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Abstract - In this paper, we present an algorithm for gate sizing 
with controlled displacement to improve the overall circuit timing. 
We use a path-based delay model to capture the timing 
constraints in the circuit. To reduce the problem size and improve 
the solution convergence, we iteratively identify and optimize the 
k-most critical paths in the circuit and their neighboring cells. All 
the operations are formulated and solved as mathematical 
programming problems by using efficient solution techniques. 
Experimental results on a set of benchmark circuits demonstrate 
the effectiveness of our approach compared to the conventional 
approaches, which separate gate sizing from gate placement. 

1 Introduction 

Timing-driven CAD tools play an important role in the design of 
today's complex IC's. As the clock speed of VLSI circuits 
increases, the need for more aggressive timing optimization 
techniques and algorithms intensifies. Existing CAD tools and 
conventional design flows have not been able to cope with the 
rapidly tightening timing requirements in high-performance VLSI 
circuit. As a result, there is a great need for introducing new 
techniques and design flows for aggressive timing optimization. 
One class of techniques that appears to be particularly promising 
is the class of unification-based approaches, which attempt to 
combine certain optimization steps in the traditional design flows 
into one integrated step [1][2]. In this paper we present a 
unification-based algorithm for simultaneous gate sizing and 
placement of critical sections of a circuit. 

Gate sizing, which has a significant impact on the circuit delay, 
has been an active research topic in recent years. In the 
conventional flows, in-place sizing follows timing-driven 
placement. Many approaches for gate sizing have been proposed. 
In general, these approaches can be divided into two categories: 
discrete and continuous sizing. In the discrete sizing methods, 
only a set of sizes is allowed for each gate. The best size for each 
gate in the circuit is determined by combinatorial or stochastic 
search. In [3], only a small section around the gate that is being 
sized is considered for timing recalculation to reduce the 
computation cost. The continuous sizing methods assume that the 
gate size of each gate type is a continuous variable, so the gate-
sizing problem can be formulated as a mathematical programming 
problem. In TILOS [4], the area and delay are modeled by 
posynomial functions and only one gate is sized at a time. In [5], 
the area and delay of continuously sized gates are modeled 
piecewise linearly and all gates in the circuit are sized 

simultaneously. In [6] simultaneous gate sizing and wire sizing is 
solved by Lagrangian relaxation.  

In both of these methods, only the gate sizes are adjusted to match 
the output loads of the gates, but the other dimension of 
optimization, i.e. adjusting the wire loads of the gates, is 
completely ignored. By moving the gates around, we can actually 
optimize the wire loads. That is especially important in deep sub-
micron (DSM) designs where the effect of interconnects delay 
dominates the chip timing [7]. For DSM technologies, 
interconnect delay can easily account for more than 50% of the 
total delay. In this paper, we introduce a new iterative algorithm 
to tune both the gate sizes and wire loads (gate placement) for 
timing. Suppose an initial placement is given. The k-most critical 
paths in the placed circuit are identified and optimized. There are 
three timing-improvement steps used in our algorithm: 
• Reposition the cells which are directly driven by the cells on 

the k-most critical paths; 
• Size down the cells which are directly driven by the cells on 

the k-most critical paths; 
• Simultaneously size and place the cells on the k-most critical 

paths. 
Compared to the previous sizing approaches, which size one gate 
at a time in an iterative manner [3][4], our method has the 
advantage of sizing a relatively large number of gates (i.e. all 
gates on the k-most critical paths) at the same time. Furthermore 
we do gate sizing and placement of the immediate fan-out gates of 
the cells on the critical paths to reduce the load of the critical 
cells. We also perform simultaneous sizing and placement of the 
critical path cells. Compared to previous gate sizing approaches, 
which handle all the gates at the same time by using a 
mathematical programming formulation [5], our algorithm has the 
advantage of expanding the search space by doing simultaneous 
placement and sizing of the critical paths. Compared to [8] which 
formulates the problem of resizing and relocating gates of some 
initial placement as a linear program, we use a more accurate 
timing function and formulate the optimization problem as a 
generalized geometric program. 

The rest of this paper is organized as follows. In Section 2, we 
present our timing model and the problem formulation. In Section 
3, the optimization steps of our algorithm are discussed. The 
algorithm flow is given in Section 4. Techniques for solving GP 
and GGP problems are reviewed in Section 5. Experimental 
results and conclusions are given in Sections 6 and 7, respectively. 

