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Abstract—This paper presents a novel clustering based place-
ment algorithm for single flux quantum (SFQ) family of super-
conductive electronic circuits. In these circuits nearly all cells
receive a clock signal and a placement algorithm that ignores
the clock routing cost will not produce high quality solutions. To
address this issue, proposed approach simultaneously minimizes
the total wirelength of the signal nets and area overhead of the
clock routing. Furthermore, construction of a perfect H-tree in
SFQ logic circuits is not viable solution due to the resulting very
high routing overhead and the in-feasibility of building exact
zero-skew clock routing trees. Instead a hybrid clock tree must
be used whereby higher levels of the clock tree (i.e., those closer
to the clock source) are based on H-tree construction whereas
lower levels of the clock tree follow a linear (i.e., chain-like)
structure. The proposed approach is able to reduce the overall
half-perimeter wirelength by 15% and area by 8% compared
with state-of-the-art techniques.

I. INTRODUCTION

Development of the semiconductor technology has been
driven by the demand for higher performance and energy
efficient computing for decades. Conventional CMOS-based
technology has encountered serious challenges such as high
temperature and power consumption [1]. Hence, there is a
significant demand to search for new innovations that would
permit continuation of performance and energy efficiency
scaling to well beyond the end-of-scaling CMOS nodes.

Superconducting electronics (SCE), including rapid single
flux quantum (RSFQ) logic family, appears to be one of the
most promising technologies to replace CMOS devices, pri-
marily due to fast switching and low energy consumption. This
is as a result of special attributes of Josephson junctions (JJs),
basic circuit elements in SFQ logic, such as fast switching (∼
1 ps) and low switching energy per bit (∼ 10−19 J) at low
temperatures [2]. In particular, RSFQ technology uses quan-
tized voltage pulses in digital data generation, reproduction,
amplification, memorization, and processing [3]. Furthermore,
it has been demonstrated that RSFQ circuits are functional at
operating frequencies of up to 770 GHz [4].

In spite of extraordinary characteristics of SFQ logic, archi-
tectures, design automation methodologies, and device fabri-
cation require solutions in order for the SFQ logic to become
a realistic option for realizing large-scale, high-performance,
and energy-efficient computing systems of the future [2].

Placement problem has been studied for more than 50 years,
and it has played an important role in the overall design flow of
integrated circuits [5]. Reducing the total wirelength which can
be modeled by half-perimeter wirelength (HPWL) along with
routability and performance are among the main objectives.

The focus of this paper is to propose a new placement
methodology for large SFQ circuits, with the primary goal
of reducing the total wirelength and area dedicated to clock
network. The proposed placement algorithms starts by group-
ing cells of the same logic level into a set of super-cells,
building a modified netlist capturing dependencies among
these super-cells, and then using force-directed placement to
find a global placement of these cells. A detailed placement
follows in which cells within each cell group (super-cell)
are re-ordered with the goal of minimizing a cost function
comprising of the signal wirelength and the total chip area.
The key contributions of this paper are as follows.
• We present a novel clock-tree aware placement algorithm

to reduce the total wirelength and chip area, compared
with state-of-the-art approaches. Results show an average
improvement of 15% and 8% in total HPWL and area.

• The proposed algorithm is capable of generating various
placement solutions with different trade-offs between the
total wirelength and chip area.

The remainder of the paper is organized as follows. Prior
work are discussed in section II. Proposed clock-tree aware
placement methodology is presented in Section III. Simulation
results and comparison of different placement approaches are
reported in Section IV. The paper is concluded in Section V.

