (P) = 0 or find a fixed point of P = G(P) to obtain the
present state line probabilities. We describe the use of the Picard-Peano method to obtain a fixed
point of P = G(P), and the use of the Newton-Raphson method to solve Y (P) = 0 in Section
7. The uniqueness or the existence of the solution is not guaranteed for an arbitrary system of
non-linear equations. However, since in our application we have a correspondence between the
non-linear system of equations and the State Transition Graph of the sequential circuit, there will
exist at least one solution to the non-linear system. Further, convergence is guaranteed under mild

assumptions for our application.

4.2 Inaccuracy in Formulation

The above formulation does not capture the correlation between the state line probabilities. Let
us consider the example State Transition Graph of Figure 2. The equations for the next state logic

are:

nsy = i-psy-psy + 1-PS7 + i-ps1Ps;

10

nsy = ps; + i-DP5| PS5y

Assuming the probability of input 7 being a 1 is 0.5 we obtain the nonlinear equations (after
simplification):

ny = 0.5 — 0.5])1 - 0.5])2

ng = p1 + 0.5(1—p1)(1— p2)

Setting ny = p; and ny = p2 and solving the above equations gives us p; = 0.191 and py = 0.424.
However, if we obtain the exact line probabilities using the exact state probabilities as shown in
the first paragraph of Section 4, we find that these approximate line probabilities are in error.
The above example is small (4 states) and contrived, and significant errors may be obtained
for such examples. The state line probabilities obtained using the approximation method of this
section are on average close to the exact line probabilities, and they typically result in switching
activity estimates that are close to the exact method for most real-life examples (cf. Section 8).
Nevertheless, it is worthwhile to explore ways to increasing the accuracy. We describe two such

mechanisms in Section 5 and Section 6.

5 Improving Accuracy using k-Unrolled Networks

5.1 State Line Probability Computation

In the formulation of Section 4, the non-linear equations correspond to a single stage of next state
logic. Consider the unrolled network of Figure 4(a). The next state logic has been unrolled k times.
As illustrated in Figure 4(b), we can construct a set of non-linear equations corresponding to this
k-unrolled network, which will partially take into account the correlation between the state lines,
when computing the state line probabilities.

The exact present state line probabilities can be obtained by unrolling the next state logic oo
times (Figure 4(a)). This is however impractical. We thus approximate the signal probabilities by

unrolling the next state logic k times where k is a user defined parameter.

11

The equations corresponding to k = 2 will be:

nsll = fl(illv e iMlv p8117 e pSNl)

= fl(illv) iMlv n8107) nSNO)

= fl(illv) iMlv fl(ilov) iMov p8107) pSNO)7) fN(ilov) iMov p8107) pSNO))
nSNl = fN(illv) iMlv fl(ilov) iMov p8107) pSNO)7) fN(ilov) iMov p8107) pSNO))

The number of equations is the same. The number of primary input variables has increased, but
the probabilities for these variables are known.
Figure 5(a) shows the method used to calculate signal probability of the internal nodes of the

FSM using the k-unrolled network with signal probability feedback.

5.2 Switching Activity Computation

The topology of Figure 3 was proposed as a means of taking into account the correlation between
the applied input vector pair when computing the transition probabilities. This method takes one
cycle of correlation into account.

It is possible to take multiple cycles of correlation into account by prepending the symbolic
simulation equations with the k-unrolled network. This is illustrated in Figure 5(b). Instead of
connecting the next state logic network to the symbolic simulation equations, we unroll the next
state logic network k times and connect the next state lines of the k" stage of the unrolled network,

1th

the next state lines of the k — 1?* stage, and the primary input of the k — stage to the symbolic

simulation equations.

6 Improving Accuracy Using m-Expanded Networks

6.1 State Line Probability Computation

We describe a different method to improve the accuracy of the basic approximation strategy outlined
in Section 4. This method models the correlation between m-tuples of present state lines. The

method is pictorially illustrated in Figure 6 for m = 2.

