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Abstract—Field-programmable gate arrays (FPGAs) provide
a significantly cheaper solution for various applications in
traditional semiconductor electronics. Single flux quantum
(SFQ) technologies are developing rapidly and the availability
of SFQ-specific FPGA will be very useful. Towards developing
such an SFQ-specific FPGA, new designs of FPGA subcircuits
for both synchronous and asynchronous operation of SFQ circuits
are presented in this paper. Magnetic Josephson junctions (MJJs)
are used as bias limiting junctions in energy-efficient rapid SFQ
(ERSFQ) biasing to implement programmable switches in various
subcircuits of the proposed FPGA fabric. Designs of all FPGA sub-
circuits are developed and are verified through circuit simulation.
Verilog hardware description language (HDL) models are also de-
veloped for all FPGA circuit blocks to facilitate large-scale FPGA
simulations for the implementation of the desired circuit on the
proposed FPGA fabric. Designs of a few subcircuits with switches
based on nondestructive readout cell are also given in the current
paper for better comparison with MJJ switch based counterparts.
Programming of MJJ-based switches is based on the ability to
control the critical current of MJJs externally. Recent implemen-
tations of SFQ decoder is proposed for accessing individual MJJs
through the current lines in a crossbar structure. Estimations for
the area and power consumption are much better in comparison
to previous attempts at designing an SFQ specific FPGA.

Index Terms—ERSFQ, field-programmable gate array (FPGA),
magnetic Josephson junctions (MJJs), programmable switches,
superconducting electronics.

I. INTRODUCTION

A SIGNIFICANT improvement in the energy efficiency of
digital technology is required to enable further progress in

information systems in the wake of considerable scaling chal-
lenges facing conventional CMOS [1]. Superconducting single
flux quantum (SFQ) technology is capable of very low power
dissipation and high speed, and thus, has been attracting a great
deal of attention as a potential beyond CMOS technology candi-
date for energy-efficient computing systems [2], [3]. Cryogenic
rapid SFQ (RSFQ) circuits [4] have already reached a relative
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maturity realizing critical digital processing circuits [5]–[7] and
producing integrated circuits of commercial significance [8].
Recently, SFQ technologies with even higher energy efficiency
have been developed [9]–[14]. Still, a big leap is required for
SFQ technologies to have integrated circuits reaching complex-
ities and integration densities on par with the mature CMOS
technology. A serious challenge for SFQ technologies is its
relatively low integration density determined by the large ge-
ometries of superconducting quantum interferometer devices
(SQUIDs) typical for SFQ circuits.

One of the most successful circuits in the semiconductor in-
dustry is field-programmable gate arrays (FPGAs) [15]. They
are prefabricated CMOS circuits that can be electrically pro-
grammed on the field to become any circuit or system, as per
the requirement of the user. Typically, FPGA is a cheaper and
faster solution when compared to application specific integrated
circuits, especially for the new circuit designs in the research
and development phase [16]. Recently, a cryogenically cooled
CMOS FPGA was used to implement a classical controller for
quantum computing processors [17], [18] despite the dissipation
a significant amount of power. The circuit energy efficiency is a
priority for quantum computing applications requiring the cryo-
genic placement of FPGAs. Clearly, a superconducting energy-
efficient FPGA would be an attractive option.

The first superconducting FPGA based on RSFQ logic was
proposed in 2007 [19]. It relied on the implementation of
switches based on a derivative of a non-destructive readout
(NDRO) circuit controlled by dc bias to program the routing
and the lookup tables (LUT) used for a logic block in the FPGA
fabric. As a result, the total area used by switches occupied
65% of the total chip area. It also proposed the use of trans-
former coupling to control switches, which at a large scale can
potentially cause yield and crosstalk issues. Recently, another
superconducting FPGA was proposed [20] based on reciprocal
quantum logic [12] and switchable phase shifters based on mag-
netic Josephson junctions (MJJs) embedded into dc SQUIDs.
Although a complete operation or a detailed FPGA design was
not elaborated, the use of SQUID-based switches and the com-
bination of voltage-state (multi-SFQ) and SFQ signal regimes
would make a future implementation of such FPGA challenging
in achieving a high circuit density and energy efficiency.

In this paper, we present a new and complete SFQ FPGA
design describing all the necessary circuit blocks. It is based on
energy-efficient RSFQ (ERSFQ) logic [10] with programmable
dc biasing controlled by MJJs. This new approach allows us to
avoid the use of SQUID- and NDRO-based switches and achieve
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a much higher area efficiency. In MIT Lincoln laboratory (MIT-
LL) process, the typical area of an NDRO gate combined with
a single JTL stage at input and output pins (I/O JTL) is 40 × 60
μm2 . In contrast, the typical area of an MJJ is 2 × 2 μm2 and
combined with its associated bias lines, a total area of 3× 3 μm2 .
Similarly, bias current required for the operation of an NDRO-
based switch is not less than 1500 μA. In contrast, an MJJ-based
switch can be implemented as part of an I/O JTL without any
additional bias current. We propose two types of configurable
logic blocks (CLBs) that work in the LUT-based architecture
and any special SFQ function based architecture. For demon-
strating the advantages of implementing FPGA with MJJ-based
switches over NDRO-based switches, our work on CLBs with
NDRO-based switches is initially presented and later modified
to CLBs with MJJ-based switches. We have also worked out
SFQ FPGA designs that can operate both synchronously and
asynchronously.

