
Gate Sizing with Controlled Displacement*

Wei Chen, Cheng-Ta Hsieh, Massoud Pedram
Department of Electrical Engineering – System

University of Southern California, Los Angeles, CA 90089
{weich, chengtah, massoud} @zugros.usc.edu

Abstract - In this paper, we present an algorithm for gate sizing
with controlled displacement to improve the overall circuit timing.
We use a path-based delay model to capture the timing
constraints in the circuit. To reduce the problem size and improve
the solution convergence, we iteratively identify and optimize the
k-most critical paths in the circuit and their neighboring cells. All
the operations are formulated and solved as mathematical
programming problems by using efficient solution techniques.
Experimental results on a set of benchmark circuits demonstrate
the effectiveness of our approach compared to the conventional
approaches, which separate gate sizing from gate placement.

1 Introduction

Timing-driven CAD tools play an important role in the design of
today's complex IC's. As the clock speed of VLSI circuits
increases, the need for more aggressive timing optimization
techniques and algorithms intensifies. Existing CAD tools and
conventional design flows have not been able to cope with the
rapidly tightening timing requirements in high-performance VLSI
circuit. As a result, there is a great need for introducing new
techniques and design flows for aggressive timing optimization.
One class of techniques that appears to be particularly promising
is the class of unification-based approaches, which attempt to
combine certain optimization steps in the traditional design flows
into one integrated step [1][2]. In this paper we present a
unification-based algorithm for simultaneous gate sizing and
placement of critical sections of a circuit.

Gate sizing, which has a significant impact on the circuit delay,
has been an active research topic in recent years. In the
conventional flows, in-place sizing follows timing-driven
placement. Many approaches for gate sizing have been proposed.
In general, these approaches can be divided into two categories:
discrete and continuous sizing. In the discrete sizing methods,
only a set of sizes is allowed for each gate. The best size for each
gate in the circuit is determined by combinatorial or stochastic
search. In [3], only a small section around the gate that is being
sized is considered for timing recalculation to reduce the
computation cost. The continuous sizing methods assume that the
gate size of each gate type is a continuous variable, so the gate-
sizing problem can be formulated as a mathematical programming
problem. In TILOS [4], the area and delay are modeled by
posynomial functions and only one gate is sized at a time. In [5],
the area and delay of continuously sized gates are modeled
piecewise linearly and all gates in the circuit are sized

simultaneously. In [6] simultaneous gate sizing and wire sizing is
solved by Lagrangian relaxation.

In both of these methods, only the gate sizes are adjusted to match
the output loads of the gates, but the other dimension of
optimization, i.e. adjusting the wire loads of the gates, is
completely ignored. By moving the gates around, we can actually
optimize the wire loads. That is especially important in deep sub-
micron (DSM) designs where the effect of interconnects delay
dominates the chip timing [7]. For DSM technologies,
interconnect delay can easily account for more than 50% of the
total delay. In this paper, we introduce a new iterative algorithm
to tune both the gate sizes and wire loads (gate placement) for
timing. Suppose an initial placement is given. The k-most critical
paths in the placed circuit are identified and optimized. There are
three timing-improvement steps used in our algorithm:
• Reposition the cells which are directly driven by the cells on

the k-most critical paths;
• Size down the cells which are directly driven by the cells on

the k-most critical paths;
• Simultaneously size and place the cells on the k-most critical

paths.
Compared to the previous sizing approaches, which size one gate
at a time in an iterative manner [3][4], our method has the
advantage of sizing a relatively large number of gates (i.e. all
gates on the k-most critical paths) at the same time. Furthermore
we do gate sizing and placement of the immediate fan-out gates of
the cells on the critical paths to reduce the load of the critical
cells. We also perform simultaneous sizing and placement of the
critical path cells. Compared to previous gate sizing approaches,
which handle all the gates at the same time by using a
mathematical programming formulation [5], our algorithm has the
advantage of expanding the search space by doing simultaneous
placement and sizing of the critical paths. Compared to [8] which
formulates the problem of resizing and relocating gates of some
initial placement as a linear program, we use a more accurate
timing function and formulate the optimization problem as a
generalized geometric program.