12

The number of equations in the case of m = 2 is % We have:

ns;ii+1[11] = nsiAnsipn = fi A fiq
ns;i+1[10] = ns; ATS = fi A fiq
ns;ii41[01] = WS Ansipr = fi A fim

We have to solve for prob(ns; ;+1[11]), prob(ns; ;11[10]), and prob(ns; ;11[01]) (rather than prob(ns;)

and prob(ns;y1) as in the case of m = 1). We use:

prob(ps; Aps;y1) = prob(ns;;41[11])
prob(ps; ADsiy1) = prob(ns;;41[10])
prob(ps; A ps;y1) = prob(ns;;41[01])

in the evaluation of the prob(f;)’s.

The signal probability evaluation methods of Section 7.3 can be easily augmented to use the
above probabilities. In the case of the OBDD-based method placing each ps; and ps;41 pair adjacent
in the chosen ordering allows signal probability computation by a linear-time traversal.

The number of equations for m = 3 is % When m = N, the number of equations will become
2N and the method will degenerate to the Chapman-Kolmogorov method.

The choice of the m-tuples of present and next state lines is made by grouping next state lines
that have the maximal amount of shared logic into each m-tuple. Note that the accuracy of line

probability estimation will depend on the choice of the m-tuples.

6.2 Switching Activity Computation

To estimate switching activity given m-tuple present state line probabilities, the topology of Figure
3 is used as before. The difference is that for m = 2 the prob(ps; A psit1), prob(ps; A psiy1) and

prob(ps; A psit1) values are used to calculate the switching activities.

7 Solving the Non-Linear System of Equations

We describe two methods to solve the non-linear system of equations obtained using k-unrolled or
m-expanded networks. We will assume that the non-linear system can be represented as P = G(P)

or as Y (P) = 0 as described in Section 4.

13

7.1 Picard-Peano Method

The Picard-Peano method is used to find a fixed point of the P = G(P) system. This system is

reproduced below.

yai :gl(ph P2, PN)
P2 292(]?17 P2, PN)
PN:!]N(Ph P2, oy PN)

We can start with an initial guess P°, and iteratively compute P! = G/(P*) until convergence
is reached. Convergence is deemed to be achieved if P**! — P* is sufficiently small. The above

iteration is known as the Picard-Peano iteration for finding a fixed-point of a system of non-linear

equations.
We are only given the Boolean functions f; (i1, 42, ---, tnm, psi, psz, -+, psy). There exist
several methods to compute ¢;(p1, p2, -+, pn) = prob(fi(i1, 12, ---, irr, pSi, PS2, -+, PSN))

for given p; = prob(ps;)’s and prob(ix)’s. We describe these methods in Section 7.3.

Theorem 7.1 [6] If G is contractive, i.e., g£i| < 1, for all i, j, then the Picard-Peano iteration
J

method converges at least linearly to a unique solution P*.

Theorem 7.2 If each next state line is a non-trivial logic function of at least two present state

lines, then g; is contractive on the domain (0,1).

Proof. Choose any p;. In order to perform the evaluation of g—ié we cofactor f; with respect to
PSs;.
Ji = psi N fips, V DSIA fipsy
Ji ps; and f; g7 are the cofactors of f with respect to ps;, and are Boolean functions independent
of ps;. We can write:
gi = pjprob(fi ps,) + (1= p;) - prob(fi 75;)
Differentiating with respect to p; gives:

392'
p;

= prOb(fi ps]) - pT‘Ob(fZ' E)

14

Since we are considering the domain (0, 1), which is not inclusive of 0 and 1, and the ns;’s are
non-trivial Boolean functions of at least two present state lines for every ¢, this partial differential
is strictly less than one, because we are guaranteed that prob(f; ,s;) > 0 and prob(f; 75;) >0. =

From Theorems 7.1 and 7.2, we can see that the iterated signal probability calculation is guar-
anteed to converge to a solution, provided some mild assumptions are made with respect to the

functionality of the next state logic.

7.2 Newton-Raphson Method

The Newton-Raphson method can be used to solve a non-linear system of equations given an initial
guess at the solution. The advantage of the Newton-Raphson method is the quadratic rate of
convergence. However, each iteration is more computationally expensive than the Picard-Peano
method.

