
1

Simultaneous Gate Sizing and Placement

Wei Chen, Cheng-Ta Hsieh, Massoud Pedram

Department of Electrical Engineering – System

University of Southern California, Los Angeles, CA 90089

{weich, chengtah, massoud}@zugros.usc.edu

Abstract

In this paper, we present an algorithm for gate sizing with controlled displacement to improve the

overall circuit timing. We use a path-based delay model to capture the timing constraints in the circuit. To

reduce the problem size and improve the solution convergence, we iteratively identify and optimize the k-

most critical paths in the circuit and their neighboring cells. More precisely in each iteration, we perform

three operations: a) reposition the immediate fan-outs of the gates on the k-most critical paths; b) size

down the immediate fan-outs of the gates on the k-most critical paths; c) simultaneously reposition and

resize the gates on the k-most critical paths. Each of these operations is formulated and solved as a

mathematical program by using efficient solution techniques. Experimental results on a set of benchmark

circuits demonstrate the effectiveness of our approach compared to the conventional approaches which

separate gate sizing from gate placement.

1 Introduction

Timing-driven CAD tools play an important role in the design of today's complex IC's. As the clock speed

of VLSI circuits increases, the need for more aggressive timing optimization techniques and algorithms

intensifies. This trend is expected to escalate as the minimum feature size scales to the sub-quarter-micron

region. Existing CAD tools and conventional design flows have not been able to cope with the rapidly

tightening timing requirements in high-performance VLSI circuit. As a result, there is a great need for

introducing new techniques and design flows for aggressive timing optimization. One class of techniques

that appears to be particularly promising is the class of unification-based approaches, which attempt to

combine certain optimization steps in the traditional design flows into one integrated step. Examples

include techniques for simultaneous technology mapping and placement[1], simultaneous fan-out

optimization and Steiner routing[2]. In this paper we present a unification-based algorithm for simultaneous

gate sizing and placement of critical sections of a circuit.

Gate sizing, which has a significant impact on the circuit delay, has been an active research topic in recent

years. In the conventional flows (currently practiced in industry) timing driven cell placement is followed

by in-place gate sizing in order to correct timing violations that may have remained in the circuit after

2

technology mapping and cell placement.

Many approaches for gate sizing have been proposed. In general, these approaches can be divided into two

categories: discrete sizing and continuous sizing. In the discrete gate sizing method, a set of sizes is allowed

for each gate. The best size for each gate in the circuit is determined by combinatorial or stochastic search.

Note that when the size of a gate in the circuit is changed, the signal arrival time for all the gates that are in

the transitive fan-in or fan-out cones of the sized gate may change. As a result, the circuit timing analysis

must be repeated after each sizing step. The cost of such dynamic timing update is quite high. In [3], only a

small section around the gate that is being sized is considered for timing recalculation to reduce the

computation cost. For libraries with a large number of choices for each gate type, this method may become

slow. For libraries with a small number of choices for each gate type, the discrete gate sizing may

outperform the continuous sizing method due to the highly discrete nature of the optimization variables.

The continuous sizing methods assume that the gate size of each gate type is a continuous variable. As a

result, the gate-sizing problem can be formulated as a mathematical programming problem. In TILOS[4],

the area and delay are modeled by posynomial functions and only one gate is sized at a time. In [5], the area

and delay of continuously sized gates are modeled piecewise linearly and all gates in the circuit are sized

simultaneously. Simultaneous gate sizing and wire sizing is solved by Lagrangian relaxation in [6].

In both of these methods, only the gate sizes are adjusted to match the output loads of the gates, but the

other dimension of optimization, i.e. adjusting the wire loads of the gates, is completely ignored. By

moving the gates around, we can actually explore the other dimension i.e. changing the wire loads. That is

especially important in deep sub-micron (DSM) designs where the effect of interconnects delay dominates

the chip timing [7]. For DSM technologies, interconnect delay can easily account for more than 50% of the

total delay. It is necessary to develop algorithms and tools for concurrent gate sizing and placement as well

as computational delay models that account for both gate and interconnect delays during this joint

optimization process.

In this paper, we introduce a new iterative algorithm to tune both the gate sizes and wire loads (gate

placement) for timing. Suppose an initial placement is given. The k-most critical paths in the placed circuit

are identified and optimized. There are three timing-improvement steps used in our algorithm:

• Reposition the cells which are directly driven by the cells on the k-most critical paths;

• Size down the cells which are directly driven by the cells on the k-most critical paths;

• Simultaneously size and place the cells on the k-most critical paths.

The first two steps are used to reduce the loads of the cells on the critical paths. The last step is used to

optimize the cells on the critical paths directly. Each optimization step is formulated as a mathematical

programming problem. We solve the first problem by Linear Programming and the second one by

3

Geometric Programming. The third problem, which is the most complicated case, is a non-convex, non-

linear problem. We solve it by Generalized Geometric Programming (cf. Section 6). A heuristic is used to

simplify the third problem to an acceptable size. The optimization process is terminated when there is no

improvement in the current iteration compared to the previous t iterations or the specification is achieved.

Compared to the previous sizing approaches, which size one gate at a time in an iterative manner (or by

using simulated annealing)[3][4], our method has the advantage of sizing a relatively large number of gates

(i.e. all gates on the k-most critical paths) at the same time. Furthermore we size and place the immediate

fan-out gates of cells on the critical paths to reduce the load of these critical cells. Finally we perform

simultaneous sizing and placement of the critical path cells. Hence better solution quality can be obtained.

Compared to previous gate sizing approaches, which handle all the gates at the same time by using a linear

programming formulation[5], our algorithm has the advantage of expanding the search space by doing

simultaneous placement and sizing of gates (although we do not optimize all the gates in the circuit in one

shot due to the problem complexity). Compared to [8] which formulates the problem of resizing and

relocating gates from some initial placements as a piecewise linear program, we use a more accurate timing

function and formulate the optimization problem as a generalized geometric program.

The remainder of this paper is organized as follows. In Section 2, we present our gate sizing model and the

initial problem formulation. In Section 3 simultaneous gate sizing and placement on the k-most critical

paths is discussed. The optimization of the fan-outs of the k-most critical paths is given in Section 4.

Algorithm flow is shown in Section 5. Technologies for solving GP and GGP problems are described in

Section 6. Experimental results and conclusions are given in Sections 7 and 8, respectively.

2 Timing Model and Problem Statement

The following notation will be used throughout this paper.

G(V,A) A directed acyclic graph representation of the circuit; V is the vertex set (cells), A is the edge set
(cell connections), PI is the set of primary inputs and PO is the set of primary outputs; n is the
number of cells, e is the number of edges, q is the number of primary inputs and outputs

di,j delay from the output pin of gate gi to the output pin of gate gj

dinti,j intrinsic delay of gate gj for a transition coming from the input pin of the gate which is connected
to the output of gate gi

rdri,j drive resistance of gate gj for a transition coming from the input pin of the gate which is connected
to the output of gate gi

cloadi input gate capacitance of the fan-outs of gate gi

cneti lumped capacitance of the output net of gate gi

rneti lumped resistance of the output net of gate gi

4

cini,j input capacitance of gate gj for the input pin which is connected to the output of gate gi

ai actual arrival time of gi

ri required arrival time of gi

si slack time of gi

xi x-axis coordinate of gi

yi y-axis coordinate of gi

zi drive strength of gi, used also to represent the size of gi

C(k) set of cells on the k most-critical paths in the circuit; n’ is the number of cells, e’ is the number of
edges, and q’ is the number of primary inputs and outputs in C(k)

Ne(k,i) set of cells which are in the transitive fanout of C(k) and receive a directed shortest path from C(k)
which is i edges or fewer; n” is the number of cells in Ne(k,i)

DVCRi dynamic variable change region of gi

The reader should especially note the definitions of C(k) and Ne(k,i).