2 Timing Model and Problem Statement 

The following notation will be used throughout this paper. 
di,j delay from output pin of gate gi to output pin of gate gj 
dinti,j intrinsic delay of gate gj for a transition coming from 

the input pin of the gate which is connected to the 
output of gate gi 

rdri,j drive resistance of gate gj for a transition coming from 
the input pin of the gate which is connected to the 
output of gate gi 

cloadi input gate capacitance of the fan-outs of gate gi 
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cneti lumped capacitance of the output net of gate gi 
rneti lumped resistance of the output net of gate gi 
cini,j input capacitance of gate gj for the input pin of the gate 

which is connected to the output of gate gi 
ai actual arrival time of gi 
ri required arrival time of gi 
si slack time of gi 

xi,yi x & y coordinate of gi 

zi drive strength coefficient of gi, used also to represent the 
size of gi 

C(k) set of cells on the k-most critical paths in the circuit 
Ne(i) set of cells which have a directed shortest path from 

C(k) less or equal to i edges (i≥1) 

2.1 Gate Delay Model With Continuous Sizing 

Path delay in a circuit consists of net delay and gate delay. In this 
paper, net delay is calculated as a lumped model and added to the 
delay of the gate that drives this net. A gate level delay model 
similar to those used in [5] is adopted in this paper. Referring to 
Figure 1, di,j is modeled as: 
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Figure 1. Gate delay model of gj 
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In our formulation, gate gj's size zj is a variable, so dinti,j, rdri,j and 
cini,j are all functions of zj. We can use polynomial functions to fit 
dinti,j, rdri,j and cini,j versus the gate size. For simplicity, we use 
first order polynomial functions. Notice however that any 
polynomial function can be used in our algorithm (cf. Section 5). 
In particular we use the following fitted equations: 
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where α1i,j, α2i,j, α3i,j and β1i,j,  β2i,j, β3i,j  are the regression 
coefficients. 

2.2 Wire Load Estimation 

To estimate the wire load, the minimum bounding-box (MBB) is 
used here. Consider net neti driven by gate gi as shown in Figure 2 

 

 

 

 
Figure 2. Net bounding-box model 

the capacitance cneti and resistance rneti of net neti is given by: 
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gj is any gate connected to neti; Cver, Chor, Rver and Rhor are 
constants related to the process technology and geometry of wires, 
which describe the capacitance per unit length of vertical and 
horizontal wires and the resistance per unit length of vertical and 
horizontal wires, respectively. ρ is a parameter used to adjust the 
estimation error of the bounding box interconnect model [9]. For 
n≤10, the values of ρ are produced in Table 1. We use equation 
(5) for n>10: 

2/)1(lim +=∞>− nn ρ   (5) 
n 2 3 4 5 6 7 8 9 10 
ρ 1 1 3/2 3/2 5/3 7/4 11/6 2 2 

Table 1: Worst case equi-perimeter net lengths. 

Combining equations (1), (2), (3) and (4), our pin-dependent delay 
model di,j can be written as: 
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Theorem The polynomial function corresponding to di,j is a non-
convex function of its variables xnetj,max, xnetj,min, ynetj,max, 
ynetj,min, zj and zk.   

Proof  Since di,j is the product and sum of polynomial 
functions, it is a polynomial function itself. Hessian matrix F of 
function f is the matrix of the 2nd partial derivatives of f. Function 
f is convex over a convex set Ω containing an interior point if and 
only if the Hessian matrix F of f is positive semidefinite 
throughout Ω [10].  For di,j given in equation (6), the Hessian 
matrix is not guaranteed to be positive semidefinite. So our delay 
mode is in general non-convex. 

2.3 Timing Analysis 

Let directed graph G(V, A) represent the netlist of a circuit. The 
vertex set V is in one-to-one correspondence with the set of gates 
whereas the edge set A represents the source-to-sink connections 
between gates. Associated with each gate gi in the circuit, there 
exist a required arrival time ri and an actual arrival time ai. The 
arrival times for primary inputs and the required arrival times for 
primary outputs are specified by the designer of the circuit.  
The actual arrival time aj is given by 

}),(|)max{( , Avvdaa jijiij ∈∀+=   

The required arrival time ri is given by 
}),(|)min{( , Avvdrr jijiji ∈∀−=  

where di,j is defined in equation (6).  

