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Abstract - The current energy and environmental cost trends of 
datacenters are unsustainable. It is critically important to 
develop datacenter-wide power and thermal management (PTM) 
solutions that improve the energy efficiency of the datacenters.  
This paper describes one such approach where a PTM engine 
decides on the number and placement of ON servers while 
simultaneously adjusting the supplied cold air temperature. The 
goal is to minimize the total power consumption (for both servers 
and air conditioning units) while meeting an upper bound on the 
maximum temperature seen in any server chassis in the data 
center. To achieve this goal, it is important to be able to predict 
the incoming workload in terms of requests per second (which is 
done by using a short-term workload forecasting technique) and 
to have efficient runtime policies for bringing new servers online 
when the workload is high or shutting them off when the 
workload is low. Datacenter-wide power saving is thus achieved 
by a combination of chassis consolidation and efficient cooling. 
Experimental results demonstrate the effectiveness of the 
proposed dynamic resource provisioning method. 1 
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I. INTRODUCTION 
Cloud computing services provided by big players such as Amazon, 
Google, Microsoft, Yahoo, etc are giving a dramatic rise in the 
Internet-based applications and services. Cloud computing referees to 
the applications and platforms delivered as services to different range 
of clients over the Internet and the datacenter infrastructure that 
provides those services  [1]. The cloud itself refers to the datacenter 
hardware and software infrastructure. Public clouds provide utility 
computing services and are available to the public in the “pay-as-you-
go” manner. Cloud computing comprises of infrastructure (datacenter 
facility), platforms, and applications with applications considered to 
be the end product and platforms to facilitate the environment to 
create the applications. Platforms and applications are usually 
provided as Platform as a Service (PaaS) and Software as a Service 
(SaaS), respectively.  

Datacenters provide the supporting infrastructure for a wide range 
of applications and services including social and business 
networking, Webmail, Web search, electronic funds transfer, supply 
chain management, Internet marketing, online transaction processing, 
automated data collection systems, High Performance Computing 
(HPC), etc. The increasing demand for Internet-based services has 
made the datacenter facilities to grow rapidly. The continuous 
increase in computing and storage capacities of datacenters is made 
possible by advances in the underlying manufacturing process and 
design technologies. A by-product of such a capacity growth has been 
a rapid rise in the energy consumption and power density of 
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datacenters. However, the continued growth of datacenters is now 
hindered by their unsustainable (and rising) energy needs. Apart from 
datacenter energy consumption and associated costs, corporations and 
governments are also concerned about the environmental impact of 
datacenters, in terms of their carbon dioxide (CO2) footprint. 
Motivated by the need for datacenters to be put on a more scalable 
and sustainable energy-efficiency curve, this paper seeks to advance 
the technology of energy-efficient datacenters. 

There are a number of different techniques to reduce the energy 
cost and power density in datacenters in different levels of 
granularity, chip-level, server level, rack level, datacenter level, etc. 
There are several works published recently addressing some of the 
chip-level power optimization issues  [2] [3]. Load balancing  [4] [5] [6] 
which is a datacenter-level approach can be used to distribute the 
total workload of the datacenter among different servers in order to 
balance the per-server workload (and hence achieve uniform power 
density). Server consolidation  [7], which refers to using the minimum 
number of active servers in the datacenter, is another approach for 
power reduction of datacenters.  

Accounting for about 30% of the total energy cost of a datacenter 
(another 10-15% is due to power distribution and conversion losses in 
the datacenter), the cooling cost is one of the major contributors of 
the total electricity bill of large datacenters  [8]. There have been a 
number of prior works on increasing the efficiency of the cooling 
process in datacenters by performing temperature-aware task 
placement  [9] [10]. In  [10] the authors formulate and solve a 
mathematical problem that maximizes the steady state datacenter 
cooling efficiency by maximizing the required supplied cold-air 
temperature value. We used a combination of chassis consolidation 
and efficient cooling in  [11] to minimize the total datacenter power 
consumption (server plus cooling) and showed that the maximum 
cooling efficiency does not necessarily result in minimum total 
datacenter power consumption.   