2.1 Gate Delay Model With Continuous Sizing

Path delay in a circuit consists of two components: net delay and gate delay. In this paper, the net delay is

calculated as a lumped model and added to the delay of the gate that drives this net. A gate level delay

model similar to those used in [5] is adopted in this paper. Referring to Figure 1, di,j can be thought as the

delay from the input pin of gj, which connects the output of gi, to the input pin of the gate which is driven

by gj. di,j is modeled as:

jjjjj,ij,ij,i cloadrnet)cnetcload(rdrintdd ⋅++⋅+= (1)

dint i.j
rdr i.j

rnet i

cnet i

c loadjg j

d ij

g i

Figure 1. Gate delay model

cloadj is given by:

∑
∈

=
)(

,

jk gfanoutg
kjj cincload (2)

5

xneti,max

yneti,maxx

yneti,min

xneti,min

gi

When the gate size is fixed, dinti,j, rdri,j and cini,j are constants. In our formulation, gate gj's size zj is a

variable, so dinti,j, rdri,j and cini,j are all functions of zj. We can use polynomial functions to fit dinti,j, rdri,j

and cini,j versus the gate size. For simplicity, we use first order polynomial functions. Notice however that

any order polynomial function can be used in our algorithm (cf. Section 6). In particular we use the

following fitted equations:

jijjijji

ji
j

ji
jji

jijjijji

zzcin

z
zrdr

zzd

,,,

,
,

,

,,,

33)(

2
2

)(

11)(int

βα

β
α

βα

+⋅=

+=

+⋅=

(3)

where α1i,j, α2i,j, α3i,j and β1i,j, β2i,j, β3i,j are the regression coefficients.

2.2 Wire Load Estimation

To make the timing formulation continuous, the minimum bounding-box (MBB) model is used to estimate

the wire load. More precisely, the delay of a net is related to the half-perimeter length of the MBB of the

net. Consider net neti driven by gate gi as shown in Figure 2.

Figure 2. Net bounding-box model.

The estimation of the capacitance cneti and resistance rneti of net neti is given by:

)}ynetynet(R)xnetxnet(R{rnet

)}ynetynet(C)xnetxnet(C{cnet

,mini,maxiver,mini,maxihori

,mini,maxiver,mini,maxihori

−+−⋅=
−+−⋅=

ρ
ρ

 (4)

where }.{min and }{max},{min},{max min,max,min,max, jgij
g

ijgij
g

i yynetyynetxxnetxxnet
jjjj

==== And gj is any

gate connected to neti; Cver , Chor , Rver and Rhor are constants related to the process technology and

geometry of wires, which describe the capacitance per unit length of vertical and horizontal wires and the

6

resistance per unit length of vertical and horizontal wires, respectively. ρ is a parameter used to adjust the

estimation error of the bounding box interconnect model [9]. For n≤10, the values of ρ are produced in

table 1. We use equation (5) for n>10.

2

1n
limn

+=∞>− ρ (5)

n 2 3 4 5 6 7 8 9 10

ρ 1 1 3/2 3/2 5/3 7/4 11/6 2 2

Table 1: Worst case equi-perimeter net lengths.

Combining equations (1), (2), (3) and (4), our pin-dependent, load-dependent delay model di,j can be

written as:

))(()}()({

})()()({)()(dint

)(
,min,max,min,max,

)(
,min,max,min,max,,,,

∑

∑

∈

∈

⋅−+−⋅+

+−⋅+−⋅⋅+=

jk

jk

gfanoutg
kkjjjverjjhor

gfanoutg
kkjjjverjjhorjjijjiji

zcinynetynetRxnetxnetR

zcinynetynetCxnetxnetCzrdrzd

ρ

ρρ

 (6)

Theorem 1 The polynomial function corresponding to di,j is a non-convex function of its variable xnetj,max,

xnetj,min, ynetj,max, ynetj,min, zj and zk.

Proof Since di,j is the product and sum of polynomial functions, it is a polynomial function itself.

Hessian matrix F of function f is the matrix of the 2nd partial derivatives of f. Function f is convex over a

convex set Ω containing an interior point if and only if the Hessian matrix F of f is positive semi-definite

throughout Ω [10]. For di,j given in equation (6), the Hessian matrix is not guaranteed to be positive semi-

definite. So our delay mode is in general non-convex. �

2.3 Timing Analysis

Let directed graph G(V, A) represent the netlist of a circuit with signal flow information. The vertex set V is

in one-to-one correspondence with the set of gates whereas the edge set A represents the source-to-sink

connections between gates. Recall that we denote the number of vertices by n and the number of edges by

e. Associated with each gate gi in the circuit, there exist a required arrival time ri and an actual arrival time

ai. The arrival times for primary inputs and the required times for primary outputs are specified by the

environment or the designer of the circuit. (Alternatively, the designer can specify a cycle time T that

would then be satisfied by setting the input arrival times to zero and the output required times to T).

7

The actual arrival time aj is given by

}A)v,v(|)damax{(a jij,iij ∈∀+=

The required arrival time ri is given by

}A)v,v(|)drmin{(r jij,iji ∈∀−=

where di,j is defined in equation (6).

A critical path is a path in which the sequence of vertices (vi,…,vo), vi ∈ primary input, vo ∈ primary output

which comprise the path, all have slack values less than or equal to zero. gi's slack time si is defined

iii ars −=

2.4 Global Problem Formulation

The simultaneous cell sizing and global placement problem can be formulated as:

L1,...,j

L1,...,j

 PI

 PO t

),(..

 t

,

==

⋅

==

⋅

∈∀≥

∈∀+≤

∈∀+≥

∑

∑

∑

∑

∈

∈

∈

∈

j

parti
i

parti
ii

j

parti
i

parti
ii

jstartj

jcyclestartj

jijiij

cycle

yc
w

yw

xc
w

xw

vTa

vTa

Avvdaats

minimize

j

j

j

j (7)

where partj denotes the jth part, wi= f(zi) is a library function relating area of gi to its size zi, and xcj, ycj are

the geometric centers of partj. The first three inequality constraints describe the timing relations, arrival and

required time requirements in the circuit. The last two equality constraints describe the center of mass

constraints imposed during the optimization in order to spread the cells evenly across the whole chip. The

center of mass constraints are commonly used in placement programs that interleave quadratic

programming with circuit bi-partitioning. Examples include Gordian [11], Speed [12]. In general L is the

number of parts at the current partitioning step (L is a power of two due to recursive bi-partitioning step).

8

Theorem 2 Problem formulation (7) provides a correct statement of the simultaneous gate sizing and

placement problem.