A critical path is a path in which the sequence of vertices 
(vi,…,vo), vi ∈ primary input, vo ∈ primary output which comprise 
the path, all have slack values less than or equal to zero. gi's slack 
time si is defined iii ars −= .  

2.4 Initial Problem Formulation 

A formulation of our problem can be written as (7). The last two 
equality constraints describe the center of mass constraints 
imposed during the optimization in order to spread the cells 
evenly on the whole chip. These constraints are used commonly in 
placement programs that interleave quadratic programming with 
circuit bipartitioning. Examples include Gordian[11], Speed[12]. 
In general n is the number of parts at the current partitioning step. 
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Tstart is the actual arrival time at the circuit primary inputs. partj 

denotes a part, wi is the area of gi and xcj, ycj are the geometric 
centers of partj. 
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Observation The timing constraint functions in the above problem 
are polynomial functions. In general, they are non-convex 
functions. The solution to this problem requires a non-convex 
programming algorithm.  

Unfortunately, for a small circuit size (around 100 cells), the 
above formulation is still too complicate to be solved by 
mathematical programming packages. Furthermore, the above 
formulation results in a lot of gate overlaps, which is undesirable. 
Notice that it is difficult to use recursive circuit partitioning with 
this formulation since cuts in the previous levels may not maintain 
the cell area balance because size of the cells may change by a 
large amount in subsequent optimization steps. 

3 Optimization Phase 

By iteratively finding and optimizing C(k), the timing of the 
whole circuit can be improved gradually while the problem size 
remains manageable. To solve the congestion problem, instead of 
the recursive partitioning approach, we limit the sizes and the 
locations of C(k) to a certain range in each iteration. De-
congestion is applied at the end of placement to guarantee the 
placement is acceptable all the time. The precise formulation of 
C(k)'s sizing and placement problem is given in Section 3.3. 

To reduce the delay of a certain cell, we can size down its fan-out 
cells or pull its fan-out cells closer to reduce its load. So to further 
improve the timing of the critical paths, the capacitance load 
imposed on C(k) by the corresponding Ne(i) should be considered 
too. (In this paper, only Ne(1) is sized down and re-placed). If 
however the sizes and positions of Ne(1) are changed without 
control, new critical paths (which go through Ne(1) or any other 
cell which is a transitive fan-in or fan-out of Ne(1)) may be 
created due to the drive strength or load changes of Ne(1). The 
delay of these new critical paths may be even worse than the 
critical path under consideration. This may lead to cyclic timing 
violation problems or slow down the convergence speed. 

To size down and place Ne(1) optimally while completely 
avoiding the cyclic timing violation problem, we should change 
the locations and sizes of both C(k) and Ne(1) simultaneously. If 
however the locations and sizes of Ne(1) are added to C(k) sizing 
and placement problem as variables, since either the number of 
the gates in Ne(1) or the number of the paths which pass through 
Ne(1) is often much larger than that of C(k), the problem size 
would become unmanageable. So in our approach, we optimize 
C(k) and Ne(1) separately. Notice also that if the Ne(1) gates are 
sized down and repositioned simultaneously, the problem assumes 
a similar form as formulation (10) which is a non-convex 
problem. Again in general the number of cells in Ne(1) is much 
larger than that of C(k); furthermore, it is not easy to control the 
number of gates in Ne(1) as it is to control the number of the gates 
in C(k) by reducing k. The optimization of Ne(1) is therefore done 

in two steps: Ne(1) re-placement and Ne(1) resizing which are 
discussed in Section 3.2 and Section 3.3. In our approach, we 
therefore end up with three optimization steps per iteration: Ne(1) 
re-placement, Ne(1) sizing down, and C(k) sizing and placement. 

3.1 Ne(1) Re-placement 

In this step only the locations of Ne(1) are variables. The 
mathematical formulation is: 
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where xi
', yi

' are the location coordinates of gi from the previous 
iteration; ∆x, ∆y are the position variable change regions defined 
by the optimization schedule which will be discussed in Section 4. 
The new cell locations are controlled by ∆x, ∆y. Tciritcal is the latest 
arrival time of any primary output belonging to C(k) from the 
previous iteration; γ is a constant (0<γ<1) to control how much of 
the spare slack time of Ne(1) is used for re-placement so as to 
optimize the timing of C(k). The third constraint ensures that after 
this step, no path with a delay longer than the delay of the current 
most critical path will be created so that the timing convergence is 
guranteed. 