Given Y (P) = 0 and a column matrix corresponding to an initial guess P°, we can write the

k" Newton iteration as the linear system solve shown below.
J(PF) x PFY = J(P*) x P* — Y (PF) (8)

where J is the N X N Jacobian matrix of the system of equations. Each entry in J corresponds
to a g—zj evaluated at P¥. The P**! correspond to the variables in the linearized system and after
solving the system P*! is used as the next guess. Convergence is deemed to be achieved if each
entry in Y (P¥) is sufficiently small.

We use the methods of Section 7.3 to evaluate:

gi(ph P2y c 0y PN) = prOb(fi(ilv 7:27 Ty iM7 ps1, pS2, =y PSN))

for given p; = prob(ps;)’s and prob(iy)’s. The Y (P*) of Eqns. 8 can easily be evaluated using the

pjk values and using Eqns. 6.

We need to also evaluate J(P*). As mentioned earlier, each entry of J corresponds to g—zi
J

equals equals 1 — ggi

k : ; Ay; 9g; dy;
evaluated at P*. If ¢ # j, then o equals D and -

In order to perform the evaluation of g}gjj we use the method in the proof of Theorem 7.2.

392'
p;

= prOb(fi ps]) - pT‘Ob(fZ' W)

We can evaluate prob(f; ,s,) and prob(f; 7s;) for a given P* using the methods of Section 7.3.

15

As an example consider:

Ji =1 Apsit ADPSy V iy APST A psg

0))
991 _ prob(iy A psz) — prob(iy A psz)
om

0

8—2 = 05 -(1—p2)—05-py = 0.5— ps

which is exactly what we would have obtained had we differentiated Eqn. 7 with respect to py.
Theorem 7.3 [11] The Newton iterates:

PHL = PR (PRTly (PR, k=0, 1, ..
are well-defined and converge to a solution P* of Y (P) = 0 if the following conditions are satisfied:

1. Y is F-differentiable.
2.

|[7(A) = J(B)|| <~[|A— B||, VA, B € Do
where Dy is the domain 0 < p; < 1, Vi.

3. There exists P° € Dqg such that ||J(P0)_1|| <B,n> ||J(P0)_1Y(PO)|| and o = yn < L.

Condition 1 of the theorem is satisfied in our application because the y; functions are continuous
and differentiable. We need to prove that the parameter ~ is finite to show that Condition 2 is

satisfied.
Theorem 7.4 IfY is given by Fqn. 6, then v < 2.

Proof. In order to show that:
[7(A) = J(B)|| < v|[A— Bl||, VA, B € Dy

is satisfied for v = 2, we will show that the derivative of each entry of .J is less than or equal to 2.

Recall that J is a matrix with each entry corresponding to g—}zji. Using the equations provided
J

in the proof of Theorem 7.2 we can write:

0 Yi
p;

= prob(fi 5s;) — prob(fi ps;) i #J

16

Differentiating with respect to pp we have:

0* Yi
Ip;Opy

= prob(f; Emk) — prob(f; ﬁ]m) — prob(f; pSJPSk) + prob(f; psjm)

Given that the probabilities are between 0 and 1, we have:

0* Yi
Ip;Opy

|
Condition 3 in Theorem 7.3 is a constraint on the initial guess for the Newton iteration, and

this initial guess can be picked appropriately, provided = is finite. Essentially, we have to choose

PY such that ||Y(P?)|| is small.

7.3 Signal Probability Evaluation

In the non-linear equation solver, regardless of whether we are using the Picard-Peano method or
the Newton-Raphson method, we have to repeatedly evaluate the signal probability of a Boolean
function given input probabilities, i.e., compute prob(f;(i1, t2, -+, irn, pSi, pSz, -+, PSN)) given
the prob(ix)’s and the prob(ps;)’s.

There exist several methods to evaluate signal probability. An exact method corresponds to
using Ordered Binary Decision Diagrams (OBDD’s) [1]. If an OBDD can be created for f;, then
prob(f;) can be evaluated in linear time in the size of the OBDD for f;. OBDD’s can be cofactored
in linear time, allowing for the efficient evaluation of the Jacobian entries.