Proof The constraints of formulation (7) account for all the timing relations of the circuit and enforce

even distribution across the n parts, so the solution produces a minimum cycle time for the circuit while

satisfying the timing requirements and the center of mass constraints. �

Theorem 3 Problem formulation (7) is a non-convex problem, which requires a non-convex programming

algorithm to solve it.

Proof The timing constraint functions in (7) are polynomial functions, which are non-convex functions.

So (7) is a non-convex problem, which requires a non-convex programming solver [15]. �

Recall that n denotes the number of vertices (gates in the circuit), e denotes the number of edges, and q

denotes the number of primary inputs and outputs in the circuit. There are four variables associated with

each gate gi in the circuit: xi, yi, zi and ai. So in total there are 4n variables in the formation (7). The number

of constraints is (e+q+2L).

Unfortunately, even for a small circuit (i.e., one with a few hundred cells), formulation (7) results in a non-

linear optimization problem with a large number of variables and equations, which is too complex to be

solved by standard mathematical programming solvers in any reasonable amount of time. Furthermore

notice that it is difficult to use recursive circuit partitioning with this formulation since cuts in the previous

levels may not maintain the cell area balance due to changes in cell sizes in the subsequent optimization. To

overcome these difficulties, we simplify (7) as is detailed next.

To reduce the problem complexity problem, we focus on optimizing the timing of C(k). By iteratively

finding and optimizing C(k), the timing of the whole circuit can be improved gradually while the problem

size remains manageable. We must however continue to address the congestion (or area balance) problem,

which refers to the problem whereby certain regions of the chip are overpopulated by cells while other

regions are underpopulated. Since we start with an existing “balanced placement” solution where all the

cells are uniformly distributed across the parts, we can solve the congestion problem by restricting the

change in sizes and locations of C(k) to relatively small ranges during each iteration. In this way, we ensure

that the resulting placement and sizing solution is a only perturbation of the original balanced placement

solution and therefore is not very unbalanced. Still, we apply a de-congestion step to create perfect balance

after each optimization step. Without this de-congestion step, the perturbations may add up and after a few

iterations, the placement solution may become completely unbalanced.

9

3 Optimizing C(k)

Throughout this section, we assume that an initial balanced placement and sizing of all gates is provided.

Our goal is to iteratively improve the circuit timing through resizing and/or re-positioning of gates.

3.1 Iterative Optimization Problem Formulation

Consider a case where only sizes and locations of C(k) in (7) are variables of optimization and all other

gates have fixed sizes and locations. Recall that n’ denotes the number of gates in C(k). Then we have

(3n’+n) variables since there are 3n’ variables corresponding to x, y, and z values of the gates in C(k) and n

variables corresponding to the arrival times of all gates. Notice that we ought to keep all of the variables for

the arrival times because the arrival time of each gate in the circuits is related to the arrival times of the

gates in its transitive fan-in cone and directly influences the arrival times of the gates in its transitive fan-

out cone. Therefore, to capture the effect of any resizing or re-positioning of gates in C(k) on the arrival

times of the circuit primary outputs (and hence on the minimum cycle time), we must do complete

(although implicit) timing analysis during the optimization.

For example in figure 3, i0, i1, i2, i3 are primary inputs and o0, o1, o2 are primary outputs. Assume i1, g1, g2,

g3, g4 and o1 form the critical path, i.e., they are elements of C(1) which is the target of our. If the size and

location of g2 are changed, the capacitive loads of g1, g5, g6 are changed while the arrival times of g3, g7 are

changed. These changes in turn propagate through the rest of the circuit to all of the primary outputs. In

other words the arrival times of all gates (except for primary inputs and g10) are changed.

Figure 3 Circuit example to illustrate the need for keeping the arrival time variables.

g 5

g 10

g 4

g 6

g 8

g 1

I0

I2

o0

o1

o2

g 2

g 3

I1

g 9

g 7I3

10

The formulation of this problem is:

)k(Cv ẑ zẑ

)k(Cv ŷ yŷ

)k(Cv x̂ xx̂

PI v Ta

PO v t Ta

A)v,v(daa .t.s

t minimize

ii

ii

ii

jstartj

jcyclestartj

jij,iij

cycle

ii

ii

ii

∈∀≤≤

∈∀≤≤

∈∀≤≤

∈∀≥

∈∀+≤
∈∀+≥

+−

+−

+−

(8)

where +++−−−
iiiiii

ẑ,ŷ,x̂,ẑ,ŷ,x̂ are the lower and uppers bound on the location and size of gi. They set the

variable change regions (VCRs). These change regions are specified so that the resulting solution does not

constitute a significant change to the original placed netlist. The optimization variables of formulation (8)

are xi, yi, zi of the n’ gates in C(k) and the arrival times ai of all the circuit gates. With this formulation, the

number of variables is only reduced to (n+3n’); the number of constraints is now (e+q+3n’).

Theorem 4 Problem formulation (8) provides a correct statement of the simultaneous gate re-sizing and

re-positioning problem for C(k).

Proof The timing constraints of formulation (7) are all preserved, so the solution to the problem (8)

minimizes the clock cycle time while accounting for all the timing relations in the circuit. �

Theorem 5 Problem formulation (8) is a non-convex problem, which requires a non-convex programming

algorithm to solve it.

Proof The proof is similar to that of Theorem 3. �

A VCR schedule can be used so that in the early optimization iterations the VCRs are large whereas toward

the end of the optimization loop, the VCRs become small. We do not dwell on this point any more since

this is not the formulation that we will eventually use. The reason is that even though the number of

variables is reduced greatly, the mathematical problem is still too large for a non-convex programming

solver. So the problem has to be simplified further.

3.2 Simplified Problem Formulation

Suppose that the sizes and locations of C(k) are optimized within a dynamically-controlled VCR which can

in turn guarantee that after the optimization, delay of no path outside C(k) can become larger than the delay

of the current most critical path. We can then focus on optimizing C(k) and need not worry about the timing

11

of other paths in the circuit. Consequently, the variables for the arrival time of the gates that are not in C(k)

can be dropped from the formulation, and only the timing constraints on C(k) need to be taken into account.

The trick however is in dynamically determining the range of values for x, y, z variables of the gates in C(k)

to satisfy the above-mentioned requirement.

The new problem formulation is shown below:

)k(Cv ẑ zẑ

)k(Cv ŷ yŷ

)k(Cv x̂ xx̂

)k(C v and PI v Ta

)k(C v andPO v tT a

)k(C v,v ,A)v,v(daa .t.s

t minimize

ii

ii

ii

jjstartj

jjcyclestartj

jijij,iij

cycle

ii

ii

ii

∈∀≤≤

∈∀≤≤

∈∀≤≤

∈∈∀≥

∈∈∀+≤

∈∈∀+≥

+−

+−

+−

(9)

where +++−−−
iiiiii

ẑ,ŷ,x̂,ẑ,ŷ,x̂ are the lower and upper bounds on the location coordinates and size of gi.

They set the dynamic variable change regions (DVCRs).

Theorem 6 If +++−−−
iiiiii

ẑ,ŷ,x̂,ẑ,ŷ,x̂ in problem formulation (9) can be set correctly so as to guarantee

that the changes in C(k) do not increase the delay of any path outside of C(k) beyond that of the current

most critical path, then problem formulation (9) provides a correct statement of the simultaneous gate re-

sizing and re-positioning problem for C(k).