Considering the delay equation (6), since only the cell locations 
are variable, di,j in formulation (8) becomes a linear function. So 
Ne(1) re-placement is a Linear Programming problem. We use the 
LP-Solver of [13] to solve this problem. Furthermore, if the cells 
connected to the net which is driven by gj, are not changed, then 
delays di,j will be constant. So these redundant timing constraints 
in (8) can be removed to reduce the problem size significantly. 

Notice a non-overlapping constraint is not imposed in the 
formulation of (8). If the position change regions overlap, there 
may be cell congestion. This issue can become detrimental if we 
do not perform de-congestion. In our algorithm after problem (8) 
is solved, the size and ideal location of every cell is determined. 
Initially each cell is assigned to the row which is the closet to its 
ideal location (We assume row-based layout). Cells in the same 
row are placed in the order of their x-axis coordinates.  Next one 
cell from the longest row is moved up/down to the shorter one of 
its immediately adjacent rows. The other cells in these two rows 
(i.e. longer and shorter adjacent rows) are shifted to close the gap 
or create the space as required. This process is repeated until all 
the rows have nearly the same length. 

3.2 Ne(1) Sizing Down 

In this step, only the sizes of Ne(1) are variables. The 
mathematical formulation is: 

)1(|

),(..

'

,

Nev    zz|                 

inputsprimary   v         Ta                 
   C(k) v  and  outputsprimary   v   T  a                 
 C(k)  v  and  outputsprimary   v        t  a                 

   Avv  daa             ts
t   minimize

izii

startj

jjcriticalj

jjcyclej

jijiij

cycle

j 

∈∀∆≤−

∈∀≥
∉∈∀≤
∈∈∀≤

∈∀+≥

λ
(9) 

where zi
' is the size of gi from the previous iteration; ∆z is the size 

variable change regions defined by the optimization schedule. λ 
is a constant (0<λ<1) whose function is similar to that of γ in 
Ne(1) re-placement. Because of a similar reason as in Ne(1) re-



   

placement, there are many redundant timing constraints in 
formulation (9). The problem size can be reduced by deleting 
these redundant constraints. equation (9) can be solved by 
Geometric Programming (GP), which is discussed in Section 5.  

3.3 C(k) Sizing and Placement 

The mathematical formulation of the C(k) sizing and placement 
problem becomes: 
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Equation (10) is a non-convex programming problem. It is the key 
operation for improving the timing of the cicuit and it is the most 
expensive step of our algorithm. Equation (10) can be solved by 
Generalized Geometric Programming (GGP) which is described 
in Section 5.  

There may be a cell congestion problem after equation (10) is 
solved; the decongestion step described in Section 3.2 is therefore 
applied at the end of this optimization step.  

4 Optimization Flow 

In the mathematical formulations of (8), (9) and (10), there are 
predefined variable change ranges ∆x, ∆y, ∆z. These change ranges 
are related to the convergence speed and the degree of cell 
congestion. If the region is too large, there will be a higher 
possibility of cell congestion. It is also possible that the result of 
the current timing optimization will adversely impact the timing 
of other paths. However, if the region is too small, more 
optimization passes will be probably needed.  

Although we have incorporated some methods to improve the 
convergence speed of our algorithm, because the optimization is 
done locally, it is still possible that the solution does not converge 
at all or converges very slowly. To address this problem, we 
introduce a cooling schedule to control the variable freedom. As 
the iteration count increases, ∆x, ∆y, ∆z are decreased. Finally, the 
freedom becomes so small that the circuit timing does not change. 
At that time, the process ends. The schedule also determines the 
total computation time. If the circuit designer is not too concerned 
with the runtime of the algorithm, a slower cooling schedule can 
be used to generate a higher quality result. 

4.1 Selection of Discrete Gate Sizes 

After solving equations (9) and (10) gate sizes are given as real 
numbers which will likely not match the given gate sizes in the 
standard cell library. Therefore at the end of these optimizations, 
we need to round the size of each gate to the size of the closest in 
the library. In general each continuous gate size can be matched to 
at most two discrete gate sizes; one which is just smaller, the other 
which is just larger than the specified size.We now consider the 
problem of discrete gate sizing for minimum delay along the set 
of paths in Ne(1) (for equation (9)) or C(k) (for equation (10)) 
when we are given at most two sizes for each gate. These sizes are 
derived from the continuous sizing solution as explained above. 
This problem is solved using a dynamic programming technique 
similar to that of [14]. In this way, we avoid the arbitrary and 
error-prone technique of simply rounding up the continuous sizing 
solution to a discrete solution. 