II. PRIOR WORK

Various methods for placement and clock tree synthesis of
RSFQ circuits have been proposed. In [7], initially a zero-skew
H-tree clock network is constructed. Cells are then placed on
predefined rectangular grids located at the leaf nodes of the
H-tree clock network using the min-cut placement algorithm.
This design methodology suffers from the large size of the
H-tree clock network which results in a considerable portion
of the chip area occupied by clock tree structure. Authors in
[8] propose the HL-tree clock network to reduce the total chip
area. HL-tree clock network adopts an H-tree to propagate
the clock signal globally, to some of the nodes (namely clock
sink nodes), and a linear tree (L-tree) to distribute the global
clock signal to nearby cells locally. This work uses a global
placement algorithm to create an initial placement of the cells.
Next, cells of the same logic level in each row are grouped
together and generated cell-groups are placed in the same row.
Although this approach reduces the chip area compared with
the initial placement, post placement cell-grouping algorithm
leads to a considerable increase in total wirelength, which
in turn increases the critical path delay and degrades the
performance [8]. This is due to the fact that cell-grouping



algorithm only considers same level cells within a row and
not all the same level cells in the circuit. Hence, in a HL-k
placement, a large number of cell-groups with fewer than k
cells are generated which increase the clock routing cost.

III. PROPOSED METHOD

Different placement algorithms ranging from force-directed
to min-cut placements tend to produce high quality solutions
(in terms of the minimization of the total wirelength) with
very different cell placements. This degeneracy of placement
solutions implies that one can optimize another objective
function (e.g., the routing cost of the clock tree) while only
minimally affecting the primary objective function (e.g., the
total wirelength).

Major differences of SFQ compared with CMOS technology
may be summarized as follows. 1) Size of the basic gates
are huge (i.e., area of an AND gate in SFQ is 600 times
larger than that of even a 45-nm CMOS technology [8][9]).
2) Current technology only handles a limited number of metal
layers for routing (currently only 3 metal layers are available
for both clock and signal routing [10]). 3) While in CMOS-
based designs typically near 15% of the cells need clock
signal [11], in SFQ all the cells (except for splitters) receive
a clock signal, which leads to a large clock network. 4) In
SFQ designs, the input netlist should path-balanced1. This
increases the number of cells in the design, as DFF gates
should be inserted for balancing all the paths. 5) Building
a perfect H-tree is nearly impossible. Large number of clock
splitters in the H-tree network increase the clock skew. Process
variations result in increased clock jitter. Furthermore, the
layout rules are more constrained in SFQ technology than
CMOS which lead to asymmetries in clock network [3]. Above
reasons lead to higher design complexity, large area especially
in clock network, and significant performance degradation due
to longer critical path delay.

This paper presents a clock-tree aware algorithm to produce
high quality placement solution which minimizes the total
wirelength while reduces the clock network area. Proposed
approach utilizes the HL-tree clocking scheme [8]. An ex-
ample of HL-tree clock network is shown in Fig. 1. The
proposed placement algorithm, recognizing the need for this
hybrid clock tree realization, generates a cell placement that
intrinsically matches the structure of the clock tree. It does so
by efficiently grouping cells of the same logic level into cell-
groups (super-cells), building a modified netlist capturing de-
pendencies among these cell-groups, which in turn minimizes
the total number of clock sink nodes. Note that the reason that
only same level cells are included in each super-cell is that if
there is a connection between cells in a L-tree network, stage
delay is added to clock cycle delay and degrades the overall
performance of the circuit.

A. Design Flow

Our placement algorithm consists of three main phases, as
shown in Fig. 2. Phase 1 (Initial Cell Placement) starts by plac-
ing cells using a force-directed global placement algorithm.

1In a path-balanced netlist, all paths from any primary input to any primary
output have the same logical depth.

Fig. 1. A sample HL-tree clock network. Black boxes indicate
clock splitters. Blue and red lines denote the global and local
clock signals.
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Fig. 2. Overall view of the proposed placement algorithm.
LAP and B2B stand for linear assignment problem [12] and
bound to bound net model [13], respectively.

In phase 2 (Cell Grouping) circuit is transformed to a graph
G(V,E), in which V denotes the set of all vertices (cells), and
E represents set of all hyperedges (nets). In case of multi-pin
nets, we use bound to bound net model [13], as it captures the
HPWL objective function better than the clique and star net
models [13]. Additionally, (for each logic level i) a sub-graph
of the original graph which only contains cells of that logic
level (namely Gi) is created. Initially, there are no connections
between cells of same logic level. Furthermore, nodes of each
sub-graph Gi are processed in two steps, namely connectivity-
based and distance-based graph processing (cf., Fig. 2 Phase
2). The goal of these two steps is to add connections between
cells of the same logic level (nodes of graph Gi) to facilitate
grouping of same level cells. Subsequently, each sub-graph Gi
is partitioned, and cell-groups consisting of strongly connected
cells of same logic level are formed. In the final phase (Super-
cell Placement), cell-groups (super-cells) are placed on the
placement grid and a detailed placement algorithm reorders
cells inside each super-cell to the minimize the total HPWL
(cf., Fig. 2 Phase 3). Details of the proposed design flow are
described in the following subsections.