Proof +++−−−
iiiiii

ẑ,ŷ,x̂,ẑ,ŷ,x̂ enforce the timing constraints outside of C(k), and the arrival time

equations of C(k) keeps the timing constraints in C(k). So the solution of problem formulation (9) satisfies

all the timing requirements. �

Theorem 7 Problem formulation (9) is a non-convex problem, which requires a non-convex programming

algorithm to solve it.

Proof Similar to the proof of Theorem 3. �

Theorem 8 Problem formulation (9) is a generalized geometric programming problem.

Proof Both the objective function and the constraint equations are polynomial functions, so (9) is a

generalized geometric programming problem (please refer to section 6 for details). �

12

Notice that in this formulation, there are only 4n’ variables, which correspond to the xi and yi coordinates,

the sizing variable zi, and the arrival time ai of the n’ gates in C(k); There are only (3n’+q’+e’) constraints

where q’ is the number of primary inputs and outputs and e’ is the number of edges within C(k); the 3n’

constraints are due to the DVCR constraints. Consequently by controlling the size of C(k), i.e., the number

of critical paths being optimized simultaneously, the problem size can be made quite manageable. In

addition, congestion problem is also addressed since ++−−
iiii

yxyx ˆ,ˆ,ˆ,ˆ limit the gates movement. No serious

congestion can occur if these variable ranges are set appropriately.

The main task now is to set DVCRs so as to satisfy the condition of theorem (6). More precisely, the

solution to problem formulation (9) should make use of the slack time of the gates on the non-critical paths

to optimize the gates on the critical paths while not allowing the delay of any non-critical path to exceed

that of the current most-critical path. The latter requirement (which is precisely the condition of theorem

(6)) is essential in achieving a monotonically reducing objective function value in this iterative optimization

process. Notice also that the slack time for all gates on the most critical path is normalized to zero. All

gates on the non-critical paths will therefore have positive slack times.

Exact calculation of DVCRs is a difficult task itself. We adopt a heuristic technique to do the calculation as

explained next. We start from two simple cases and then generalize to the common case: a) there is only

one gate gi to be repositioned: ++−−
iiii

yxyx ˆ,ˆ,ˆ,ˆ are to be determined, all the others are 0; b) there is only

one gate gi to be resized: +−
ii

zz ˆ,ˆ are to be determined, all the others are 0.

We point out at this time that all of the timing constraints for the paths included in C(k) are explicitly

accounted for in the formulation (9) and hence we need to pay attention only to the inputs and outputs of

C(k) which are not in C(k) in order to derive the DVCRs of gates in C(k). This is an important observation.

3.2.1 Location change region of a single gate

A change in the position of gi, which is on the critical path, influences the arrival time of its immediate fan-

in gates because such a change will affect the routing length of its fan-in nets. In figure 4, gp, gi, gq form a

critical path (shown in thicker lines), and gj, gk and gl are off-critical-path fan-in and fan-out of gi .

Figure 4 Example to illustrate fan-in and fan-out induced DVCRs.

gi gq

gj

gp

gl

gk

13

From equation (6), the change in the arrival time of gj (denoted by ∆tj) as a result of a change in the

bounding box of the output net of gj (denoted by ∆xnetj, ∆ynetj) is given by:

jjverjhorjverjhorjj cload}ynetRxnetR{ }ynetCxnetC{rdrt ⋅⋅+⋅⋅+⋅+⋅⋅⋅= ∆∆ρ∆∆ρ∆ (10)

Here only gi is movable, and since the sizes of gj and all its fan-outs (including gi itself) are fixed, their

current sizes can be used. Notice that rdrj=max{rdru.j} for the worst-case analysis.

When using a net bounding box model, a change in the coordinates of a gate may not change the bounding

box of the input net that is connected to the gate. This occurs, for example, when the driver of the input net

is driving more than one gate (as is the case in Figure 5). In this figure, as long as gi is moved in the

bounding box determined by gj, gs, gt, the net load of gj will not change, therefore the arrival time of gj will

not change. Similarly, a change in the coordinates of gi may not change the bounding box of its output net

(not shown in the figure).

Figure 5. Example to illustrate the effect of the input net bounding box on the DVCRs of a cell.

From (10) and the above discussion, we calculate the fan-in induced DVCR of gi from input gj as follows:

jverhorverhorj

j
max,jj

jverhorverhorj

j
max,jj

jverhorverhorj

j
min,jj

jverhorverhorj

j
min,jji,j

cload}RR{ }CC{rdr

s
ynet)s(ŷFI

cload}RR{ }CC{rdr

s
xnet)s(x̂FI

cload}RR{ }CC{rdr

s
ynet)s(ŷFI

cload}RR{ }CC{rdr

s
xnet)s(x̂FI

i,j

i,j

i,j

⋅+⋅++⋅⋅
+=

⋅+⋅++⋅⋅
+=

⋅+⋅++⋅⋅
−=

⋅+⋅++⋅⋅
−=

+

+

−

−

ρρ

ρρ

ρρ

ρρ

(11)

where sj is the allowed range of change for the arrival time of gj i.e., its timing slack. xnetj,min, ynetj,min,

xnetj,max, ynetj,max is the current bounding box of gj’s output net. Note that we have divided the slack equally

in the x and y directions.

gi

gt

gs

gj

14

So if gi moves in the rectangle defined by (11), the arrival time of gj would not be any later than its current

arrival time plus sj, according to bounding box model. Similarly, we calculate the fan-in induced DVCR of

gi from input gk:)s(ŷFI),s(x̂FI),s(ŷFI),s(x̂FI ki,kki,kki,kki,k
++−− . Obviously, to satisfy the timing

requirements of both fan-ins, gi’s movement should be limited by the intersection of

)s(ŷFI),s(x̂FI),s(ŷFI),s(x̂FI ji,jji,jji,jji,j
++−− and)s(ŷFI),s(x̂FI),s(ŷFI),s(x̂FI ki,kki,kki,kki,k

++−− .

In general, we calculate the fan-in induced DVCR of gi as follows:

))s(ŷFI(minŷFI

))s(x̂FI(minx̂FI

))s(ŷFI(maxŷFI

))s(x̂FI(maxx̂FI

ji,j
j

i

ji,j
j

i

ji,j
j

i

ji,j
j

i

++

++

−−

−−

=

=

=

=

Notice that the intersection maybe a polygon, it is simplified to a minimum size rectangle for computational

efficiency.

Similarly, a change in the position of gi influences the arrival time of its fan-outs. The change in the arrival

time of gk (denoted by ∆tk) as a result of change in the bounding box of the output net of gI (denoted by

∆xneti, ∆yneti) is given by:

iiverihoriverihoril cload}ynetRxnetR{ }ynetCxnetC{rdrt ⋅⋅+⋅⋅+⋅+⋅⋅⋅= ∆∆ρ∆∆ρ∆ (12)

Here only the bounding box of gi’s output net needs to be considered. We calculate a fan-out induced

DVCR of gi directly:

iverhorverhori

l
max,i

iverhorverhori

l
max,ii

iverhorverhori

l
min,i

iverhorverhori

l
min,ii

cload}RR{ }CC{rdr

s
ynetŷFI

cload}RR{ }CC{rdr

s
xnetx̂FO

cload}RR{ }CC{rdr

s
ynetŷFI

cload}RR{ }CC{rdr

s
xnetx̂FO

i

i

⋅+⋅++⋅⋅
+=

⋅+⋅++⋅⋅
+=

⋅+⋅++⋅⋅
−=

⋅+⋅++⋅⋅
−=

+

+

−

−

ρρ

ρρ

ρρ

ρρ

(13)

Notice that in equation (13), sl is calculated as the minimum slack time of any non-critical output of gi.