The rest of this paper is organized as follows. In Section 2, we
present our timing model and the problem formulation. In Section
3, the optimization steps of our algorithm are discussed. The
algorithm flow is given in Section 4. Techniques for solving GP
and GGP problems are reviewed in Section 5. Experimental
results and conclusions are given in Sections 6 and 7, respectively.

2 Timing Model and Problem Statement

The following notation will be used throughout this paper.
di,j delay from output pin of gate gi to output pin of gate gj
dinti,j intrinsic delay of gate gj for a transition coming from

the input pin of the gate which is connected to the
output of gate gi

rdri,j drive resistance of gate gj for a transition coming from
the input pin of the gate which is connected to the
output of gate gi

cloadi input gate capacitance of the fan-outs of gate gi

*This research was supported in part by the SRC contract No. 98-DJ-606.

cneti lumped capacitance of the output net of gate gi
rneti lumped resistance of the output net of gate gi
cini,j input capacitance of gate gj for the input pin of the gate

which is connected to the output of gate gi
ai actual arrival time of gi
ri required arrival time of gi
si slack time of gi

xi,yi x & y coordinate of gi

zi drive strength coefficient of gi, used also to represent the
size of gi

C(k) set of cells on the k-most critical paths in the circuit
Ne(i) set of cells which have a directed shortest path from

C(k) less or equal to i edges (i≥1)

2.1 Gate Delay Model With Continuous Sizing

Path delay in a circuit consists of net delay and gate delay. In this
paper, net delay is calculated as a lumped model and added to the
delay of the gate that drives this net. A gate level delay model
similar to those used in [5] is adopted in this paper. Referring to
Figure 1, di,j is modeled as:

 jjjjjijiji cloadrnetcnetcloadrdrdintd ⋅++⋅+=)(,,, (1)

Figure 1. Gate delay model of gj

cloadj is given by: ∑
∈

=
)(
,

jk gfanoutg
kjj cincload (2)

In our formulation, gate gj's size zj is a variable, so dinti,j, rdri,j and
cini,j are all functions of zj. We can use polynomial functions to fit
dinti,j, rdri,j and cini,j versus the gate size. For simplicity, we use
first order polynomial functions. Notice however that any
polynomial function can be used in our algorithm (cf. Section 5).
In particular we use the following fitted equations:

jijjijji

ji
j

ji
jji

jijjijji

zzcin
z

zrdr

zzintd

,,,

,
,

,

,,,

33)(

2
2

)(

11)(

βα

β
α

βα

+⋅=

+=

+⋅=

 (3)

where α1i,j, α2i,j, α3i,j and β1i,j, β2i,j, β3i,j are the regression
coefficients.

2.2 Wire Load Estimation

To estimate the wire load, the minimum bounding-box (MBB) is
used here. Consider net neti driven by gate gi as shown in Figure 2

Figure 2. Net bounding-box model

the capacitance cneti and resistance rneti of net neti is given by:

)]()([
)]()([

min,max,min,max,

min,max,min,max,

iiveriihori

iiveriihori
ynetynetRxnetxnetRrnet
ynetynetCxnetxnetCcnet

−+−⋅=
−+−⋅=

ρ
ρ (4)

where







==

==

}.{min}{max

},{min},{max

min,max,

min,max,

j
g

ij
g

i

j
g

ij
g

i

yynet yynet

xxnetxxnet

jj

jj

gj is any gate connected to neti; Cver, Chor, Rver and Rhor are
constants related to the process technology and geometry of wires,
which describe the capacitance per unit length of vertical and
horizontal wires and the resistance per unit length of vertical and
horizontal wires, respectively. ρ is a parameter used to adjust the
estimation error of the bounding box interconnect model [9]. For
n≤10, the values of ρ are produced in Table 1. We use equation
(5) for n>10:

2/)1(lim +=∞>− nn ρ (5)
n 2 3 4 5 6 7 8 9 10
ρ 1 1 3/2 3/2 5/3 7/4 11/6 2 2

Table 1: Worst case equi-perimeter net lengths.