4.2 Algorithm Flow 

The main loop of this algorithm consists of three parts: (a) Ne(1) 
re-placement (b) Ne(1) sizing down and (c) simultaneous C(k) 
sizing and placement. Step (c) is the most effective and elaborate 
one and it should be done after both the cell sizes and locations 
are known. Therefore it should be done after steps (a) and (b). As 
mentioned before, step (a) may cause a congestion problem. Step 
(b) in general has more potential to improve the C(k) timing while 
creating less congestion problem. So we decide to use more of the 
spare slack time of Ne(1) during step (b) and do Ne(1) re-
placement first to provide the correct cell locations for Ne(1) 
sizing down. 

As the iteration count increases, the number of critical paths 
increases. So we end up increasing the maximum allowed size of 
C(k). We keep doing this until the size of C(k) becomes too large 
to handle, in which case we stop the optimization process. 

When all the optimization iterations end, the dynamic 
programming based discrete gate selection method is used to 
convert the continuous gate sizes to discrete gate sizes. 

The complete flow of this algorithm is as following: 
1) timing-driven initial placement 
2) timing analysis 
3) adjust ∆ 
4) Ne(1) re-placement 
5) Ne(1) sizing 
6) simultaneous C(k) sizing & placement 
7) if (a)there is improvement or specification not satisfied, and 

(b) the problem is solvable, go to 2) 
8) gate size selection 
9) end 

5 GP and GGP 

We first give some definitions and theorems of GP and GGP. 

Definition Geometric Programming (GP) is a class of nonlinear 
optimization problems having objective functions and constraint 
functions expressed as posynomials.  

Definition Generalized Geometric Programming (GGP) is a class 
of nonlinear optimization problems having objective functions 
and constraint functions expressed as polynomials.  

Note that GP is a convex programming problem[15], and GGP is 
a non-convex programming problem [15]. 

Theorem Gate sizing problem as in equation (9) is a GP problem. 

Theorem Simultaneous gate sizing and placement problem as in 
equation (10) is a GGP problem. 

Proof Follows easily from the equation (9), (10) and the above 
definitions. 

5.1 Geometric Programming (GP) 

By using the variable substitution ln(x)=w, GP can be transformed 
to a linear programming problem. We use the method of[16]. Our 
computational results indicate that this GP algorithm leads to an 
effective and stable implementation for solving our problem.  

5.2 Generalized Geometric Programming (GGP) 

To solve GGP problem, we implement the algorithm [17]. This 
algorithm first introduces a new variable. The original nonlinear 
objective function is absorbed as an additional constraint.  
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Next, each polynomial is separated into its positive and negative 
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Next, the denominator of each constraint is condensed at the 
operating point. Condensation is the process of approximating a 
posynomial function with a monomial function[18]. It is based on 
the weighted arithmetic-geometric (A-G) mean inequality: 
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where ui is positive value, δi is positive weight and ∑δi=1. The 
approximation monomial produced is dependent on the selection 
of weights, which can be any set of positive values that sum to 
unity. One very useful choice is to set the weights equal to the 
fraction that each monomial term ui of the posynomial function p 
contributes to the total value of the posynomial, when evaluated at 

some operating point x’:
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Condensing a posynomial to a monomial may be represented 
symbolically as: 
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Condensing the denominator of each constraints at the operating 
point results in a posynomial divided by an approximating 
monomial, that is an approximating posynomial that is always 
greater than or equal to the parent form. 
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Since the inequality relations hold for all positive values of x, the 
feasible side of the approximating posynomial constraint is a 
subset of the feasible side of the parent constraint. This is 
important because it shows that the approximation does not 
violate the original constraint. 

GGP algorithm can be viewed as a loop. In the loop, the original 
GGP is condensed according to the variables’ initial values, then 
it is transformed to a GP, and this GP is solved. The solution to 
this GP is used to condense the GGP at the next iteration.  

Theorem The sequence of optimal solutions to the GP sequence 
converges to a point satisfying the Kuhn-Tucker necessary 
conditions for the optimality of GGP [17]. 

This algorithm requires a feasible initial solution at the beginning. 
For our problem, any initial placement of a mapped netlist forms a 
feasible solution. Of course, we are well-advised to start with a 
timing-driven placement result and a timing-driven technology 
mapped circuit. 