Subsequently, the DVCR of gi is the intersection of fan-in induced and fan-out induced DVCRs of gi:

15

)ŷFO,ŷFImin(ŷ

)x̂FO,x̂FImin(x̂

)ŷFO,ŷFImax(ŷ

)x̂FO,x̂FImax(x̂

iii

iii

iii

iii

+++

+++

−−−

−−−

=

=

=

=

In the example of figure 6, the dotted rectangle is the move DVCR of g2, which is the intersection of (11)

applied to non-critical fan-in gates g5 and g6 and (13) applied to non-critical fan-out gates g7.

Figure 6. Example for the calculation of ∆x2, ∆y2, ∆z2 .

3.2.2 Size change region of a single gate

We consider here the case where only the size of gi, which is on the critical path, is changeable. First, the

slack times of the off-critical-path fan-ins of gi set an upper bound on the size of gi. As in section 3.2.1,

based on equation (6), we write equations to transform the slack times of fan-ins to +
i

ẑ :

)
3}rnetrdr{

s
(minẑẑ

i,jjj

j

j
ii α⋅+
+=+ (14)

where iẑ is gi’s current size, gj is gi’s fan-in, rdrj=max{rdru,j} for worst-case analysis, and sj is the (available)

slack time of gj.

Similarly, the slack times of the off-critical-path fan-outs of gi set a lower bound on the size of gi. We

obtain −
i

ẑ by finding the positive root of the following quadratic equation (where wl is the variable):

g 5

g 10

g 4

g 6

g 8

g 1

I0

I2

o 0

o 1

o 2

g 2

g 3

I1

g 9

g 7I3

16

)cloadcnet()
z

2

wz

2
(1ws

)wẑ(ẑ

ii
i

i

li

i
ill

li
l

maxi

+⋅−
+

+⋅=

−=−

ααα
(15)

where α1i=max{α1j,i}, α2i=max{α2j,i} for worst-case analysis, and iẑ is the current size of gi. sl is the

(available) slack time sl of gl, and gl is gi’s fan-out.

3.2.3 Location and size change regions of all gates in C(k)

In practice, we would like to change the locations and sizes of all the gates in C(k) simultaneously. So the

slack time of the fan-ins and fan-outs need to be allocated between position and sizing parameters.

Furthermore, since the area congestion problem should also be considered, one must impose maximum gate

move values (∆x and ∆y) to ensure that the next placement solution is not very different from the current

placement solution. For each gate in C(k), ++−−
iiii

ŷ,x̂,ŷ,x̂ are first calculated as in section 3.2.1, then

)yŷ,ŷmin(ŷ

)xx̂,x̂min(x̂

)yŷ,ŷmax(ŷ

)xx̂,x̂max(x̂

i

iii

i

iii

ii

ii

∆
∆

∆
∆

+=

+=

−=

−=

++

++

−−

−−

where ŷ,x̂i are the current position coordinates of gi. Next, for each fan-in and fan-out gate of C(k), if the

gate has available slack time after considering the effect of moving gates in C(k), then the available slack

times are used to set +−
ii

ẑ,ẑ as in section 3.2.2.

Since the fan-ins and fan-outs of C(k) may share the slack time of some common path, the location and size

change regions may indeed be correlated. Therefore, if we use the upper and lower bounds on the change

regions as above, we may overestimate the DVCRs by neglecting the correlations between the change

regions of different gates in C(k). In practice, we rely on a user-defined parameter µ (0<µ<1) to uniformly

scale down the DVCRs. The exact value of µ is determined from the size of circuit and how closely the

paths are related. At the beginning of the optimization loop, the timing slacks are large and we are more

tolerant of errors in DVCR calculation due to the path correlation effects, µ is thus set close to 1. As the

iterative optimization process progresses, µ is decreased gradually (and in this case, linearly) to keep the

solution convergent.

In figure 8, the dotted rectangles show the move DVCR of the gate in C(k), the maximum size are

controlled by ∆x and ∆y. The cross-lined cycles show the size DVCR of gates in C(k). g3’s size is fixed in

this figure.

17

Figure 8. Example to illustrate the position and size DVCRs .

3.3 Decongestion

Here no non-overlapping constraint is imposed in the formulation of (9). If the position change regions

overlap, there may be cell congestion. This issue can become detrimental if we do not perform de-

congestion. In our algorithm after problem (9) is solved, the size and ideal location of every cell is

determined. Initially each cell is assigned to the row that is the closet to its ideal location1. Cells in the same

row are placed in order of their x-axis coordinates. Next one cell from the longest row is moved up/down

to the shorter one of its immediately adjacent rows. The other cells in these two rows (i.e. the longest row

and its shorter adjacent row) are shifted to close the gap or create the space as required. This process is

repeated until all the rows have nearly the same length.

4 Optimizing the Neighborhood of C(K)

4.1 Ne(k,1) Re-placement

Notice that to reduce the delay of a certain cell, not only can we size up the cell and move the cell closer to

its fan-outs, but also we can size down its fan-out cells or pull its fan-out cells closer to reduce its load. So

to improve the timing of the critical paths more, the capacitance load imposed on C(k) by the corresponding

1 We assume row-based layout.

g 5

g 10

g 6

g 8
I0

I2

o 0

o 1

o 2

I1

g 9

g 7I3

g 1
g 2

g 3 g 4

18

Ne(k,i) should be considered too. (In this paper, only Ne(k,1) is sized down and re-placed to optimize the

timing property of the critical paths).

As the example in figure 9, g7 and g8 are Ne(k,1) and g9 is NC(2). g6 is the fan-in of g2 and fan-out of two

uncritical primary inputs, so g6 is not considered. So are g5 and g10. The delay d1,2 may be decreased by

moving g8 closer to g1 or by sizing down g8. However these changes may increase d5,8 so that the delay

through i0, g5, g8, g9 and o0 may become even larger than the delay of the current critical path i1, g1, g2, g3,

g4, and o1.

Figure 9. Circuit example for Ne(k,1) re-placement.

To size down and place Ne(k,1) optimally without violating timing constraints, we should change the

locations and sizes of Ne(k,1) at the same time. But as specified before, gate sizing and placement

simultaneously is a non-convex problem. If the locations and sizes of Ne(k,1) are all formulated as

variables in our problem, either the number of the gates in Ne(k,1) or the number of the paths which pass

through Ne(k,1) is often much larger than that of C(k), the problem size would become unmanageable. So

in our approach, we optimize Ne(k,1) separately: a) Ne(k,1) re-placement and b) Ne(k,1) resizing. As for the

example of Figure 9, we do g7, g8 re-placement; g7, g8 resizing.