In this paper, we present a power and thermal management 
(PTM) framework for production datacenters where the (server) 
resources are dynamically provisioned to meet the required workload 
while ensuring that a maximum temperature threshold is met 
throughout the datacenter. The goal is to minimize the total power 
consumption of the datacenter including the power consumed by the 
servers and the air conditioning units. We do not explicitly address 
the power consumed by the network cards and switching gear within 
the datacenter here. Two actions are taken by the PTM. First is to 
determine the number of required servers by employing a short-term 
forecasting technique to predict the datacenter workload. Second is to 
optimally choose servers that are either being retired or employed 
from the available pool of servers and to determine the optimum 
supplied cold-air temperature value of the AC unit while satisfying 
the datacenter thermal constraints. The terms retired and employed 
servers refer to servers that are being turned OFF or ON, respectively. 
The power saving is thus achieved by a combination of chassis 
consolidation and efficient cooling.  



II. PRELIMINARIES 
In this section we give an overview of the datacenter layout, 
arrangement of servers, the cooling system, datacenter power model, 
and thermodynamic equations for thermal distribution.  
A. DATACENTER CONFIGURATION 
A datacenter is typically a (warehouse-sized) room with several rows 
of server cabinets. Each row comprises of several racks (cabinets), 
each rack contains several chassis, and each chassis contains several 
(blade) servers. All the blade servers in a chassis share a single power 
unit of the chassis. A modern datacenter is designed in hot-aisle/cold-
aisle style as depicted in Figure 1, where each row is sandwiched 
between a hot aisle and a cold aisle. Cold air in cold aisles is supplied 
by the AC unit and comes through the perforated tiles in the floor. 
Servers suck the cold air coming from the cold aisle into the rack 
using chassis fans. The cold air cools the servers; the hot air exits the 
rack toward the adjacent hot aisles, and is then extracted from the 
room by the AC intakes on the ceiling above the hot aisles. 

A datacenter may include different classes of servers with 
different power/performance characteristics which are designed for 
different purposes. For example, Google search engine contains 
different classes of servers: web servers, index servers, document 
servers, etc.  [12]. In an optimally designed Google cluster, index 
servers which are responsible for finding the search query in their 
indexed data usually run CPU-intensive tasks and thus must comprise 
high speed CPUs. Document servers which are responsible for 
loading part of a document from the Google storage do not need a 
high speed CPU since the tasks they run are not CPU intensive.   

 
Figure 1. Hot-aisle/cold-aisle datacenter structure. 

B. POWER MODEL FOR BLADE SERVERS 
Assume there are K different classes of servers distributed among N 
chassis in the datacenter with the ith chassis containing Mij number of 
type-j servers. Each chassis contains a fixed number of servers, 
M ൌ ∑ M௜௝

௄
௝ୀଵ . Let cij denote the number of ON type-j servers in the 

ith chassis. The power consumption of this chassis is calculated as:  
௜݌  ൌ ௜ߛ ൅ ∑ ௝ܿ௜௝௄ߙ

௝ୀଵ  (1) 

where γi represents the base power consumption of the ith chassis, and 
accounts for the power consumption of the chassis fan and switching 
losses due to AC-DC conversion. αj denotes the power consumption 
of a type-j server when it is ON. We define γ = [γi]N×1 and α=[αj]K×1 as 
vectors representing base power dissipations of all chassis, and power 
dissipations of different server classes, respectively. Also, ࡯ ൌ
 ௜௝൧NൈK denotes the server state matrix where cij is the number ofࢉൣ
ON type-j servers on the ith chassis. We write (1) in matrix form as: 

࢖ ൌ ઻ ൅  (2) ࢻ࡯

where p = [pi]N×1. Chassis base power consumption is typically very 
high; hence, it is desirable to have the required number of ON servers 

on the minimum number of chassis so that the remaining ones can be 
off. This is called chassis consolidation. 
C. HEAT TRANSFER EQUATIONS 
The temperature spatial granularity considered in this paper is at the 
chassis level. The temperature of the cold air that is drawn to the ith 
chassis is called inlet temperature of that chassis and is denoted by 
௜ܶ௡
௜ . Similarly, the outlet temperature of the ith chassis, ௢ܶ௨௧

௜ ,  is 
defined as temperature of the hot air that exits the chassis. The inlet 
temperature of a chassis depends on the supplied cold air temperature 
from the Computer Room Air Conditioning (CRAC) unit and the hot 
air that is re-circulated from the outlet of other chassis. The authors 
in  [10] showed that the recirculation of heat in a datacenter can be 
described by a cross-interference matrix. This matrix is represented 
by ઴ ൌ ൣ߶௜௝൧ேൈே and shows how much of the inlet heat rate of each 
chassis comes from the outlet heat rate of other chassis resulting in: 