An alternative is to use Monte Carlo simulation. Approximate signal probabilities can be com-
puted using random logic simulation on the multilevel network corresponding to f;. Our experience
has been that the signal probabilities quickly converge to the exact results obtained using OBDD’s.
In order to evaluate a particular Jacobian entry, the appropriate input to f; has to be set to 0 (1)

and random simulation is performed on the remaining inputs.

8 Experimental Results

In this section we present experimental results that illustrate the following points:

e Exact and explicit computation of state probabilities is possible for controller type circuits.

However, it is not viable for datapath circuits.

e Purely combinational logic estimates result in significant inaccuracies.

17

e Assuming uniform probabilities for the present state line probabilities and state probabilities

as in [4] can result in significant inaccuracies in power estimates.

e Computing the present state line probabilities using the technique presented in the previous
sections results in 1) accurate switching activity estimates for all internal nodes in the network
implementing the sequential machine; 2) accurate, robust and computationally efficient power

estimate for the sequential machine.

In Table 1, results are presented for several circuits. In the table, combinational corresponds
to the purely combinational estimation method of [4] and uniform-prob corresponds to the se-
quential estimation method of [4] that assumes uniform state probabilities. The column line-prob
corresponds to the technique of Section 4 and using the Newton-Raphson method with a conver-
gence criterion of 0.0001% to solve the equations. These equations correspond to k = 0 or m = 1.
Finally, state-prob corresponds to the exact state probability calculation method of Section 3.
The zero delay model was assumed, however, any other delay model could have been used instead.

The first set of circuits corresponds to finite state machine controllers. These circuits typi-
cally have the characteristic that the state probabilities are highly non-uniform. Restricting one-
self to combinational power dissipation (combinational) or assuming uniform state probabilities
(uniform-prob) results in significant errors. However, the line probability method of Section 4
produces highly accurate estimates when compared to exact state probability calculation.

The second set of circuits corresponds to datapath circuits, such as counters and accumulators.
The exact state probability evaluation method requires huge amounts of CPU time for even the
medium-sized circuits, and cannot be applied to the large circuits. For all the circuits that the
exact method is viable for, our line-prob method produces identical estimates. The uniform-
prob method does better for the datapath circuits — in the case of counters for instance, it can be
shown that the state probabilities are all uniform, and therefore the uniform-prob method will
produce the right estimates. Of course, this assumption is not always valid.

The third set of circuits corresponds to pipelined adders and a pipelined multiplier. For pipelined
circuits, exact power estimation is possible without resort to Chapman-Kolmogorov equation solving
[8]. The fourth set corresponds to mixed datapath/control circuits from the ISCAS-89 benchmark
set. Exact state probability evaluation is not possible for these circuits.

The CPU times in the tables correspond to seconds (s) or minutes (m) on a SUN-SPARC-2.

The CPU times correspond to times required for symbolic simulation to estimate combinational