Combining equations (1), (2), (3) and (4), our pin-dependent delay
model di,j can be written as:

∑

∑

∈

∈

⋅

−+−⋅+

+−⋅+

−⋅⋅+=

)(
,

min,max,min,max,

)(
,min,max,

min,max,,,,

)(

)}()({

})()(

)({)()(dint

jk

jk

gfanoutg
kkj

jjverjjhor

gfanoutg
kkjjjver

jjhorjjijjiji

zcin

ynetynetRxnetxnetR

zcinynetynetC

xnetxnetCzrdrzd

ρ

ρ

ρ

(6)

Theorem The polynomial function corresponding to di,j is a non-
convex function of its variables xnetj,max, xnetj,min, ynetj,max,
ynetj,min, zj and zk.

Proof Since di,j is the product and sum of polynomial
functions, it is a polynomial function itself. Hessian matrix F of
function f is the matrix of the 2nd partial derivatives of f. Function
f is convex over a convex set Ω containing an interior point if and
only if the Hessian matrix F of f is positive semidefinite
throughout Ω [10]. For di,j given in equation (6), the Hessian
matrix is not guaranteed to be positive semidefinite. So our delay
mode is in general non-convex.

2.3 Timing Analysis

Let directed graph G(V, A) represent the netlist of a circuit. The
vertex set V is in one-to-one correspondence with the set of gates
whereas the edge set A represents the source-to-sink connections
between gates. Associated with each gate gi in the circuit, there
exist a required arrival time ri and an actual arrival time ai. The
arrival times for primary inputs and the required arrival times for
primary outputs are specified by the designer of the circuit.
The actual arrival time aj is given by

}),(|)max{(, Avvdaa jijiij ∈∀+=

The required arrival time ri is given by
}),(|)min{(, Avvdrr jijiji ∈∀−=

where di,j is defined in equation (6).

A critical path is a path in which the sequence of vertices
(vi,…,vo), vi ∈ primary input, vo ∈ primary output which comprise
the path, all have slack values less than or equal to zero. gi's slack
time si is defined iii ars −= .

2.4 Initial Problem Formulation

A formulation of our problem can be written as (7). The last two
equality constraints describe the center of mass constraints
imposed during the optimization in order to spread the cells
evenly on the whole chip. These constraints are used commonly in
placement programs that interleave quadratic programming with
circuit bipartitioning. Examples include Gordian[11], Speed[12].
In general n is the number of parts at the current partitioning step.

 gi

 gj

cnetj
 dinti,j

rdri,j
rnetj cloadj

xneti,max

yneti,max

yneti,min

xneti,min

gi

Tstart is the actual arrival time at the circuit primary inputs. partj

denotes a part, wi is the area of gi and xcj, ycj are the geometric
centers of partj.

n1,...,j ycyw
part|

1

n1,...,j xcxw
part|

1

inputsprimary v Ta
outputsprimary v ta

 Avv daa ts
t minimize

j
parti

ii
j

j
parti

ii
j

jstartj

jcyclej

jijiij

cycle

j

j

==⋅

==⋅

∈∀≥
∈∀≤

∈∀+≥

∑

∑

∈

∈

|

|

),(.. ,

 (7)

Observation The timing constraint functions in the above problem
are polynomial functions. In general, they are non-convex
functions. The solution to this problem requires a non-convex
programming algorithm.

Unfortunately, for a small circuit size (around 100 cells), the
above formulation is still too complicate to be solved by
mathematical programming packages. Furthermore, the above
formulation results in a lot of gate overlaps, which is undesirable.
Notice that it is difficult to use recursive circuit partitioning with
this formulation since cuts in the previous levels may not maintain
the cell area balance because size of the cells may change by a
large amount in subsequent optimization steps.

3 Optimization Phase

By iteratively finding and optimizing C(k), the timing of the
whole circuit can be improved gradually while the problem size
remains manageable. To solve the congestion problem, instead of
the recursive partitioning approach, we limit the sizes and the
locations of C(k) to a certain range in each iteration. De-
congestion is applied at the end of placement to guarantee the
placement is acceptable all the time. The precise formulation of
C(k)'s sizing and placement problem is given in Section 3.3.