6 Experimental Results 

We have implemented our algorithm in C++ as a software 
package named SCD (Sizing with Controlled Displacement). 

The following two figures show some snapshots of the results of 
SCD during the optimization of the benchmark C499. In this 
example, at the beginning ∆x is set to 4 times of the average cell 
width, ∆y is set to 4 times of the slot height plus routing channel 
height, and ∆z is set to be maximum allowed change. Figure 3 is 
the result of one optimization iteration using the above values. 
Since each cell has a large change region, the critical path timing 
is improved by a lot. Note that the path layout is very different in 
the two cases shown in Figure 3. Particularly the path length is 
much shorter in Figure 3.2 than it is in Figure 3.1. 

After a number of iterations, the cell freedom is reduced. In this 
case, it may take several iterations to optimize the most critical 
path until another path becomes the most critical. Figure 4 shows 
3 consecutive iterations to optimize another path of C499. Here ∆x 
is twice the average cell width and ∆y is twice the slot height plus 
routing channel height, and ∆z is half of the maximum allowed 
change. We can see that as a result of successive iterations, the 
path becomes more and more straight. However the change in 
path layout is less dramatic than that seen in Figure 4 because of 
small variable change ranges. 

 

 

 

 

            (3.1) path delay: 12.43  (3.2) path delay:12.02 
Figure 3 Result of iteration with large change regions  

 

 

 

      

           (4.1) path delay: 8.31                    (4.2) path delay: 8.27 

 

 

 

 

          (4.3) path delay: 8.22                      (4.4) path delay: 8.17 
Figure 4 Results of multiple iterations with small change regions 

We next calculate the cell slacks for a required arrival time at all 
primary outputs set to be Tcrit where Tcrit is the longest path delay. 
We define the normalized slack of a cell as the ratio of the cell 
slack compared to the longest path delay in the circuit. For 
example, a normalized slack of 0 means the cell is on the critical 
timing path. Note that a normalized slack of 1 can never be 
reached (It means zero delay path exists). In Figure 5, we draw the 
normalized slack distribution plot for C499 before and after 
optimization by SCD. Note that Tcrit before SCD optimization is 
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13.91ns and after SCD optimization it is 6.04ns. The plot clearly 
shows that as a result of SCD optimization, 1) the number of cells 
with the same normalized slack value has increased, and 2) the 
percentage of critical cells in the circuit have increased, that is, the 
path delay distribution of cells has narrowed down. Therefore, we 
conclude that SCD achieves to improve timing by balancing the 
path delays, i.e. longer delay paths get shorter as the expense of 
shorter delay paths getting longer. 
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Figure 5 Distribution of the normalized slack time 
Our algorithm has been applied to ISCAS benchmark circuits 
mapped to a 0.35µ industrial cell library. In this library, we have 
four gate sizes per gate type. The result is compared with the in-
place gate-sizing (IPS) results. For both methods, the circuit is 
placed by TimberWolf first. The first method does in-place gate-

sizing which keeps the cell locations fixed. The second method 
uses the SCD approach. The number of most critical paths 
considered in the optimization, i.e. k, was set such that C(k)≤100 
for each benchmark. The average improvement is about 15% (We 
also have generated results with initial placement done by 
Gordian+Domino. Those results, which are similar to the ones 
reported in Table 2 are not reported here). The SCD runtime is on 
average 20 times higher than that of IPS. However the timing 
improvement justifies the increased runtime. (Software programs 
are run on Pentium II 300). All results are reported after detailed 
placement and detailed routing using YACR. The delays include 
the gate delay and post-layout interconnect delays. 

7 Conclusions 

We presented a new algorithm to do placement and gate-sizing 
simultaneously. Our algorithm improves the timing performance 
by decreasing the delay of the k-most critical paths iteratively. 
During each iteration both the cells on these critical paths and the 
immediate fan-outs of those cells are sized and placed. 
Appropriate mathematical programming methods are used to 
solve these problems. Future work will include integration of 
more powerful logic restructuring techniques with cell placement. 