18

Circuit #it | #fT Combinational Uniform Prob. Line Prob. State Prob.
Name power err | cpu power err | cpu power | err | cpu power | cpu
cse 132 4 610.0 | 58.7 1s 578.1 | 50.3 7s 380.3 | 1.0 9s 384.4 | 1ls
dk16 180 5 1077.5 | 3.1 1s 1097.2 | 5.0 | 10s 1045.0 | 0.0 13s || 1044.8 | 158
dfile 119 5 923.2 | 32.5 1s 7015 | 0.6 7s 701.4 | 0.6 8s 696.8 | 10s
keyb 169 5 749.8 | 43.3 1s 724.9 | 38.6 | 12s 517.6 | 1.0 14s 523.0 | 15s
mod12 25 4 245.2 | 21.7 0s 195.9 | 2.7 1s 199.1 | 1.1 1s 201.4 1s
planet 327 6 1640.6 | 2.5 2s 1709.4 | 1.5 | 17s 1685.9 | 0.1 24s || 1683.9 | 28s
sand 336 5 1446.0 | 33.1 2s 1165.5 | 7.2 | 24s 1078.2 | 0.7 27s || 1086.4 | 34s
sreg 9 3 1275 | 1.4 0s 1294 | 0.0 0s 129.4 | 0.0 0s 129.4 1s
styr 313 5 1394.8 | 45.3 2s 1208.2 | 25.8 | 22s 996.9 | 3.8 28s 959.9 | 30s
tbk 478 5 1958.1 | 24.1 4s 1903.6 | 20.7 | 48s 1538.2 | 2.4 52s || 1577.0 | Tls
accumé 45 4 360.9 | 3.5 0s 374.3 | 0.0 2s 374.3 | 0.0 2s 374.3 Bs
accum8 89 8 720.6 | 4.2 1s 752.6 | 0.0 7s 752.6 | 0.0 8s 752.6 | 875s
accumlé 245 16 1521.2 - 2s 1596.3 - | 234s 1596.3 - | 239s unable
count4 19 4 256.2 | 20.1 0s 213.3 | 0.0 1s 213.3 | 0.0 1s 213.3 2s
count? 35 7 474.2 | 12.2 0s 422.6 | 0.0 2s 422.6 | 0.0 3s || 422.6 Bs
count8 40 8 560.1 | 10.2 0s 507.9 | 0.0 3s 507.9 | 0.0 4s 507.9 8s
cbp32.4 489 | 223 8719.1 | 12.2 | 1bs 8731.9 | 12.3 | 4bs 774541 0.3 | 119s || 7769.1 | 84s
add16 214 98 37723 | 5.1 3s 3780.5 | 54| 13s 3568.0 | 0.5 22s || 3586.5 | 23s
mult8 176 87 5985.6 | 22.8 | 12s 5962.6 | 22.4 | 82s || 4866.9 | 0.1 | 110s || 4871.1 | 344s
5953 418 29 762.4 | 76.8 1s 672.7 | 56.0 | 10s 438.7 | 1.7 12s || 431.1| 158
51196 529 18 2557.6 - 4s 2538.4 - | 484s || 2293.8 - | 488s unable
51238 508 18 2709.4 - 4s 2688.3 - | 156s || 2439.2 - | 151s unable
51423 657 74 6017.1 - | 251s 4734.2 - | 271s || 7087.1 - | 289s unable
55378 4212 | 164 124574 - | Tds 12415.1 - | 4558 || 6496.0 - | 478s unable
513207 11241 | 669 37842.1 - | hm 27186.4 - | 11m || 10572.7 - | 338m unable
515850 13659 | 597 || 40016.2 - | 8m 23850.7 - | 14m || 10534.1 - | 167m unable
535932 28269 | 1728 || 122131.2 - | 20m || 118475.3 - | 36m || 62292.0 - | 152m unable
538584 32910 | 1452 || 112705.6 - | 24m 85842.1 - | 44m || 63995.1 - | 922m unable

Table 1: Comparison of sequepgial power estimation methods

Circuit Combinational || Uniform Prob. || Line Prob.
Name err err err
cse 0.427 0.427 0.00788
dk16 0.0782 0.0782 0.0125
dfile 0.075 0.075 0.047
keyb 0.414 0.414 0.0133
mod12 0 0 0.03
planet 0.031 0.031 0.09
sand 0.12 0.12 0.044
sreg 0 0 0
styr 0.3138 0.3138 0.0357
tbk 0.2614 0.2614 0.026
accum4 0 0 0
accum8 0 0 0
accuml6 0 0 0
count4 0 0 0
count? 0 0 0
count8 0 0 0
cbp32.4 - - -
addie - - -
mult8 - - -
5953 - - -
51196 - - -
51238 - - -

Table 2: Absolute errors in present state line probabilities averaged over all present state lines

activity plus the time required for the calculation of state/line probabilities. For all the circuits
BDDs were used to obtain the line probabilities. However, Monte-Carlo simulation was used for

combinational activity estimation for the large ISCAS-89 circuits.