To reduce the delay of a certain cell, we can size down its fan-out
cells or pull its fan-out cells closer to reduce its load. So to further
improve the timing of the critical paths, the capacitance load
imposed on C(k) by the corresponding Ne(i) should be considered
too. (In this paper, only Ne(1) is sized down and re-placed). If
however the sizes and positions of Ne(1) are changed without
control, new critical paths (which go through Ne(1) or any other
cell which is a transitive fan-in or fan-out of Ne(1)) may be
created due to the drive strength or load changes of Ne(1). The
delay of these new critical paths may be even worse than the
critical path under consideration. This may lead to cyclic timing
violation problems or slow down the convergence speed.

To size down and place Ne(1) optimally while completely
avoiding the cyclic timing violation problem, we should change
the locations and sizes of both C(k) and Ne(1) simultaneously. If
however the locations and sizes of Ne(1) are added to C(k) sizing
and placement problem as variables, since either the number of
the gates in Ne(1) or the number of the paths which pass through
Ne(1) is often much larger than that of C(k), the problem size
would become unmanageable. So in our approach, we optimize
C(k) and Ne(1) separately. Notice also that if the Ne(1) gates are
sized down and repositioned simultaneously, the problem assumes
a similar form as formulation (10) which is a non-convex
problem. Again in general the number of cells in Ne(1) is much
larger than that of C(k); furthermore, it is not easy to control the
number of gates in Ne(1) as it is to control the number of the gates
in C(k) by reducing k. The optimization of Ne(1) is therefore done

in two steps: Ne(1) re-placement and Ne(1) resizing which are
discussed in Section 3.2 and Section 3.3. In our approach, we
therefore end up with three optimization steps per iteration: Ne(1)
re-placement, Ne(1) sizing down, and C(k) sizing and placement.

3.1 Ne(1) Re-placement

In this step only the locations of Ne(1) are variables. The
mathematical formulation is:

)1(|

)1(|

),(..

'

'

,

Nev yy|

Nev xx|

 inputsprimary v Ta
 C(k) v and outputsprimary v T a
 C(k) v and outputsprimary v t a

 Avv daa ts
t minimize

iyii

ixii

startj

jjcriticalj

jjcyclej

jijiij

cycle

j

∈∀∆≤−
∈∀∆≤−

∈∀≥
∉∈∀≤
∈∈∀≤

∈∀+≥

γ (8)

where xi
', yi

' are the location coordinates of gi from the previous
iteration; ∆x, ∆y are the position variable change regions defined
by the optimization schedule which will be discussed in Section 4.
The new cell locations are controlled by ∆x, ∆y. Tciritcal is the latest
arrival time of any primary output belonging to C(k) from the
previous iteration; γ is a constant (0<γ<1) to control how much of
the spare slack time of Ne(1) is used for re-placement so as to
optimize the timing of C(k). The third constraint ensures that after
this step, no path with a delay longer than the delay of the current
most critical path will be created so that the timing convergence is
guranteed.

Considering the delay equation (6), since only the cell locations
are variable, di,j in formulation (8) becomes a linear function. So
Ne(1) re-placement is a Linear Programming problem. We use the
LP-Solver of [13] to solve this problem. Furthermore, if the cells
connected to the net which is driven by gj, are not changed, then
delays di,j will be constant. So these redundant timing constraints
in (8) can be removed to reduce the problem size significantly.

Notice a non-overlapping constraint is not imposed in the
formulation of (8). If the position change regions overlap, there
may be cell congestion. This issue can become detrimental if we
do not perform de-congestion. In our algorithm after problem (8)
is solved, the size and ideal location of every cell is determined.
Initially each cell is assigned to the row which is the closet to its
ideal location (We assume row-based layout). Cells in the same
row are placed in the order of their x-axis coordinates. Next one
cell from the longest row is moved up/down to the shorter one of
its immediately adjacent rows. The other cells in these two rows
(i.e. longer and shorter adjacent rows) are shifted to close the gap
or create the space as required. This process is repeated until all
the rows have nearly the same length.

3.2 Ne(1) Sizing Down

In this step, only the sizes of Ne(1) are variables. The
mathematical formulation is:

)1(|

),(..