B. Connectivity-based Graph Processing

Once the initial placement of the cells is produced by the
first phase of the proposed approach, netlist is transformed to
a graph and sub-graph Gis are formed. In this step, weights
are added to edges between the nodes of sub-graph Gi solely
based on the connectivity of nodes to their adjacent level
neighbors (as initially there are no connections between nodes
of Gi, a zero-weight edge is added between each pair of
nodes). The intuition for this step is that if two nodes of logic
level i have lots of common neighbors, it is desirable for the
global placement to place them close to each other. As a result,



Fig. 3. Graph of nodes of level 3-6 for a 4-bit Kogge-Stone adder. Nodes of level 5 are shown in blue. Logic level of each
node is added to its name.

to reduce total HPWL, we may group them together. This step
runs for each of the sub-graphs Gi independently. Therefore
it is performed L times, where L is the total number of logic
levels. Details are provided below.

A pre-processing step finds the neighbor nodes of all cells
in the design using Algorithm 1. This algorithm gets the base
node and maxSearchLevel (a parameter which determines the
search scope and is same for all the nodes) as input and returns
a two dimensional vector, namely neighbors, consisting of the
neighbors which have a level within maxSearchLevel (mSL)
of the base node. Algorithm 1 starts by initiating an empty
queue. Initially, the base node is pushed to the queue. In each
iteration, front element of the queue is chosen and added to
the two dimensional vector, neighbors, with the difference of
its logic level and that of the base node as the index of first
vector. Next, children (parents) of the front element in the
queue which have a level within mSL of the base node are
added to the queue. Finally, once all neighbors of the base node
within its mSL are added to the neighbors vector, algorithm
terminates. For instance, assume the base node is of level i,
and mSL is equal to 2. The algorithm returns all nodes with
level more than i-3 (parents) and less than i+3 (children) of
the base node, which have a direct connection toward the base
node. Direct connection from a child (parent) to its base node
means that it can only pass through nodes of logic level lower
(higher) than its own logic level, only from output to input
(input to output).

Once this pre-processing step is completed for all nodes,
each sub-graph Gi is processed as described in Algorithm
2. At each step a pair of nodes of level i, namely u and
v are processed. Initially, their common neighbors is found
by intersecting their neighbors vectors. If there is a common
neighbor of level p, weight equal to α

|p−i| is added to the edge
between them. α represents a normalization factor, directly
proportional to mSL.

Fig. 3 shows nodes of level 3-6 for a 4-bit Kogge-Stone
adder circuit with 6 logic levels. Assume Algorithm 2 pro-
cesses nodes of level 5 (shown in blue in Fig. 3) with mSL of
2 and α value of 2. Consequently, edge weights in graph G5

are modified as follows. Nodes c60 and c48 have a common
neighbor of level 3, namely c66. Consequently, weight of the
edge between them increases by 1. Same edge weight is added
between nodes c36 and c49. Additionally, c51 is a common
incident neighbor for nodes c49 and c32, which results in

an edge weight of 2 between these two nodes. Edge weight
between nodes c19 and c48 is also increased by 2. Finally,
since c63 does not have any common neighbors with the other
nodes (it is one of the DFFs inserted for path-balancing), it
remains unconnected. This step is performed for all the sub-
graph Gis. After this step, the sub-graphs are passed to the
next step (Distance-based Graph Processing).