20

In Table 2, present state line probability estimates for the benchmark circuits are presented.
The error value provided in each column shows the absolute error (i.e., absolute value of the
difference between exact and approximate values) of the signal probabilities averaged over all present
state lines in the circuit. The exact values were calculated by the method described in Section 3.
(We could not generate the exact values for circuits in Groups 3 and 4 as the size of Chapman-
Kolmogorov system of equations becomes too large.) It is evident from these results that the error
averaged over all benchmark circuits is well below 0.05 (see the line-prob column entries which
correspond to the method described in Section 4). Note that this error is due to ignoring correlation
as exemplified in Section 4.2, and not due to convergence error of the Newton-Raphson method.
The convergence criterion for line probabilities was set to 0.0001% to generate these results.

We present the switching activity errors for the benchmark circuits in Table 3. Again, the error
value provided in each column represents the absolute error averaged over all internal nodes in
the circuit. It can be seen that this error is quite small. These two tables demonstrate that the
approximate procedure provided in Section 4 leads to very accurate estimates for both the present
state line probabilities and for the switching activity values for all circuit lines.

Next, we present results comparing the Picard-Peano and Newton-Raphson methods to solve
the non-linear equations of Section 4. These results are summarized in Table 4. The number of
iterations required for the Picard-Peano and Newton-Raphson methods are given in Table 4 under
the appropriate columns, as are the CPU times per iteration and the total CPU time. Newton-
Raphson typically takes fewer iterations, but each iteration requires the evaluation of the Jacobian
and is more expensive than the Picard iteration. The results obtained by the two methods are
identical, since the convergence criterion used was the same.

To generate the results in Table 4, the convergence criterion allowed a maximum error of 1%
in the line probabilities. In this case, the Picard-Peano method outperforms the Newton-Raphson
method for virtually all the examples. If the convergence criterion is tightened, e.g., to allow for a
maximum error of .01%, the Picard-Peano method requires substantially more iterations than the
Newton-Raphson and in several examples, the Newton-Raphson method outperforms the Picard-
Peano method. However, since the error due to ignoring correlation (cf. Section 4.2) can be more
than 1%, in practice it does not make sense to tighten the convergence criterion beyond a 1%
allowed error.

In some pathological examples, where the conditions of Theorem 7.1 are not satisfied, the

Picard-Peano method may exhibit oscillatory behavior, and will not converge. In these cases, the

21

Circuit Combinational || Uniform Prob. || Line Prob.
Name err err err
cse 0.402 0.053 0.003
dk16 0.354 0.020 0.010
dfile 0.268 0.019 0.015
keyb 0.363 0.067 0.009
modi12 0.387 0.149 0.156
planet 0.375 0.034 0.034
sand 0.400 0.015 0.010
sreg 0 0 0
styr 0.415 0.058 0.022
tbk 0.423 0.020 0.008
accum4 0.084 0 0
accum8 0.086 0 0
accuml6 0.096 0 0
count4 0.169 0 0
count? 0.189 0 0
count8 0.192 0 0
cbp32.4 - - -
addie - - -
mult8 - - -
5953 - - -
51196 - - -
51238 - - -

Table 3: Absolute errors in switching activity averaged over all circuit lines

strategy we adopt is to use Picard-Peano for several iterations, and if oscillation is detected, the
Newton-Raphson method is applied. The Newton-Raphson method does not require the domain to
be contractive, however, the initial guess has to be “close” to the solution P* in a manner quantified

by Theorem 7.3.

22

Circuit Picard-Peano Newton-Raphson
Name #iter | cpu/iter | total cpu || #iter | cpu/iter | total cpu
cse 5 0.1 0.5 3 1 3
dk16 4 0.18 0.7 3 1 3
dfile 5 0.12 0.6 2 1.5 3
keyb 10 0.07 0.7 6 0.33 2
mod12 3 0.03 0.1 2 0.1 0.2
planet 11 0.13 1.4 3 2.33 7
sand 6 0.22 1.3 3 1 3
sreg 1 0.1 0.1 1 0.1 0.1
styr 7 0.2 1.4 3 2 6
tbk 4 0.5 2.0 3 1.33 4
accum4 1 0.1 0.1 1 0.1 0.1
accum8 1 0.3 0.3 1 1 1
accuml6é 1 1.0 1.0 1 6 6
count4 1 0.1 0.1 1 0.1 0.1
count? 1 0.2 0.2 1 1 1
count8 1 0.2 0.2 1 1 1
cbp32.4 3 0.8 2.4 4 18.5 74
add16 3 0.3 0.9 3 3 9
mult8 2 3.25 6.5 4 9.25 37
5953 30 0.04 1.1 4 0.5 2
51196 2 1.1 2.2 2 2 4
51238 2 1.15 2.3 2 2.5 5