'

,

Nev zz|

inputsprimary v Ta
 C(k) v and outputsprimary v T a
 C(k) v and outputsprimary v t a

 Avv daa ts
t minimize

izii

startj

jjcriticalj

jjcyclej

jijiij

cycle

j

∈∀∆≤−

∈∀≥
∉∈∀≤
∈∈∀≤

∈∀+≥

λ
(9)

where zi
' is the size of gi from the previous iteration; ∆z is the size

variable change regions defined by the optimization schedule. λ
is a constant (0<λ<1) whose function is similar to that of γ in
Ne(1) re-placement. Because of a similar reason as in Ne(1) re-

placement, there are many redundant timing constraints in
formulation (9). The problem size can be reduced by deleting
these redundant constraints. equation (9) can be solved by
Geometric Programming (GP), which is discussed in Section 5.

3.3 C(k) Sizing and Placement

The mathematical formulation of the C(k) sizing and placement
problem becomes:

)(|

)(|

)(|

)(

)(
)(,),(..

'

'

'

,

kCv zz|

kCv yy|

kCv xx|

kCv inputs,primary v Ta
kCv outputs,primary v t a

kC vv Avv daa ts
t minimize

izii

iyii

ixii

ijstartj

ijcyclej

jijijiij

cycle

∈∀∆≤−

∈∀∆≤−

∈∀∆≤−

∈∈∀≥
∈∈∀≤

∈∈∀+≥

 (10)

Equation (10) is a non-convex programming problem. It is the key
operation for improving the timing of the cicuit and it is the most
expensive step of our algorithm. Equation (10) can be solved by
Generalized Geometric Programming (GGP) which is described
in Section 5.

There may be a cell congestion problem after equation (10) is
solved; the decongestion step described in Section 3.2 is therefore
applied at the end of this optimization step.

4 Optimization Flow

In the mathematical formulations of (8), (9) and (10), there are
predefined variable change ranges ∆x, ∆y, ∆z. These change ranges
are related to the convergence speed and the degree of cell
congestion. If the region is too large, there will be a higher
possibility of cell congestion. It is also possible that the result of
the current timing optimization will adversely impact the timing
of other paths. However, if the region is too small, more
optimization passes will be probably needed.

Although we have incorporated some methods to improve the
convergence speed of our algorithm, because the optimization is
done locally, it is still possible that the solution does not converge
at all or converges very slowly. To address this problem, we
introduce a cooling schedule to control the variable freedom. As
the iteration count increases, ∆x, ∆y, ∆z are decreased. Finally, the
freedom becomes so small that the circuit timing does not change.
At that time, the process ends. The schedule also determines the
total computation time. If the circuit designer is not too concerned
with the runtime of the algorithm, a slower cooling schedule can
be used to generate a higher quality result.

4.1 Selection of Discrete Gate Sizes

After solving equations (9) and (10) gate sizes are given as real
numbers which will likely not match the given gate sizes in the
standard cell library. Therefore at the end of these optimizations,
we need to round the size of each gate to the size of the closest in
the library. In general each continuous gate size can be matched to
at most two discrete gate sizes; one which is just smaller, the other
which is just larger than the specified size.We now consider the
problem of discrete gate sizing for minimum delay along the set
of paths in Ne(1) (for equation (9)) or C(k) (for equation (10))
when we are given at most two sizes for each gate. These sizes are
derived from the continuous sizing solution as explained above.
This problem is solved using a dynamic programming technique
similar to that of [14]. In this way, we avoid the arbitrary and
error-prone technique of simply rounding up the continuous sizing
solution to a discrete solution.

4.2 Algorithm Flow

The main loop of this algorithm consists of three parts: (a) Ne(1)
re-placement (b) Ne(1) sizing down and (c) simultaneous C(k)
sizing and placement. Step (c) is the most effective and elaborate
one and it should be done after both the cell sizes and locations
are known. Therefore it should be done after steps (a) and (b). As
mentioned before, step (a) may cause a congestion problem. Step
(b) in general has more potential to improve the C(k) timing while
creating less congestion problem. So we decide to use more of the
spare slack time of Ne(1) during step (b) and do Ne(1) re-
placement first to provide the correct cell locations for Ne(1)
sizing down.

As the iteration count increases, the number of critical paths
increases. So we end up increasing the maximum allowed size of
C(k). We keep doing this until the size of C(k) becomes too large
to handle, in which case we stop the optimization process.

When all the optimization iterations end, the dynamic
programming based discrete gate selection method is used to
convert the continuous gate sizes to discrete gate sizes.