Algorithm 1 Level Order Traversal
int maxSearchLevel, Node* base
vector<vector<Node*>> neighbors
queue<Node*> Q = φ

1: Q.push(base)
2: while (!Q.empty()) do
3: Node* front = Q.front()
4: Q.pop()
5: levelDiff = abs(level(front) - level(base))
6: if (levelDiff > maxSearchLevel) continue
7: neighbors[levelDiff].push back(front)
8: vector< Node* > children = findChildren(front)
9: vector< Node* > parents = findParents(front)

10: foreach node in {children, parents}
11: if (abs (level(node) - level(base)) ≤ maxSearchLevel)
12: Q.push(node)
13: end foreach
14: end while
15: return neighbors

Algorithm 2 Connectivity-based Graph Processing
vector<Node*> sameLevelNodes = Gi(V)

1: foreach u in sameLevelNodes
2: foreach v in sameLevelNodes
3: commonNeighbors = intersect(neighbors(u), neigh-

bors(v))
4: foreach neighbor in commonNeighbors
5: levelDiff = abs(level(u) - level(neighbor))
6: extraEdgeWeight =

α

levelDiff
7: addEdgeWeight(u, v, extraEdgeWeight)
8: end foreach
9: end foreach

10: end foreach



C. Distance-based Graph Processing

In this step, initial cell placement information (cf. Fig. 2
Phase 1) will be used to add edge weights between nodes
of sub-graph Gi as a function of their relative distance.
Edge weight between each pair of same level cells (u, v) is
calculated using following formula:

Wx(u, v) = β · (1− |Xu −Xv| −∆Ximin

∆Ximax −∆Ximin

) (1)

where ∆Ximax
and ∆Ximin

represent maximum and mini-
mum distance of cells of logic level i, Xu and Xv denote the
x coordinates of u and v, and β is a normalization factor. Edge
weight in y direction is calculated in a similar manner. Final
edge weight between nodes u and v is calculated as follows:

W (u, v) = b
√
Wx(u, v)2 +Wy(u, v)2c (2)

where Wx(u, v) and Wy(u, v) denote the edge weights corre-
sponding to x and y directions. The intuition for this step is
that if two nodes of logic level i are placed near each other
in the initial placement, it is desirable to place them close
to each other in the final solution. As a consequence of this
phase, none of the nodes of Gi will be unconnected. Hence,
cell-grouping will be more deterministic rather than random
in the case there are unconnected nodes which can be placed
in any of the cell-groups.

D. Partitioning

Once each sub-graph (Gi) is processed through
connectivity-based and distance-based steps, a partitioning
algorithm is used to partition it to generate cell-groups. As
a result, cells with higher edge weight end up in the same
part and are grouped to form the super-cells. Assuming the
total number of cells of level i to be m and the the group
sizes to be k, we seek to obtain p = dm/ke cell-groups. For
this purpose, a p-way partitioning should be performed to
generate p parts of size k. After the partitioning a super-cell
is created for each part and all nodes in that part are added
to that super-cell. Once partitioning all sub-graphs (Gi) is
completed, and super-cells are created, connections among
nodes in the original graph are transformed to connections
among super-cells in the reduced graph.

It should be noted that as the number of cells in each group
(k) increases, the overall chip area decreases. The reason is
that more cells of same logic level are grouped (abutted) and
total number of clock sink nodes decreases. On the other hand,
using larger values of k increases the delay of linear clock
propagation inside each group [8]. Therefore, increasing group
size creates a trade-off between total chip area and maximum
clock frequency. However, in current technology, critical path
delay is much higher than that of linear clock distribution.
Consequently, increasing number of cells in each group leads
to smaller chip area with negligible performance penalty.

E. Super-cell Placement

Once the Cell Grouping phase (cf. Fig. 2) is completed and
super-cells are generated, original netlist is transformed into a
smaller netlist in terms of total cell count. If the total number

of cells in original netlist is N , and group size is set to be k,
the new netlist contains approximately N/k cells.

In this phase, namely Super-cell Placement (cf. Fig. 2),
reduced netlist is placed using a global placement algorithm,
followed by legalization and detailed placement. Once the
position of all super-cells is determined, original netlist is
retrieved, and position of original cells is updated based on the
position of their corresponding super-cell. They are initially
placed in the center of each super-cell, on top of each other.
Subsequently, a linear assignment problem (LAP) [12] is
solved to find the optimal placement of each cell inside its
corresponding cell-group similar to [8].