In this section, Ne(k,1) re-placement is discussed. The mathematical formulation is as following. Here only

the locations of Ne(k,1) are changeable.:

g 5

g 10

g 4

g 6

g 8

g 1

I0

I2

o 0

o 1

o 2

g 2

g 3

I1

g 9

g 7I3

19

)1,k(Nev y|ŷy|

)1,k(Nev x|x̂x|

 PI v Ta

PO v tT a

 A)v,v(daa .t.s

t minimize

iii

iii

startj

jcyclestartj

jij,iij

cycle

j

∈∀≤−

∈∀≤−

∈∀≥

∈∀+≤

∈∀+≥

∆
∆

 (16)

where are the location coordinates of gi from the previous iteration; ∆x, ∆y are the position

VCRs. Since all the timing constraints are kept here so that we do not need to worry about the timing

violation. The reason for having position VCRs is that the area congestion has to be controlled. Without ∆x,

∆y all the gates may be attracted to the center of the chip. Notice however that these VCRs are uniformly

and statically defined as ∆x, ∆y in section 3.2.3 and are not based on the available slack times of the side

inputs and outputs of Ne(1,k). A VCR schedule is however used whereby as the iterative optimization

process progresses the VCRs are reduced from one iteration to next so as the convergence is achieved.

Theorem 9 Formulation (16) is a Linear Programming problem.

Proof Refer to the delay model (6), since no size variables, delay becomes a linear function. So (16) is a

Linear Programming problem. �

Similar to the discussion in Section 3.1, although only Ne(k,1) are movable, the timing of the whole circuit

must be considered. So there are (n+2n”) variables in (16), where n” is the number of the gates in Ne(k,1).

There are (e+q+2n”) constraints. Although the number of variables and constraints maybe large, this is not

a major concern since a Linear Programming problem can be solved very efficiently. We use LP-Solver of

[13] to solve (16). Notice however that to improve the runtime of the LP solver, problem formulation (16)

can be approximated by using a similar transformation to that which was used to obtain problem

formulation (9) from problem formulation (8). In practice, we do not do this since the LP solver can handle

problem formulation (16) directly.

There may be cell congestion problem after (16) is solved; the decongestion step described in Section 3.3 is

therefore applied at the end of this optimization step.

4.2 Ne(k,1) Re-sizing

In this step, only the sizes of Ne(k,1) are variables. The mathematical formulation is:

ii ŷ,x̂

20

 PI v Ta

 PO v t T a

 A)v,v(daa .t.s

t minimize

j startj

jcyclestartj

jij,iij

cycle

∈∀≥

∈∀+≤

∈∀+≥ (17)

Notice there is no size change region constraint, since all the timing relations are formulated in constraints,

and in-place sizing would not incur serious congstion problem.

Theorem 10 Formulation (17) is a Geometric Programming problem.

Proof Refer to the delay model (6), the wire length is known now. Delay is a posynomial funciton. So

(17) is a Linear Programming problem. (Refer to Section 6) �

Similar to the discussion in Section 3.1, although only Ne(k,1) are resized, the timing of the whole circuit

must be considered. So there are (n+n”) variables in (17), where n” is the number of the gates in Ne(k,1).

There are (e+q) constraints. Although the number of variables and constraints maybe large, again this is not

a major concern since a Geometric Programming problem can be solved very efficiently. By using the

variable substitution ln(z)=w, (17) is transformed to a Linear Programming (LP) problem. GP is described

briefly in Section 6. Notice again that to improve the runtime of the GP solver, problem formulation (17)

can be approximated by using a similar transformation to that which was used to obtain problem

formulation (9) from problem formulation (8). In practice, we do not do this since the LP solver can handle

problem formulation (17) directly.

5 Optimization Flow

Although we have incorporated some methods to improve the convergence speed of our algorithm, because

the optimization is done locally, it is still possible that the solution does not converge or it converges very

slowly. To address this problem, we introduce a cooling schedule to control the variable freedom. As the

iteration count increases, µ decreases, so ∆x, ∆y, ∆zi all decrease. Finally the freedom becomes so little that

the circuit timing does not change. At that time, the process ends. The schedule also determines the total

computation time. If the circuit designer is not too concerned with the runtime of the algorithm, a slower

schedule can be used to generate a higher quality result.

5.1 Selection of Discrete Gate Sizes

After solving equations (17) and (9) gate sizes are given as real numbers which will likely not match the

given gate sizes in the ASIC library. Therefore at the end of these optimizations, we need to round the size

21

of each gate to the closet size in the library. In general each continuous gate size can be matched to at most

two discrete gate sizes; one which is just smaller, the other which is just larger than the specified size.

Next consider the problem of discrete gate sizing for minimum delay along the set of paths in Ne(k,1) (for

Equation (17)) or C(k) (for Equation (9)) when we are given at most two sizes for each gate. These sizes are

derived from the continuous sizing solution as explained above. This problem is solved using a dynamic

programming technique similar to that of [14]. In this way, we avoid the arbitrary and error-prone

technique of simply rounding up the continuous sizing solution to a discrete solution.

5.2 Algorithm Flow

The main loop of this algorithm consists of three parts: (a) Ne(k,1) re-placement; (b) Ne(k,1) sizing down;

and (c) simultaneous C(k) sizing and placement. These three steps are all done locally and somewhat

independently. The order among these three steps may be changed. Considering that the step (c) which

does the simultaneous sizing and placement of C(k) optimizes the timing of C(k) directly and tunes both the

sizes and locations of the gates of C(k). It is the most effective and the most elaborate step of our

optimization flows. To make use of its optimization capability completely and correctly, it should be done

when all the other cells’ sizes and locations are known and accurate. So simultaneous C(k) sizing and

placement is done last.

The purpose of Ne(k,1) sizing down and Ne(k,1) re-placement is to make use of the slack time of Ne(k,1) to

optimize C(k) without creating new critical paths. Ne(k,1) re-placement may cause the congestion problem.

During Ne(k,1) re-placement the higher the use of slack of Ne(k,1), the more serious the congestion

problem. Ne(k,1) sizing in general has more potential to improve the overall C(k) timing while creating less

congestion problem. So we would like to use more of slack time of Ne(k,1) during the Ne(k,1) sizing, that

can be achieved by setting a small ∆xi, ∆yi in Ne(k,1) re-placement. And do Ne(k,1) re-placement first to

provide correct cell locations for Ne(k,1) sizing.

As the iteration count increases, the number of critical paths increases. So we end up increasing the

maximum allowed size of C(k). We keep doing this until the size of C(k) becomes too large to handle, in

which case we stop the optimization process.

When all the optimization iterations end, the dynamic programming gate selection method [14] is used to

convert the continuous gate size to discrete available gate size.

The complete flow of this algorithm is as shown below:

1. begin

2. timing-driven initial placement

3. timing analysis to select C(k)

22

4. adjustment of ∆x, ∆y for Ne(k,1)

5. Ne(k,1) re-placement

6. de-congestion

7. Ne(k,1) sizing

8. gate size selection from the cell library

9. calculation of +++−−−
iiiiii

ẑ,ŷ,x̂,ẑ,ŷ,x̂

10. simultaneous C(k) sizing & placement

11. gate size selection from the cell library

12. de-congestion

13. if (a) there is improvement in the last t iterations or specification not satisfied, and (b) the problem is

solvable, go to 2)

14. end

Figure 10. Algorithm flow.