࢚௜௡ ൌ ࢚௦ ൅ ,࢖ࡰ ࡰ ൌ ሾሺࡷ െ઴்ࡷሻିଵ െ  ଵሿ (3)ିࡷ
where Tin and Ts are the corresponding inlet temperature and the cold 
air supply vectors, respectively, and K is an N×N diagonal matrix 
whose entries are the thermodynamic constants of different chassis, 
i.e., ࡷ ൌ ݀݅ܽ݃ሺܭଵ,… , ௜ܭ ேሻ, andܭ ൌ ߩ ௜݂ܿ௣. It is clear from (3) that 
the power distribution among different chassis in the datacenter 
directly affects the temperature distribution in the room. If we use 
equation (2) to substitute P into (3), we have: 

௜௡ࢀ ൌ ௦ࢀ ൅ ሺ઻ࡰ ൅  ሻ (4)ࢻ࡯

III. DATACENTER POWER MODELING 
A. POWER CONSUMPTION OF THE CRAC UNIT 
The efficiency of the cooling process depends on different factors 
such as the substance used in the chiller, the speed of the air exiting 
the CRAC unit, etc. Coefficient of Performance (COP) is defined as 
the ratio of the amount of heat that is removed by the CRAC unit (Q) 
to the total amount of energy that is consumed in the CRAC unit to 
chill the air (E)  [9]: 

ܱܲܥ ൌ ܳ ⁄ܧ  (5) 
The COP of a CRAC unit is not constant and varies by the 
temperature of the cold air that it supplies to the room. In particular 
the higher the supplied air temperature, the better cooling efficiency. 
In this paper we use the COP model of a typical water-chilled CRAC 
unit utilized in a HP Utility Datacenter  [9]. This model is quantified 
in terms of the supplied cold air temperature (Ts) as follows  [9]: 

ሺܱܲܥ ௦ܶሻ ൌ ሺ0.0068 ௦ܶ
ଶ ൅ 0.0008  ௦ܶ ൅ 0.458ሻ (6) 

B. TOTAL POWER CONSUMPTION 
We define the total power consumption of a datacenter as the power 
consumptions of all chassis and the CRAC unit i.e., we do not 
consider power losses in the electrical power conversion network 
(UPS, AC-DC and DC-DC converters) and losses in the switch gear 
and conductors. The IT power consumption of a datacenter is denoted 
by PIT and is the summation of power consumption over all chassis: 

ூ்݌  ൌ ∑ ௜ே݌
௜ୀଵ  (7) 

where pi is the power consumption in the ith chassis. The power cost 
of the CRAC unit is specified as ݌஼ோ஺஼ ൌ ூ்݌ ሺܱܲܥ ௦ܶሻ⁄ . The total 
datacenter power is the summation of PIT and PCRAC and is written as: 

஽஼݌  ൌ ቀ1 ൅ ଵ
஼ை௉ሺ ೞ்ሻ

ቁ ∑ ௜ே݌
௜ୀଵ  (8) 

Substituting the expression from (1) for pi, we obtain: 

஽஼݌  ൌ ቀ1 ൅ ଵ
஼ை௉ሺ ೞ்ሻ

ቁ ൫∑ ௜ேߛ
௜ୀଵ ൅ ∑ ∑ ௝ܿ௜௝௄ߙ

௝ୀଵ
ே
௜ୀଵ ൯ 
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IV. TEMPERATURE-AWARE DYNAMIC RESOURCE 
PROVISIONING AND POWER OPTIMIZATION 

Figure 2 shows the block diagram of the datacenter management 
system considered in this paper. Input requests are collected in a 
Global input Queue (GQ). The Temperature-Aware Dynamic 
Resource Provisioning (TA-DRP) module consists of two sub-
modules: Workload Monitoring (WM) unit and Power-Thermal 
Manager (PTM) unit. WM does workload analysis and prediction for 
the next epoch. The result is passed on to the PTM unit in the form of 
the required number of ON servers for each server class for the next 
epoch. PTM then uses this number along with information about the 
servers’ status in the datacenter to decide on which servers/chassis to 
employ/retire (turn ON/OFF) for the next epoch. The Request 
Dispatcher (RD) unit uses the server status information to assign 
requests to different servers. Designing a power efficient RD unit is 
not the purpose of this paper, and when needed we use a simple 
Round Robin scheduling algorithm. The combination of the WM and 
the PTM units is called TA-DRP, the main focus of this paper. 