The complete flow of this algorithm is as following:
1) timing-driven initial placement
2) timing analysis
3) adjust ∆
4) Ne(1) re-placement
5) Ne(1) sizing
6) simultaneous C(k) sizing & placement
7) if (a)there is improvement or specification not satisfied, and

(b) the problem is solvable, go to 2)
8) gate size selection
9) end

5 GP and GGP

We first give some definitions and theorems of GP and GGP.

Definition Geometric Programming (GP) is a class of nonlinear
optimization problems having objective functions and constraint
functions expressed as posynomials.

Definition Generalized Geometric Programming (GGP) is a class
of nonlinear optimization problems having objective functions
and constraint functions expressed as polynomials.

Note that GP is a convex programming problem[15], and GGP is
a non-convex programming problem [15].

Theorem Gate sizing problem as in equation (9) is a GP problem.

Theorem Simultaneous gate sizing and placement problem as in
equation (10) is a GGP problem.

Proof Follows easily from the equation (9), (10) and the above
definitions.

5.1 Geometric Programming (GP)

By using the variable substitution ln(x)=w, GP can be transformed
to a linear programming problem. We use the method of[16]. Our
computational results indicate that this GP algorithm leads to an
effective and stable implementation for solving our problem.

5.2 Generalized Geometric Programming (GGP)

To solve GGP problem, we implement the algorithm [17]. This
algorithm first introduces a new variable. The original nonlinear
objective function is absorbed as an additional constraint.

,...,m,k xg ,xxg ts
x minimize

k 21,0)()(.. 00

0
=≤≤

where g0, g1, ……,gk are polynomial functions, g0 is the original
objective function.

Next, each polynomial is separated into its positive and negative
parts, giving differences of pairs of posynomial functions:

mk xpxp xxpxp ts

x minimize

kk ,...,2,1,0)()(,)()(.. 000

0

=≤−≤− −+−+

where p+
k(x) and p-

k(x) are posynomial functions.

Then all the negative terms are brought to the right-hand side of
the inequalities and divided through to yield a quotient form:

 mk
xp

xp

xxp

xp
 ts

x inimizem

k

k ,...,2,1,1
)(

)(
,1

)(

)(
..

00

0

0

=≤≤
+ −

+

−

+

Next, the denominator of each constraint is condensed at the
operating point. Condensation is the process of approximating a
posynomial function with a monomial function[18]. It is based on
the weighted arithmetic-geometric (A-G) mean inequality:

∑ ∏≥
i i i

i
i

i
u

u δ
δ

)(

where ui is positive value, δi is positive weight and ∑δi=1. The
approximation monomial produced is dependent on the selection
of weights, which can be any set of positive values that sum to
unity. One very useful choice is to set the weights equal to the
fraction that each monomial term ui of the posynomial function p
contributes to the total value of the posynomial, when evaluated at

some operating point x’:
)'(

)'(

xp

xui
i =δ .

Condensing a posynomial to a monomial may be represented
symbolically as:

∏
=

=
t

i
ii

ixuxxpC
1

]/)([]'),([δδ

Condensing the denominator of each constraints at the operating
point results in a posynomial divided by an approximating
monomial, that is an approximating posynomial that is always
greater than or equal to the parent form.

)(

)(

]'),([

)(

xp

xp

xxpC

xp
−

+

−

+
≥

Since the inequality relations hold for all positive values of x, the
feasible side of the approximating posynomial constraint is a
subset of the feasible side of the parent constraint. This is
important because it shows that the approximation does not
violate the original constraint.

GGP algorithm can be viewed as a loop. In the loop, the original
GGP is condensed according to the variables’ initial values, then
it is transformed to a GP, and this GP is solved. The solution to
this GP is used to condense the GGP at the next iteration.

Theorem The sequence of optimal solutions to the GP sequence
converges to a point satisfying the Kuhn-Tucker necessary
conditions for the optimality of GGP [17].

This algorithm requires a feasible initial solution at the beginning.
For our problem, any initial placement of a mapped netlist forms a
feasible solution. Of course, we are well-advised to start with a
timing-driven placement result and a timing-driven technology
mapped circuit.

6 Experimental Results

We have implemented our algorithm in C++ as a software
package named SCD (Sizing with Controlled Displacement).