6 GP and GGP

Since our problem formulation is in the form of a polynomial function, GP and GGP can be used to solve

them. In this section, we will describe the GP and GGP approach. The GP problem can be solved

efficiently by the infeasible interior-point method of [16]. To solve a GGP problem, the original GGP is

transformed into a sequence of GP problems by a process commonly referred to as condensation [18].

6.1 Background

A function u(x) is monomial, if it is of the following form:

∏
=

=
n

1i

a
i

ixb)x(u

where x = (x1,……xn) are strictly positive in value. The exponent ai and the coefficient c are real constants.

ai is unrestricted in sign while b is required to be positive.

A function p(x) is posynomial if it is of the following form:

)x(uc)x(p i
i

i∑=

where ui(x) is monomial and the coefficients ci is positive.

A function g(x) is polynomial if it is of the following form:

23

)x(uc)x(g i
i

i∑=

where ui(x) is monomial and the coefficients ci are not restricted in sign.

Definition Geometric Programming (GP) is a class of nonlinear optimization problems having objective

functions and constraint functions expressed as posynomials. A GP problem with n variables and m

constraints is as follows:

,....,m2,1k ,0)x(p .t.s

)x(p imize min

k

0

=≤

where p0,p1, ……,pk are posynomial functions, x={x1, x2,…xn} .

Definition Generalized Geometric Programming (GGP) is a class of nonlinear optimization problems

having objective functions and constraint functions expressed as polynomials. A GGP problem with n

variables and m constraints is as follows:

,....,m2,1k ,0)x(g .t.s

)x(g imize min

k

0

=≤

where g0, g1, ……,gk are polynomial functions, x={x1, x2,…xn} .

Note that GP is a convex programming problem [15], and GGP is a non-convex programming problem

[15].

6.2 Geometric Programming (GP)

By using the variable substitution ln(x)=w, GP can be transformed to a linear programming problem. There

are many algorithms to solve a GP problem. We use the method of [16]. The approach is by means of a

primal-dual algorithm developed simultaneously for (i), the dual geometric program after logarithmic

transformation of its objective function and (ii), its Lagrangian dual program. Under rather general

assumptions, the mechanism defines a primal-dual infeasible path from a specially constructed, perturbed

Karush-Kuhn-Tucker (KKT) system. Subfeasible solutions are generated for each program whose primal

and dual objective function values converges to the respective primal and dual program values. The basic

technique is one of a predictor-corrector type involving Newton’s method applied to the perturbed KKT

system, coupled with effective techniques for choosing iterate directions and step length. Sophisticated

implementation techniques and advanced sparse matrix factorization are used to take advantage of the very

special structure of the Hessian matrix of the logarithmically transformed dual objective function.

24

Our computational results indicate that this GP algorithm leads to an efficient and stable implementation

for solving our problem.

6.3 GGP Condensation

To solve the GGP problem, we implement the algorithm described in [17]. This algorithm takes advantage

of the arithmetic-geometric mean inequality and transforms the original non-convex GGP to a sequence of

convex GPs.

The GGP algorithm first introduces a new variable. The original nonlinear objective function is absorbed as

an additional constraint. So that the objective function becomes linear:

,...,m2,1k ,0)x(g

 x)x(g .t.s

x minimize

k

00

0

=≤
≤

where g0, g1, ……,gk are polynomial functions.

Next, each polynomial is separated into its positive and negative parts, giving differences of pairs of

posynomial functions:

m,...,2,1k 0)x(p)x(p

x)x(p)x(p .t.s

x imizemin

kk

000

0

=≤−

≤−
−+

−+

where p+
k(x) and p-

k(x) are posynomial functions.

Then all the negative terms are brought to the right-hand side of the inequalities and then divided through

to yield a quotient form:

 ,m,...1,0k 1
)x(p

)x(p

1
x)x(p

)x(p
 .t.s

x imizemin

k

k

00

0

0

=≤

≤
+

−

+

−

+

where p+ (x) and p-(x) are posynomial functions.

Next the denominator of each constraint is condensed at the operating point. Condensation is the process of

approximating a posynomial function with a monomial function [18]. It is based on the weighted

arithmetic-geometric (A-G) mean inequality.

25

∑ ∏≥
i i i

i
i

i
u

u δ

δ
)(

where ui is positive value, the δi is positive weight and ∑δi=1. When applied to a posynomial, the A-G

inequality converts the posynomial into an approximating monomial. The monomial produced is dependent

on the selection of weights, which can be any set of positive values that sum to unity. One very useful

choice is to set the weights equal to the fraction that each monomial term ui of the posynomial function p

contributes to the total value of the posynomial, when evaluated at some operating point x’:

)'(

)'(

xp

xui
i =δ

It can be seen that all ui/δi are equal when ui is evaluated at the operating point.

Condensing a posynomial to a monomial may be represented symbolically as below:

∏
=

=
t

i
ii

ixuxxpC
1

]/)([]'),([δδ

Condensing the denominator of each constraint at the operating point results in a posynomial divided by an

approximating monomial, that is an approximating posynomial that is always greater than or equal to the

parent form.

)(

)(

]'),([

)(

xp

xp

xxpC

xp
−

+

−

+

≥

Since the inequality relation hold for all positive values of x, the feasible side of the approximating

posynomial constraint is a subset of the feasible side of the parent constraint. This is important because it

shows that the approximation does not violate the original constraint.

The GGP algorithm can be viewed as a loop. In the loop, the original GGP is condensed according to the

variables’ initial values, then it is transformed to a GP, and the corresponding GP is solved. The solution to

the GP is used to condense the GGP at the next iteration.

Theorem 11 The sequence of optimal solutions to the GP sequence converges to a point satisfying the

Kuhn-Tucker necessary conditions for the optimality of GGP [17].

26

This algorithm requires a feasible initial solution at the beginning. For our problem, any initial placement

of a mapped netlist forms a feasible solution2.

7 Experimental Results

We have implemented our algorithm in C++ as a software package named SCD (Sizing with Controlled

Displacement).

7.1 SCD in Action

The following are some snapshots of the placement and sizing results of SCD during the optimization of

the benchmark circuit C499. In this example, at the beginning µ is set to be 0.8. The initial size of all the

gates is 1. Figure 11 is the result of one optimization iteration using the above change region values. Since

each cell has a large change region, the critical path timing is improved by a lot. Note that the path layout is

very different in the two cases shown in Figure 11. Particularly, the path length is much shorter in (2)

compared to (1).

(1) path delay: 12.43 (2) path delay:12.02

Figure 11. Result of iteration with large change regions.

After a number of iterations the cell freedom is reduced. It may take several iterations to optimize the most

critical path until another path becomes the most critical. Figure 12 shows 3 consecutive iterations to

optimize the same path of C499. Here µ is set to 0.4. We can see that as a result of successive iterations the

2 Of course, we are well-advised to start with a timing-driven placement result and a timing-driven

technology mapped circuit.

27

path becomes more and more straight. However the change in path layout is less dramatic than that seen in

Figure 11 because of small variable change ranges.