IV. SIMULATION RESULTS

Our implementation was written in C++. We used SimPL
[6] placement algorithm for performing global placement and
HMETIS package for p-way partitioning [14]. The effective-
ness of our approach was evaluated using 8 different SFQ
benchmarks obtained from [15] and [16], with group sizes
of k = 2 and k = 4. HL-tree clocking scheme was used to
synthesize the clock network [8]. Once the proposed placement
algorithm terminates, first cell of each cell-group is marked
as the clock sink. Next, BST/DME algorithm [17] is used to
create an H-tree clock network to propagate clock signal to
all the sink nodes. Splitters on the top portion of each cell
within a cell-group are used to create L-tree clock network.
Finally, total HPWL was calculated using the GSRC Bookshelf
Evaluator [18]. It should be noted that total HPWL has been
reported as sum of data and clock signal nets. The approach
in [8] was implemented and used as the baseline solution.

Table I compares the results of our method to the baseline
solution. Proposed approach is able to improve the total HPWL
and total area by 15% and 8%, respectively. This is primarily
due to the Cell Grouping phase (cf. Fig. 2). Cell-grouping in
baseline solution is only limited to same level cells within each
row, while proposed solution considers all the cells of same
logic level globally, irrespective of the row at which they are
placed during global placement. Consequently, fewer number
of clock sink nodes are created which in turn reduces the
total area and total HPWL simultaneously. Proposed approach
reduces the total number of clock sink nodes approximately
to N/k in the case of group size of k (cf. Table I). However,
baseline solution generates lots of cell-groups with fewer cells
than k in each cell-group. Consequently, total area of the
proposed approach is always smaller than that of [8]. More-
over, Table I shows that proposed methodology reduces the
overall area significantly, using the HL-tree clocking scheme,
when compared with a global placement accompanied by H-
tree clock network as proposed in [8]. Comparison of total
chip area for different benchmarks, and different group sizes
(k), shows that total area can be reduced significantly, 27.8%
on average, using the proposed clock-tree aware placement
approach, which in turn reduces the critical path delay and
increases the performance.

V. CONCLUSION

Special attributes of rapid single flux quantum (RSFQ) tech-
nology such as fast switching and low energy consumption,



TABLE I. Comparison of total number of clock sink nodes, percentage of HPWL and area improvement for 8 different SFQ
logic circuits using different placement strategies. KS stands for Kogge-Stone adder and INT-DIV stands for integer divider.

Benchmark # Cells # Levels Group size (k)
# Clock sinks % HPWL improv. % Area improvement

baseline proposed prop. vs. base. prop. vs. base. HL-k vs. Htree

16-bit KSA 500 10
2 353 317 3.7 1.3 23.1
4 225 161 1.0 11.6 37.0

iscas85/C499 704 14
2 643 443 3.0 2.1 21.3
4 505 224 -2.5 7.2 36.4

32-bit KSA 1208 13
2 893 829 8.1 6.2 24.1
4 523 422 6.4 5.7 35.1

iscas85/C880 1299 24
2 906 776 13.0 0.5 20.9
4 613 394 3.6 7.0 31.2

iscas85/C1908 1310 26
2 923 781 6.2 8.6 26.2
4 649 398 -2.9 11.0 34.8

iscas85/C432 1569 43
2 1101 867 8.5 13.2 25.4
4 854 443 -2.5 14.6 36.4

8-bit INT-DIV 5431 89
2 3487 2871 45.8 4.8 26.9
4 2475 1458 44.9 5.5 35.9

16-bit INT-DIV 15315 305
2 11936 8242 56.3 16.4 21.4
4 10619 4196 52.4 23.6 33.7

Average(%) - - - - - 15.3 8.6 27.8

makes it one of the best replacements for CMOS-based design.
However, large cell sizes, limited number of metal layers in
current technology [10] and the fact that all the cells in SFQ
technology need a clock signal, require special algorithms to
improve the performance and reduce the total area in large
SFQ circuits, especially the area dedicated to clock network.
In this paper, a novel cell-grouping based placement approach
is introduced and effectiveness of the proposed method is
compared with state-of-the-art techniques. Proposed approach
is able to improve the total HPWL and total area by 15% and
8%, respectively.
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