Table 4: Comparison of Picard-Peano and Newton-Raphson

In Table 5, we present results that indicate the improvement in accuracy in power estimation

when k-unrolled or m-expanded networks are used. Results are presented for the finite state machine

23

Circuit || Initial k-Unrolled Error m-Expanded Error

Name || Error k=1 k=2 m=2 m=4
err | cpu | err | cpu err | cpu | err | cpu
cse 1.06 || 0.33 | 18] 0.02| 51| 0.42| 10| 0.00| 10
dfile 0.67] 0.20 | 16| 0.20 | 29 || 0.23 91017 10
keyb 1.02 | 0.02 | 44]0.04 | 53| 1.01 | 14 |0.32] 14
mod12 1.13 || 0.85 21 0.30 3 1.13 11 0.00 2

planet 0.11 | 0.15| 40| 1.72| 45 0.10 | 25 |0.08| 25

sand 0.76 || 0.61 | 64| 0.29 | 109 || 0.64 | 28 | 0.43| 30
styr 3.85 1 0.16 | 67041 | 113 || 0.58 | 29| 0.52| 29
tbk 2.46 || 1.52 | 207 | 0.12 | 597 || 2.17 | 58 | 0.12 | 59

Table 5: Results of power estimation based on k-unrolled and m-expanded networks

Circuit average % error

Name k=0k=1|k=2]|lm=1|m=2|m=4

cse 6.79 | 226 | 0.57 6.79 3.40 0.00

dfile 14.05 | 5.37 | 3.10 14.05 4.82 3.56

keyb 7.18 1.68 | 0.70 7.18 7.09 2.25

modi2 10.24 | 6.36 | 5.00 10.24 | 10.05 0.00

planet || 43.08 | 30.22 | 28.97 || 43.08 | 41.26 | 35.22

sand 16.65 | 12.20 | 11.78 16.65 | 14.02 9.42

styr 43.51 | 1299 | 6.31 | 43.51 6.55 5.97

tbk 18.04 | 4.48 | 2.95 18.04 | 15.91 1.88

Table 6: Percentage error in switching activity estimates averaged over all nodes in the circuit

circuits of Table 1 for 0 < & < 2 and 1 < m < 4. * The percentage differences in power from
the exact power estimate are given. In general, if & — oo, the error will reduce to 0%, however,

increasing k& when k is small is not guaranteed to reduce the error in total power estimates (e.g.,

*The initial error for dk16 and sreg benchmarks is 0, thus, there is no need to improve the accuracy by using

larger values of k and m.

24

consider styr). This phenomenon can be explained as follows. The total power estimate is obtained
by summing power consumptions of all nodes in the circuit. The individual power estimates may
be under- or over-estimated, yet when they are added together, the overall error may become small
due to error cancelation. Increasing k improves the accuracy of power estimates for individual
nodes (see Table 6), but does not necessarily improve the accuracy of power estimate for the circuit
due to the unpredictability of the error cancelation during the summing step. The m-expansion-
based method behaves more predictably for this set of examples, however, again no guarantees
can be made regarding the improvement in accuracy (of total power estimates) on increasing m,
except that when m is set to the number of flip-flops in the machine, the method produces the
Chapman-Kolmogorov equations, and therefore the exact state probabilities are obtained. The
Newton-Raphson method with a convergence criterion of 0.0001% was used to obtain the line
probabilities in Tables 5 and 6.

The CPU times for power estimation are in seconds on a SUN SPARC-2. These times can be
compared with those listed in Table 1 under the “Line Prob.” column as those times correspond
to k = 0 and m = 1. Based on these results, we conclude that £k = 1 and m = 2 provide a good
compromise between accuracy and run-time.