Figure 2. Datacenter power optimization architecture. 

A. WORKLOAD MONITOR 
As mentioned earlier, WM is responsible for providing PTM with the 
required number of ON servers for each class. We denote the 
required number of type-j ON servers for the next epoch by nj(t+1), 
where the time index “t+1” represents the next epoch. The total 
number of type-j servers which must be turned ON in the next epoch 
is ௝ܵ ൌ ௝݊ሺݐ ൅ 1ሻ െ ௝݊ሺݐሻ, where the time index “t” represents the 
current epoch. If Sj > 0, the PTM must employ Sj new type-j servers; 
if Sj < 0, PTM retires |Sj| type-j servers, and if Sj = 0, PTM does not 
take any action for the type-j servers.  

In this paper we estimate the required number of servers for each 
epoch by performing workload prediction. To introduce the 
prediction approach, we need to define two parameters that determine 
the characteristics of a workload: total number of requests that are 
being processed at any given time and the request arrival rate. We 
denote the total number of requests and the request arrival rate at time 
t by r(t) and λ(t), respectively.  

Without loss of generality suppose that each request requires nj
avg 

number of type-j servers on average. The total number of required 
type-j servers at time t, and the rate at which this number changes, 
can be estimated as r(t)×nj

avg and λ(t)×nj
avg, respectively. This is a 

reasonable assumption because most of the cloud computing services 
need a relatively fixed number of servers of each type to serve a 
request. Examples of cloud computing applications include Web 
services such as Web search, Web mail, Connection services (e.g., 
Yahoo Messenger, Google Talk, and Windows Live Messenger), and 
web crawlers, etc. However, these applications demand non-uniform 
compute resources over time (across multiple decision epochs). 
Therefore, value of nj

avg is updated by using a moving average.  

B. CALCULATING THE REQUIRED SERVER COUNT 
For a given maximum tolerable CPU (or I/O) utilization and a 
specific application workload, we can find a maximum tolerable load 
(i.e., the number of connections to each server for connection-
intensive internet services) and the maximum tolerable rate at which 
the load for a server is changing  [13]. We denote the maximum 
tolerable load and maximum tolerable load rate for each type-j server 
with Rj

max and Λj
max, respectively. Therefore, our algorithms have to 

guarantee that the load of any type-j server will not exceed Rj
max, and 

the rate at which this load is changing does not exceed Λj
max. Rj

max 
and Λj

max depend on the type of application and the amount of 
bandwidth that the corresponding tasks take of each server. In this 
paper we assume Rj

max=10 and Λj
max=3. 

We may thus calculate the required number of type-j servers in 
the datacenter at time t as  [13]: 

௝݊ሺݐሻ ൌ max ൝අߛ௥
ሻݐሺݎ ௝݊

௔௩௚

௝ܴ
௠௔௫ ඉ , අߛఒ

ሻݐሺߣ ௝݊
௔௩௚

Λ௝௠௔௫
ඉ ൡ (9) 

where ۀݔڿ denotes the ceiling of x, and γr and γλ are the correction 
coefficients, and we have γr, γλ > 1. In Section  C we explain how 
these coefficients are chosen. However, as stated in  [13] there is a 
problem with this equation. In (9) we assume that a newly employed 
server will have Rj

max number of connections right after it is turned 
ON. This is not a valid assumption, and the load of a newly employed 
server will rise gradually from 0 to Rj

max.    
C. WORKLOAD PREDICTION 
Enterprise datacenters workloads typically show a repetitive pattern 
with a period in the order of hours, days, weeks and so forth. In  [14] 
authors have demonstrated that for the purpose of workload 
forecasting, the period of workload behavior is equal to 7 days for a 
large variety of datacenter applications. The forecasting method we 
use is composed of two exponential smoothing components for the 
trend value and the offset value prediction.  