We next calculate the cell slacks for a required arrival at all primary outputs set to be Tcrit where Tcrit is the

longest path delay. We define the normalized slack of a cell as the ratio of the cell slack compared to the

longest path delay in the circuit. For example, a normalized slack of 0 means the cell is on the critical

timing path and a normalized slack of 1 means can never be reached (means zero delay path exist). In

Figure 13, we draw the normalized slack distribution plot for C499 before and after optimization by SCD.

Note that Tcrit before SCD optimization is 13.91ns and after SCD optimization it is 6.04ns. The plot clearly

shows that as a result of SCD optimization, 1) the number of cells with the same normalized slack value

has increased, and 2) the percentage of critical cells in the circuit have increased, that is, the path delay

distribution of cells has narrowed down. Therefore, we conclude that SCD achieve improved timing by

balancing the path delays, i.e. longer delay paths get shorter as the expense of shorter delay path getting

longer.

 (3) path delay: 8.31 (4) path delay: 8.27

 (5) path delay: 8.22 (6) path delay: 8.17

Figure 12. Results of multiple iterations with small change regions.

28

0

5

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Before

After

Figure 13. Distribution of the normalized slack time before and after optimization.

7.2 Benchmark Results

Our algorithm has been applied to ISCAS benchmark circuits mapped to a 0.35µ industrial library. In this

library, we have four gate sizes per gate type. The result is compared with the in-place gate-sizing (IPS)

results. For both methods, the circuit is placed by TimberWolf first. The first method does in-place gate-

sizing which keeps the cell locations fixed. The second method uses the SCD approach. The number of

most critical paths considered in the optimization, i.e. k, was set such that the cardinality of C(k)≤100 for

each benchmark. The average improvement is about 15%. (We also have generated results with initial

placement done by Gordian+Domino. Those results, which are similar to the ones reported in Table 2, are

not reported here.) As expected, the SCD runtime is higher than that of IPS. However the timing

improvement justifies the increased runtime. Programs are run on Pentium II 300; the SCD runtimes are

range from one minute for the smallest circuit to under an hour for the largest circuit.

Chip Cell Level Delay
of TW
Place-
ment

Delay of
In-Place
Sizing
(IPS)

Area
of

Chip
(IPS)

In-Place
Sizing
CPU

Time (s)

Delay
of

SCD

Area
of

Chip
(SCD)

SCD
CPU
Time
(s)

Improve-
ment (%)
over IPS

C432 215 31 20.90 9.42 299 50 8.56 303 584 9.1
i6 485 8 9.96 4.94 670 24 4.33 675 367 12.3

C499 502 21 13.91 6.89 712 101 6.04 724 1726 12.4
C880 383 43 21.94 8.92 531 42 7.64 532 798 14.3
C1355 432 20 14.60 7.15 610 40 6.06 614 583 15.2
C1908 453 34 20.28 9.63 654 96 8.22 660 1356 14.6
t481 713 18 12.76 6.31 1002 120 5.36 1031 2508 15.1

C2670 848 24 19.60 8.97 1150 33 7.51 1173 470 16.3
k2a 922 22 20.04 10.10 1394 113 8.62 1420 2394 14.7

C3540 1151 48 32.93 17.24 1502 211 14.57 1523 5230 15.5
C5315 1640 33 28.85 14.50 2301 121 12.43 2398 2326 14.3
C7552 2156 55 45.72 20.12 3169 201 16.90 3241 5349 16.0

des 3059 29 22.49 11.50 4238 510 9.40 4302 25023 18.2

Table 2. Experimental results.

29

All results are reported after detailed placement and detailed routing using YACR. The delays include the

gate delay and post-layout interconnects delays.

8 Conclusions

We presented a new algorithm to do placement and gate-sizing simultaneously. Our algorithm improves the

timing performance by decreasing the delay of the k-most critical paths iteratively. During each iteration,

both the cells on these critical paths and the immediate fan-outs of those cells are sized and placed.

Appropriate mathematical programming methods are used to solve these problems. Future work will

include integration of more powerful logic recurrent techniques with cell placement.

Reference:

[1] J.Lou, A.Salek, M.Pedram, "An Exact Solution to Simultaneous Technology Mapping and Linear Placement

Problem", Proc. Intl. Conf. on CAD, pp.671-675, Nov 1997.

[2] A.Salek, J.Lou, M.Pedram, "A Simultaneous Routing Tree and Fanout Optimization Algorithm”, Proc. Intl. Conf.

on CAD, pp.625-630, Nov 1998.

[3] O.Coudert, R. Haddad, "New Algorithms for Gate Sizing: a Comparative Study", Proc. 33rd DAC, pp.734-739,

Jun 1996.

[4] J.P.Fishburn, A.E.Dunlop, "TILOS: a Posynomial Programming Approach to Transistor Sizing", Proc. Intl. Conf.

on CAD, pp.326-328, Nov 1985.

[5] M. Berkelaar, J. Jess, "Gate Sizing in MOS Digital Circuits with Linear Programming", Proc. European DAC,

pp.217-221, 1990.

[6] C.P.Chen, C.C.N.Chu, D.F.Wong, “Fast and Exact Simultaneous Gate and Wire Sizing by Lagrangian

Relaxation”, Proc. Intl. Conf. on CAD, pp.617-624. Nov 1998.

[7] "National Technology Roadmap", Semiconductor Industry Association, 1997.

[8] W. Chuang, I.N.Hajj, “Delay and Area Optimization for Compact Placement by Gate Resizing and Relocation”,

Proc. Intl. Conf. on CAD, pp.145-148, Nov 1994.

[9] F.R.K.Chung, F.K.Hwang, "The Largest Minimal Rectilinear Steiner Trees for a Set of N Points Enclosed in a

Rectangle with Given Perimeter", "Networks", 9:19-36, 1979.

[10] D.Luenberger, "Linear and Nonlinear Programming", pp.180, 1984.

[11] J.M.Kleinhans, G.Sigl, F.M.Johannes, K.J.Antreich, "GORDIAN: VLSI Placement by Quadratic Programming

and Slicing Optimization", IEEE Trans. on Computer-Aided Design, vol.10, No.3, pp.356-365, Mar 1991.

[12] B.M. Riess, G.G. Ettelt, "SPEED: Fast and Efficient Timing Driven Placement", Proc. Intl. Symposium of

Circuits and Systems, pp.377-380, 1995.

[13] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis", Ph.D Thesis, Eindhoven University of

Technology, 1992.

[14] P.K.Chan, “Algorithms for Library-specific Sizing of Combinational Logic”, Proc. 27th DAC, pp.353-356, 1990.

[15] C.Beightler, D.T.Philips, "Applied Geometric Programming", 1976.

[16] K. O. Kortanek, X. Xu, Y.Ye, "An infeasible interior-point algorithm for solving primal and dual geometric

programs", Mathematical Programming 76, pp.155-181, 1996.

30

[17] M.Avriel, R.Dembo, U.Passy, "Solution of Generalized Geometric Programming", International Journal for

Numerical Methods in Engineering, vol.9, 1975.

[18] R.J. Duffin, "Linearizing Geometric Programs", SIAM Review, vol.12, pp.211-237, 1970.