 

Chip Cell Level Delay of 
TW 

Placement 

Delay of 
In-Place 

Sizing(IPS) 

Area of 
Chip 
(IPS) 

In-Place 
Sizing CPU 

Time (s) 

Delay of 
SCD 

Area of 
Chip 

(SCD) 

SCD CPU 
Time (s) 

Improvement 
(%) over IPS 

C432 215 31 20.90 9.42 299 50 8.56 303 584 9.1 
C880 383 43 21.94 8.92 531 42 7.64 532 798 14.3 

C1355 432 20 14.60 7.15 610 40 6.06 614 583 15.2 
C1908 453 34 20.28 9.63 654 96 8.22 660 1356 14.6 

i6 485 8 9.96 4.94 670 24 4.33 675 367 12.3 
C499 502 21 13.91 6.89 712 101 6.04 724 1726 12.4 
t481 713 18 12.76 6.31 1002 120 5.36 1031 2508 15.1 

C2670 848 24 19.60 8.97 1150 33 7.51 1173 1070 16.3 
k2a 922 22 20.04 10.10 1394 113 8.62 1420 2394 14.7 

C3540 1151 48 32.93 17.24 1502 211 14.57 1523 5230 15.5 
C5315 1640 33 28.85 14.50 2301 121 12.43 2398 2826 14.3 
C7552 2156 55 45.72 20.12 3169 251 16.90 3241 6349 16.0 

des 3059 29 22.49 11.50 4238 510 9.40 4302 22023 18.2 

Table 2. Experimental results 

Reference: 
[1] J.Lou, A.Salek, M.Pedram, "An Exact Solution to Simultaneous 

Technology Mapping and Linear Placement Problem", Proc. Intl. 
Conf. on CAD, pp.671-675, Nov 1997.  

[2] A.Salek, J.Lou, M.Pedram, "A Simultaneous Routing Tree and 
Fanout Optimization Algorithm”, Proc. Intl. Conf. on CAD, pp.625-
630, Nov 1998.  

[3] O.Coudert, R. Haddad, "New Algorithms for Gate Sizing: a 
Comparative Study", Proc. 33rd DAC, pp.734-739, Jun 1996. 

[4] J.P.Fishburn, A.E.Dunlop, "TILOS: a Posynomial Programming 
Approach to Transistor Sizing", Proc. Intl. Conf. on CAD, pp.326-
328, Nov 1985. 

[5] M. Berkelaar, J. Jess, "Gate Sizing in MOS Digital Circuits with 
Linear Programming", Proc. European DAC, pp.217-221, 1990. 

[6] C.P.Chen, C.C.N.Chu, D.F.Wong, “Fast and Exact Simultaneous 
Gate and Wire Sizing by Lagrangian Relaxation”, Proc. Intl. Conf. 
on CAD, pp.617-624. Nov 1998. 

[7] "National Technology Roadmap", Semiconductor Industry 
Association, 1997. 

[8] W. Chuang, I.N.Hajj, “Delay and Area Optimization for Compact 
Placement by Gate Resizing and Relocation”, Proc. Intl. Conf. on 
CAD, pp.145-148, Nov 1994.  

[9] F.R.K.Chung, F.K.Hwang, "The Largest Minimal Rectilinear 
Steiner Trees for a Set of N Points Enclosed in a Rectangle with 
Given Perimeter", "Networks", 9:19-36, 1979. 

[10] D.Luenberger, "Linear and Nonlinear Programming", pp.180, 
1984. 

[11] J.M.Kleinhans, G.Sigl, F.M.Johannes, K.J.Antreich, "GORDIAN: 
VLSI Placement by Quadratic Programming and Slicing 
Optimization", IEEE Trans. on Computer-Aided Design, vol.10, 
No.3, pp.356-365, Mar 1991. 

[12] B.M. Riess, G.G. Ettelt, "SPEED: Fast and Efficient Timing Driven 
Placement", Proc. Intl. Symposium of Circuits and Systems, pp.377-
380, 1995. 

[13] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis", 
Ph.D Thesis, Eindhoven University of Technology, 1992. 

[14] P.K.Chan, “Algorithms for Library-specific Sizing of 
Combinational Logic”, Proc. 27th DAC, pp.353-356, 1990. 

[15] C.Beightler, D.T.Philips, "Applied Geometric Programming", 1976. 
[16] K. O. Kortanek, X. Xu, Y.Ye, "An infeasible interior-point 

algorithm for solving primal and dual geometric programs", 
Mathematical Programming 76, pp.155-181, 1996. 

[17] M.Avriel, R.Dembo, U.Passy, "Solution of Generalized Geometric 
Programming", International Journal for Numerical Methods in 
Engineering, vol.9, 1975. 

[18] R.J. Duffin, "Linearizing Geometric Programs", SIAM Review, 
vol.12, pp.211-237, 1970. 