ሻݐሺݏ ൌ ሻݐ௧௥௘௡ௗሺݏ ൅  ሻ (10)ݐ௢௙௙௦௘௧ሺݏ
The trend component performs prediction of the periodic pattern that 
has been exhibited with period T, whereas the offset component uses 
the correlation between the estimated value and the previous 
immediate neighbors. In this paper we use the same idea in the form 
of the following forecasting equation:  

ሻݐሺݏ  ൌ ௜݌∑ · ݐሺݔ െ ݅ܶሻ ൅ ௜ݍ∑ · ൫ݔሺݐ െ 1ሻ െ
ݐሺݔ െ 1 െ ݅ܶሻ൯ 

(11) 

where x(.) and s(.) represent actual and predicted values, respectively.  
Our experiments show that four pi coefficients (p1-p4) and two qi 
coefficients (q1-q2) results in a small amount of prediction error. It is 
worth mentioning that pi and qi coefficients are updated adaptively to 
reflect the time varying behavior of the workload. The assumption is 
that values of x(.) at every T steps are highly correlated. The offset 
component reflects the correlation between the observed value 
differences in the recent history with respect to the predicted trend .  

Forecasting r(t) and λ(t) is done through equation (11). Our 
experiments show that four pi coefficients (p1-p4) and two qi 
coefficients (q1-q2) results in a small amount of prediction error. The 
predicted values of r(t) and λ(t) obtained from (11) are then used to 
estimate the total number of ON servers using (9). The correction 
coefficients, γr and γλ in (9), are calculated based on the real-time 
prediction error measurements to avoid performance loss. We set the 
correction factors in (9) to γr =1+3σr and γλ =1+3σλ, where σr and σλ 
are the standard deviation of the prediction error of r(t) and λ(t), 
respectively  [13]. Figure 3.a and Figure 3.b illustrate the result of the 
workload forecasting for r(t) and the prediction error in one-week.  
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Figure 3. Prediction of total number of requests, r(t). 

D. POWER/THERMAL MANAGER 
In this section we present our Power Thermal Manager (PTM) unit 
which sits at the heart of TA-DRP. As explained in the beginning of 
Section  IV, inputs to the PTM are the server status in the current 
epoch and the required number of ON servers (of each server class) 
for the next epoch. Using these inputs, PTM decides on the location 
of the servers that are being employed or retired (this is sometimes 
referred to as the server placement problem – the goal is to assign 
virtual servers or applications to the physical servers in the datacenter 
so that the spatial distribution of ON and OFF servers result in 
minimum overall power cost in the datacenter including the power 
dissipations of the servers and the air conditioning unit). The 
optimality is defined as minimizing the total datacenter power 
consumption given in (8).   

The goal of PTM unit is to minimize the total datacenter power 
consumption given in (8) by dynamically employing or retiring the 
requested number of servers provided by the WM. This is done by a 
combination of three means: (i) employing the right number of 
servers of each type for each epoch and retiring any unused servers; 
(ii) chassis consolidation, i.e., turning ON only the minimum number 
of chassis and thereby eliminating the unnecessary base power 
consumption of the chassis, and (iii) maximizing the required Ts, thus 
a more efficient cooling, by optimally choosing locations of servers 
and chassis that are to be employed or retired.  Outputs of the PTM 
unit are the supplied cold air temperature value and the exact 
ON/OFF status of servers/chassis for the next epoch. Every time there 
is a need to employ new servers, we keep the currently ON servers 
ON and simply add new servers (we do not retire an ON server and 
employ a different new server instead.) This is to avoid the 
performance and energy overheads associated with retiring a busy 
server, employing a new server, and transferring the retired server’s 
jobs to the new server. The downside of this policy is that it does not 
guarantee a power optimal solution across all datacenter utilization 
levels because of the ON server persistency policy.  

To state the PTM problem, we first pay attention to the cost 
function (PDC) given in (8). For simplicity, we extract the Ts 
dependency from the cost function. The optimum value of Ts will be 
determined by performing a linear search across all possible Ts 
values, and finding a value that results in the minimum PDC. Note that 
for a fixed Ts value, COP(Ts) becomes a constant and can be taken 
out of the cost function. Then the cost function simply becomes PIT. 
We introduce a new integer variable for each chassis that takes on 
values from {0,1} and signals whether a chassis is ON or OFF. This 
variable is denoted by xi for the ith chassis, and is defined as: 

௜ݔ  ൌ ቊ
0  ;    ∑ ܿ௜௝௄

௝ୀଵ ൌ 0
1  ;    ∑ ܿ௜௝௄

௝ୀଵ ് 0
 (12) 