During the synthesis process, we often want to know the switching activity of individual nodes
instead of a single power consumption figure. Table 6 presents the percentage error in individual
node’s switching activity from the exact values as a function of k& and m, averaged over all the nodes
in the circuit. It is seen that the accuracy of switching activity estimates consistently increases
with the value of k and m. For example, the error in switching activity estimates for styr decreases
from 13% to 6.3% when k increases from 1 to 2 and from 6.6% to 6.0% when m increases from 2
to 4. A similar trend exists with respect to the maximum error and the root-mean-squared error

criteria.

9 Conclusions and Ongoing Work

We presented a framework for sequential power estimation in this paper. In this framework, state
probabilities can be computed using the Chapman-Kolmogorov equations, and present state line
probabilities are computed by solving a system of non-linear equations. We have shown that the
latter is significantly more efficient for medium to large circuits, and does not sacrifice accuracy.

Given the present state line probabilities, the switching activity and power dissipation of the

25

circuit can be accurately computed. Any combinational logic estimation method that can accurately

model the correlation between the applied input vector pairs can be used.

References

[1]

[2]

[10]

R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEFFE Transactions
on Computers, C-35(8):677-691, August 1986.

R. Burch, F. Najm, P. Yang, and T. Trick. McPOWER: A Monte Carlo Approach to Power
Estimation. In Proceedings of the Int’l Conference on Computer-Aided Design, pages 90-97,
November 1992.

A. Chandrakasan, T. Sheng, and R. W. Brodersen. Low Power CMOS Digital Design. In
Journal of Solid State Circuils, pages 473-484, April 1992.

A. Ghosh, 5. Devadas, K. Keutzer, and J. White. Estimation of Average Switching Activity
in Combinational and Sequential Circuits. In Proceedings of the 29" Design Automation

Conference, pages 253-259, June 1992.

L. Glasser and D. Dobberpuhl. The Design and Analysis of VLSI Circuits. Addison-Wesley,
1985.

H. M. Lieberstein. A Course in Numerical Analysis. Harper & Row Publishers, 1968.

R. Marculescu, D. Marculescu, and M. Pedram. Logic level power estimation considering
spatiotemporal correlations. In Proceedings of the Int’l Conference on Computer-Aided Design,

pages 294-299, November 1994.

J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits for Low Power. In
Proceedings of the Int’l Conference on Computer-Aided Design, pages 398-402, November
1993.

F. Najm. Transition Density, A Stochastic Measure of Activity in Digital Circuits. In Pro-
ceedings of the 28" Design Automation Conference, pages 644649, June 1991.

F. N. Najm, R. Burch, P. Yang, and I. Hajj. Probabilistic simulation for reliability analysis
of CMOS VLSI circuits. IEEE Transactions on Computer-Aided Design, 9(4):439-450, April
1990.

26

[11] J. M. Ortega and W. C. Rheinboldt. [terative Solution of Nonlinear Equations in Several
Variables. Academic Press, Inc., Boston, MA, 1970.

[12] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill, 3" edi-
tion, 1991.

[13] C. Y. Tsui, M. Pedram, and A. Despain. Efficient Estimation of Dynamic Power Dissipation
under a Real Delay Model. In Proceedings of the Int’l Conference on Computer-Aided Design,
pages 224-228, Nov 1993.

[14] C. Y. Tsui, M. Pedram, and A. Despain. Exact and approximate methods for calculating
signal and transition probabilities in FSMs . In Technical Report CNEG 93-42, Electrical
Engineering-System Department, University of Southern California, October 1993.

27

Primary Inputs

Combinational Logic

Latches
Present States T Next States

Clock

Figure 1: A Synchronous Sequential Circuit

28

Primary Outputs

Figure 2: Example State Transition Graph

29

—
—
Ity —————>
Symbolic
Simulation
10, - NS, Equations
NS.
ps, Ow Next State 2
Logic :
L
PSy NSy

Figure 3: Taking Correlation Into Account

30

Figure 4: k-unrolling of the next state logic

31

Figure 5: Calculation of signal and transition probabilities by network unrolling

32

PS , }— NS,[10

—l| 10, ——— Next State 3110
Logic

PS, D— NS;,[01]

Figure 6: An m-Expanded Network with m = 2

33