The following two figures show some snapshots of the results of
SCD during the optimization of the benchmark C499. In this
example, at the beginning ∆x is set to 4 times of the average cell
width, ∆y is set to 4 times of the slot height plus routing channel
height, and ∆z is set to be maximum allowed change. Figure 3 is
the result of one optimization iteration using the above values.
Since each cell has a large change region, the critical path timing
is improved by a lot. Note that the path layout is very different in
the two cases shown in Figure 3. Particularly the path length is
much shorter in Figure 3.2 than it is in Figure 3.1.

After a number of iterations, the cell freedom is reduced. In this
case, it may take several iterations to optimize the most critical
path until another path becomes the most critical. Figure 4 shows
3 consecutive iterations to optimize another path of C499. Here ∆x
is twice the average cell width and ∆y is twice the slot height plus
routing channel height, and ∆z is half of the maximum allowed
change. We can see that as a result of successive iterations, the
path becomes more and more straight. However the change in
path layout is less dramatic than that seen in Figure 4 because of
small variable change ranges.

 (3.1) path delay: 12.43 (3.2) path delay:12.02
Figure 3 Result of iteration with large change regions

 (4.1) path delay: 8.31 (4.2) path delay: 8.27

 (4.3) path delay: 8.22 (4.4) path delay: 8.17
Figure 4 Results of multiple iterations with small change regions

We next calculate the cell slacks for a required arrival time at all
primary outputs set to be Tcrit where Tcrit is the longest path delay.
We define the normalized slack of a cell as the ratio of the cell
slack compared to the longest path delay in the circuit. For
example, a normalized slack of 0 means the cell is on the critical
timing path. Note that a normalized slack of 1 can never be
reached (It means zero delay path exists). In Figure 5, we draw the
normalized slack distribution plot for C499 before and after
optimization by SCD. Note that Tcrit before SCD optimization is

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
Window .w0.f.c
Creator:
Tk Canvas Widget
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

13.91ns and after SCD optimization it is 6.04ns. The plot clearly
shows that as a result of SCD optimization, 1) the number of cells
with the same normalized slack value has increased, and 2) the
percentage of critical cells in the circuit have increased, that is, the
path delay distribution of cells has narrowed down. Therefore, we
conclude that SCD achieves to improve timing by balancing the
path delays, i.e. longer delay paths get shorter as the expense of
shorter delay paths getting longer.

0

10

20

30

40
Before

After

Figure 5 Distribution of the normalized slack time
Our algorithm has been applied to ISCAS benchmark circuits
mapped to a 0.35µ industrial cell library. In this library, we have
four gate sizes per gate type. The result is compared with the in-
place gate-sizing (IPS) results. For both methods, the circuit is
placed by TimberWolf first. The first method does in-place gate-

sizing which keeps the cell locations fixed. The second method
uses the SCD approach. The number of most critical paths
considered in the optimization, i.e. k, was set such that C(k)≤100
for each benchmark. The average improvement is about 15% (We
also have generated results with initial placement done by
Gordian+Domino. Those results, which are similar to the ones
reported in Table 2 are not reported here). The SCD runtime is on
average 20 times higher than that of IPS. However the timing
improvement justifies the increased runtime. (Software programs
are run on Pentium II 300). All results are reported after detailed
placement and detailed routing using YACR. The delays include
the gate delay and post-layout interconnect delays.

7 Conclusions

We presented a new algorithm to do placement and gate-sizing
simultaneously. Our algorithm improves the timing performance
by decreasing the delay of the k-most critical paths iteratively.
During each iteration both the cells on these critical paths and the
immediate fan-outs of those cells are sized and placed.
Appropriate mathematical programming methods are used to
solve these problems. Future work will include integration of
more powerful logic restructuring techniques with cell placement.