It can be shown that the cost function (PIT) becomes: 
Minimizeሼ்࢞ࢽ ൅  ૚ଵൈNሽ (13)ࢻ࡯

where x=[x1,x2,…,xN]T, and 11×N denotes an N-dimensional row 
vector with all elements equal to 1. Also, the inlet temperature vector 
in (4) will change to: 

௜௡ࢀ ൌ ௦ࢀ ൅ ࢞ࢣሺࡰ ൅  ሻ (14)ࢻ࡯

where Γ is a diagonal matrix defined as ࢣ ൌ ݀݅ܽ݃ሺߛଵ, ,ଶߛ … ,  .ேሻߛ
PTM decisions depend on the current server/chassis ON/OFF status. 
To capture the ON/OFF status of chassis, we define a new column 
vector, x0, of size N as x0=[x1

0,x2
0,…,xN

0]T, where xi
0=1 if the ith 

chassis is currently ON, otherwise xi
0=0. Similarly we define a new 

matrix, ࡯଴ ൌ ൣܿ௜௝଴ ൧ேൈ௄, to capture the ON/OFF status of each specific 
type of server.  ܿ௜௝଴  is the number of type-j servers that are currently 
employed on the ith chassis.  
Server Retirement Policy  
The purpose of the retirement policy is to minimize the number of 
ON servers by retiring additional ones. Every time the WM decides 
on reducing the number of ON servers of a certain type, the PTM unit 
selects some candidate servers to retire. Unlike the turn ON scenario 
(c.f. Section  0) where the candidate ON servers will be employed 
immediately, for the turn OFF case, the PTM passes the list of 
candidate servers to the Request Dispatcher (RD), and asks RD to 
retire them by simply not assigning new requests to them. On the 
other hand, the PTM has a list of retiring servers which it updates at 
each epoch. If a server on this list stays idle, i.e., it does not provide 
service to any request, for a certain period of time, that server will be 
put in the halt (hibernate) mode. Note that we do not completely turn 
OFF the retired servers (unless the whole chassis is being turned 
OFF), and we put them in hibernate mode instead. This is due to the 
small amount of power consumption and faster (compared to an OFF 
server) wakeup time. Similar to the retiring server list, the PTM also 
maintains a list of retiring chassis comprising ON chassis that include 
hibernated servers and no ON servers.  

Now we explain how the list of candidate retiring servers is 
determined by the PTM. The power thermal optimization problem to 
determine the retiring type-j servers can be formulated as the 
following Integer Linear Programming (ILP) problem. 

 Minimizeሼ்࢞ࢽ ൅  ૚ଵൈNሽࢻ࡯
 s. t. 
   1. ௦ࢀ ൅ ࢞ࢣሺࡰ ൅ ሻࢻ࡯ ൑  ௖௥௜௧௜௖௔௟ࢀ

   2. ∑ ܿ௜௝ே
௜ୀଵ ൌ ∑ ܿ௜௝଴ே

௜ୀଵ ൅ ௝ܵ   ;  | ݆׊ ௝ܵ ൏ 0         
   3. ௜ݔ ൑ ∑ ܿ௜௝௄

௝ୀଵ ൑ Mݔ௜    ;   1 ൑ ݅ ൑ N 
   4.  ܿ௜௝ ൑ ܿ௜௝଴                                  ;   1 ൑ ݅ ൑ N 

   5. ௜ݔ א ሼ0,1ሽ   ;   1 ൑ ݅ ൑ N                     
6. ܿ௜௝ א ൛0,1, … ,M୧୨ൟ    ;   1 ൑ ݅ ൑ N 

(15) 

where Tcritical is a vector of size N with all entries equal to a critical 
inlet temperature, Tcritical (The inlet temperature of all chassis must be 
less than this value in order to ensure that the corresponding servers 
will not overheat and eventually fail). A typical value for Tcritical is 
25°C  [10]. The outputs of the ILP problem in (15) are cij and xi 
values. xi values determine which chassis are to stay ON and which 
are to be retired. cij values determine the number of servers from each 
type that are to be retired on each chassis.   

Server Employment Policy 
The purpose of the server employment policy is to determine the 
optimum Ts value and locations of the required number of ON 
servers, and also to turn them ON. As mentioned in Section  0, the 
PTM maintains a list of retiring servers and a list of hibernating 
servers. Each time the PTM is asked to make use of new servers of a 
certain type, it first tries to meet this request by employing servers 
from the retiring server list. If this is not possible, then the PTM will 
try to satisfy the request by employing servers from hibernating 
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server list. Finally, if this is not possible either, PTM will employ 
new servers by solving an optimization problem as explained below.  

The turn-ON power thermal optimization problem to employ 
type-j servers can be formulated as the following Integer Linear 
Programming (ILP) problem. 

 Minimizeሼ்࢞ࢽ ൅  ૚ଵൈNሽࢻ࡯
 s. t. 
௦ࢀ  .1    ൅ ࢞ࢣሺࡰ ൅ ሻࢻ࡯ ൑  ௖௥௜௧௜௖௔௟ࢀ
   2.   ∑ ܿ௜௝ே

௜ୀଵ ൌ ∑ ܿ௜௝଴ே
௜ୀଵ ൅ ܵ௝   ;  | ݆׊       ௝ܵ ൐ 0                

௜ݔ  .3     ൑  ∑ ܿ௜௝௄
௝ୀଵ ൑ Mݔ௜         ;     1 ൑ ݅ ൑ N 

   4.  ܿ௜௝଴ ൑ ܿ௜௝ ൑ M୧୨                     ;      1 ൑ ݅ ൑ N 
௜଴ݔ   .5    ൑ ௜ݔ ൑ 1                         ;      1 ൑ ݅ ൑ N 
௜ݔ  .6    א ሼ0,1ሽ                              ;      1 ൑ ݅ ൑ N                   
   7.  ܿ௜௝ א ൛0,1, … ,M୧୨ൟ                ;     1 ൑ ݅ ൑ N 

(16) 

Note that the problem statement in (16) is the power optimization 
problem for a non-idle datacenter (a datacenter that already contains 
some ON servers.) In that sense it is different from the problem 
statement presented in  [10] which is for an idle datacenter.  

Calculating the Optimum Ts value 
Every time that we solve the retirement/employment policy, we also 
need to determine the optimum Ts value. In this paper we perform a 
linear search on possible Ts values, and solve the 
retirement/employment problem every time. We then pick the 
solution that gives the minimum total power consumption.  

V. SIMULATION RESULTS 
In this section we evaluate the power dissipation and cooling cost of 
our proposed technique, and we compare it with some of the common 
techniques in datacenter operations.  

 
Figure 4. Datacenter structure used in the simulations. 

A. SIMULATION SETUP 
We use a small scale datacenter with physical dimensions of 
9.6m×8.4m×3.6m consisting of 7U blade servers. The datacenter has 
two rows that are put together in a hot-aisle/cold-aisle arrangement as 
it is shown in Figure 4. Each row has five 42U racks. Each rack 
consists of five chassis each having 20 blade servers. Therefore, there 
are a total number of 1,000 servers in this datacenter. A CRAC unit is 
used to supply the cold air with f=8m3/s in the room. We may have 
K=1 or K=2 type(s) of server in the datacenter. Power parameters for 
servers and chassis are γ=820W, α1=85W (uses higher performance 
core with larger EPI), and α2=50W (uses lower performance core 
with smaller EPI). We have simulated the WM and PTM units using 
the algorithms explained in previous sections. To solve the ILP 
problems for server employment and retirement, we first used the LP 
solver package of TOMLAB  [15], and then found the closest integer 
solution to the continuous variable solution.  
To the best of our knowledge, the present work is the first that 
addresses temperature-aware dynamic resource provisioning in a 
power-optimized datacenter. So, comparison with prior work is not 
possible. However, we compared the proposed technique (TA-DRP) 

with two (reasonable) greedy heuristics, called GREEDY and TA-
GREEDY. Their difference from TA-DRP is that they use different 
techniques for server retirement and employment; otherwise they 
operate with the exact same procedures for the WM and RD units.  