Chip Cell Level Delay of
TW

Placement

Delay of
In-Place

Sizing(IPS)

Area of
Chip
(IPS)

In-Place
Sizing CPU

Time (s)

Delay of
SCD

Area of
Chip

(SCD)

SCD CPU
Time (s)

Improvement
(%) over IPS

C432 215 31 20.90 9.42 299 50 8.56 303 584 9.1
C880 383 43 21.94 8.92 531 42 7.64 532 798 14.3

C1355 432 20 14.60 7.15 610 40 6.06 614 583 15.2
C1908 453 34 20.28 9.63 654 96 8.22 660 1356 14.6

i6 485 8 9.96 4.94 670 24 4.33 675 367 12.3
C499 502 21 13.91 6.89 712 101 6.04 724 1726 12.4
t481 713 18 12.76 6.31 1002 120 5.36 1031 2508 15.1

C2670 848 24 19.60 8.97 1150 33 7.51 1173 1070 16.3
k2a 922 22 20.04 10.10 1394 113 8.62 1420 2394 14.7

C3540 1151 48 32.93 17.24 1502 211 14.57 1523 5230 15.5
C5315 1640 33 28.85 14.50 2301 121 12.43 2398 2826 14.3
C7552 2156 55 45.72 20.12 3169 251 16.90 3241 6349 16.0

des 3059 29 22.49 11.50 4238 510 9.40 4302 22023 18.2

Table 2. Experimental results

Reference:
[1] J.Lou, A.Salek, M.Pedram, "An Exact Solution to Simultaneous

Technology Mapping and Linear Placement Problem", Proc. Intl.
Conf. on CAD, pp.671-675, Nov 1997.

[2] A.Salek, J.Lou, M.Pedram, "A Simultaneous Routing Tree and
Fanout Optimization Algorithm”, Proc. Intl. Conf. on CAD, pp.625-
630, Nov 1998.

[3] O.Coudert, R. Haddad, "New Algorithms for Gate Sizing: a
Comparative Study", Proc. 33rd DAC, pp.734-739, Jun 1996.

[4] J.P.Fishburn, A.E.Dunlop, "TILOS: a Posynomial Programming
Approach to Transistor Sizing", Proc. Intl. Conf. on CAD, pp.326-
328, Nov 1985.

[5] M. Berkelaar, J. Jess, "Gate Sizing in MOS Digital Circuits with
Linear Programming", Proc. European DAC, pp.217-221, 1990.

[6] C.P.Chen, C.C.N.Chu, D.F.Wong, “Fast and Exact Simultaneous
Gate and Wire Sizing by Lagrangian Relaxation”, Proc. Intl. Conf.
on CAD, pp.617-624. Nov 1998.

[7] "National Technology Roadmap", Semiconductor Industry
Association, 1997.

[8] W. Chuang, I.N.Hajj, “Delay and Area Optimization for Compact
Placement by Gate Resizing and Relocation”, Proc. Intl. Conf. on
CAD, pp.145-148, Nov 1994.

[9] F.R.K.Chung, F.K.Hwang, "The Largest Minimal Rectilinear
Steiner Trees for a Set of N Points Enclosed in a Rectangle with
Given Perimeter", "Networks", 9:19-36, 1979.

[10] D.Luenberger, "Linear and Nonlinear Programming", pp.180,
1984.

[11] J.M.Kleinhans, G.Sigl, F.M.Johannes, K.J.Antreich, "GORDIAN:
VLSI Placement by Quadratic Programming and Slicing
Optimization", IEEE Trans. on Computer-Aided Design, vol.10,
No.3, pp.356-365, Mar 1991.

[12] B.M. Riess, G.G. Ettelt, "SPEED: Fast and Efficient Timing Driven
Placement", Proc. Intl. Symposium of Circuits and Systems, pp.377-
380, 1995.

[13] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis",
Ph.D Thesis, Eindhoven University of Technology, 1992.

[14] P.K.Chan, “Algorithms for Library-specific Sizing of
Combinational Logic”, Proc. 27th DAC, pp.353-356, 1990.

[15] C.Beightler, D.T.Philips, "Applied Geometric Programming", 1976.
[16] K. O. Kortanek, X. Xu, Y.Ye, "An infeasible interior-point

algorithm for solving primal and dual geometric programs",
Mathematical Programming 76, pp.155-181, 1996.

[17] M.Avriel, R.Dembo, U.Passy, "Solution of Generalized Geometric
Programming", International Journal for Numerical Methods in
Engineering, vol.9, 1975.

[18] R.J. Duffin, "Linearizing Geometric Programs", SIAM Review,
vol.12, pp.211-237, 1970.