Greedy (GREEDY)  
This heuristic algorithm performs chassis consolidation using a 
greedy approach without considering the cooling efficiency factor. 
For the server employment policy, it starts with chassis that have the 
maximum occupancy factor (maximum number of employed servers) 
so that no new chassis is turned on. For the retirement policy, on the 
other hand, it uses the least occupied chassis, so this chassis will have 
more chance to be turned off later on when the workload diminishes.  
Temperature-Aware Greedy (TA-GREEDY) 
In this heuristic algorithm, the chassis’ inlet temperatures are given a 
higher weight (priority) compared to the chassis’ occupancy factor. 
This is to prevent hot spots and imbalanced temperature distribution 
across the datacenter. Indirectly, balancing the heat distribution in the 
datacenter can save power. The algorithm maintains a list of 
relatively hot servers whose inlet temperatures are above a threshold 
value e.g., Tth=22.5°C. These servers will be assigned a higher 
priority for retirement. If there are no hot servers to retire, this 
heuristic picks the retiring candidates in the same fashion as 
GREEDY heuristic. In the same spirit, a cold chassis with maximum 
number of employed servers will be given a high priority to be used 
for server employment. Thus TA-GREEDY avoids turning on any 
servers in a chassis on the hot list as much as possible. Note that both 
GREEDY and TA-GREEDY adjust the Ts value, if and when needed, 
so that the thermal constraints are met.  
B. WORKLOAD GENERATION 
Our simulations were done using a benchmark suite where the 
number of existing requests and the expected request arrival rate are 
the input parameters. We could thus simulate a wide range of 
workload scenarios corresponding to different initial occupancies for 
the global queue and request arrival rates. The requests were 
homogenous in terms of their CPU and memory usage.   
C. POWER AND TS COMPARISON 
Figure 5 shows the total power consumption for the three techniques 
described above. The figure is the result of running the workload for 
one full. The workload prediction is done by the WM and the result is 
passed to PTM. It is seen from Figure 5 that TA-DRP consumes less 
power than GREEDY and TA-GREEDY.  

Figure 5. Comparison of the total power consumption for GREEDY, TA-
GREEDY and TA-DRP (K=1).  

Figure 5 also shows that TA-GREEDY performs better than 
GREEDY when employing new servers (i.e., when the total power is 
increasing in the figure). The reason is that TA-GREEDY employs 
new servers from cool chassis. Therefore, the amount of increase in 
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the maximum inlet temperature of chassis is very small, and we may 
only need a small amount of Ts compensation. In contrast, GREEDY 
employs new servers from the most occupied chassis that are usually 
the hottest ones with inlet temperature value being very close to the 
critical temperature. This requires a larger amount of Ts 
compensation, which results in less efficient cooling and thus larger 
datacenter power. GREEDY and TA-GREEDY almost perform 
similar while retiring servers: GREEDY retires servers from the least 
occupied chassis, but these are usually the coolest chassis i.e., the 
ones that TA-GREEDY retires.  
Figure 6 compares the required Ts values during the day for all the 
three algorithms discussed in this paper. As it is seen from this figure, 
the results of TA-GREEDY and TA-DRP are very similar when 
employing new servers; however, TA-DRP outperforms TA-
GREEDY during server retirement. The reason is that TA-GREEDY 
(unlike TA-DRP) picks hot chassis as the candidate retiring ones. 
This results in missing opportunities of chassis consolidation and 
increasing Ts as a reward of that.   

D.  
Figure 6. Ts comparison (K=1). 

Figure 7 shows the power consumption of the datacenter simulated 
for half a day. In this case all the requests to the datacenter use two 
different types of servers (K=2). Our future plan is to analyze the 
characteristics of the workload generated by standard benchmarks 
such as the SPECpower_ssj2008  [16] and TPC-APP to demonstrate 
the degree of power savings achieved by TA-DRP for these 
workloads. Figure 8 shows temperature distribution for two snapshots 
of the TA-DRP algorithm in the room. In both cases we assume that 
the all the input requests use two types of servers. Figure 8.a 
represents the case when 820 servers are ON (410 of each type). TA-
DRP has used 40 chassis to provide 820 servers in this case. 

Figure 7. Comparison of the total power consumption for K=2. 

VI. CONCLUDING REMARKS 
We presented a power-optimized datacenter that performs dynamic 
provisioning of its cyber-physical resources. Power saving was 
achieved by a combination of chassis consolidation and efficient 
cooling. Experimental results showed the effectiveness of the 
proposed dynamic datacenter resource provisioning scheme. Future 
work will focus on extending this work to include more sophisticated 
request scheduling algorithm and to do proof-of-concept 
demonstrations on a small-scale production datacenter at our site. 

(a) n1=n2=410, # of ON chassis=40 

(b) n1=n2=205, # of ON chassis=23 
Figure 8. Temperature distribution of a snapshot of TA-DRP. 
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