II. SFQ FPGA FRAMEWORK

There are several CMOS FPGA architectures commercially
available in semiconductor industry from companies such as
Xilinx [21] and Altera [22]. These companies have different
FPGA architectures. However, all of these architectures contain

1) CLBs to implement desired logic functions;
2) programmable routing structure that connects all the

CLBs according to the functionality of the implemented
circuit on the FPGA;

3) I/O blocks to make off-chip connections to the CLBs
through the routing network.

Based on the global arrangement of the routing structure,
FPGA architectures can be classified as either island-style or
hierarchical [16]. Our SFQ FPGA fabric is based on the island-
style FPGA architecture where CLBs appear as islands in a sea
of interconnects. In this architecture, CLBs are arranged in a
two-dimensional (2-D) grid made by the routing network and
it comprises of interconnects organized as horizontal and verti-
cal routing channels (or tracks) with programmable switches to
make connections among CLBs and from/to I/O blocks to/from
CLBs. Note that both island-style and hierarchical routing archi-
tectures could have been explored for our proposed SFQ FPGA.
However, for this paper we focused only on developing all the
FPGA subcircuits and the fabric for the island-style architec-
ture. We use the following terminology for the three blocks that
use programmable switches in the routing channels:

1) switch box;
2) horizontal connection block (HCB);
3) vertical connection block (VCB).
Our adaptation of the island-style FPGA architecture can be

seen in Fig. 1.

A. Overview of SFQ FPGA Implementation

SFQ FPGA cannot be directly derived or implemented based
on its CMOS counterpart. None of the SFQ family technologies
support the major benefits of the MOSFETswitches and the bidi-
rectional wires due to which the programmable routing becomes
difficult, and thus, the implementation of SFQ FPGA also be-
comes difficult. SFQ connections are inherently unidirectional

Fig. 1. Island-style architecture adaptation of SFQ FPGA with unidirectional
and bidirectional data flow in horizontal and vertical directions, respectively.
A CLB gets its inputs from the routing network through VCB and its outputs
are carried to the routing network through HCB. I/P: Input, O/P: Output, I/O:
Input/Output.

and a three-terminal switch like a MOSFET for an easy program-
ming of routing channels is not yet available (in SFQ technol-
ogy), though there is considerable work that is being done in
that direction [23], [24]. Because of the unidirectional nature
and the cost of routing network, (horizontal) data flow is only in
one direction, from left to right in our implementation of SFQ
FPGA. However, two separate lines are employed vertically, up
(bottom to top) and down (top to bottom) for a bidirectional data
flow. Due to the timing requirements of clocking in gate-level
pipelining, routing of signals with data flow in both directions
for horizontal tracks can become very difficult and will be ex-
pensive in terms of area and delay. Hence, bidirectional tracks
are not implemented in the horizontal direction. Thus, the input
ports are located on the left side of the FPGA block, the out-
put ports are located on the right side of the block, and both
input and output ports are on the top and the bottom sides of the
block.

Because of the reasons mentioned above, CMOS FPGA con-
figurations of the switch box and the connection blocks cannot
be directly used for implementing the programmable routing in
SFQ FPGA. We have modified the Wilton switch box topology
[25] in a way that is SFQ specific and scalable for a larger num-
ber of routing channels. Our designs of horizontal and VCBs
serve dedicated functions in terms of routing and interconnec-
tions. These programmable routing blocks contain MJJs that
are used as bias limiting junctions in ERSFQ biasing to control
the bias current delivered to the circuit components in the im-
plementation of a programmable switch. This leads to a more
compact design in contrast to the earlier implementations of
a switch based on the use of NDRO cells, which consumes a
larger area (for programmable switches) compared to the other
resources required for FPGA implementation. In the rest of the
paper, unless it is mentioned otherwise, all the logical cells are
to be assumed clocked cells and the operation of the circuit (or
FPGA) is to be assumed synchronous operation.



KATAM et al.: SUPERCONDUCTING MAGNETIC FIELD PROGRAMMABLE GATE ARRAY 1300212

Fig. 2. (a) PS block implementation with NDROs and DFFs. A PS unit is
shown in a dashed red rectangle and a PS block is formed by serially connecting
PS units. S2 represents 1-to-2 splitter. Functional waveforms in Verilog hardware
description language (HDL) simulation: (b) Signals during programming mode:
Writing 0 1 0 1 (for PS units at positions 0 1 2 3). (c) Signals during reading
mode. PS units at positions 0 and 2 do not produce output pulse for the respective
Read input.

III. DESIGN AND DETAILS OF SFQ FPGA FABRIC

A. NDRO-Based CLB

1) Program and Store Block: Many commercially available
CMOS FPGAs use static memory (SRAM) cells for program-
ming and storing the LUTs of desired gates in CLBs of FPGA
fabric. Program and Store block is one of the building blocks
in our NDRO-based CLB implementation with the capability
of programming and storing the data to configure a CLB into
the desired gate, and its usage is explained in the following
subsections. For SFQ technologies, SRAMs can be replaced by
NDRO cells, though we cannot program and use these cells in
the same way as SRAM cells. We propose a scan chain structure
for NDROs as illustrated in Fig. 2(a) to program them serially.
The scan chain structure is used because of its built-in support
for bit-serial programming. Parallel loading of the data-to-be-
programmed into the storage elements (NDROs) is not possible
due to the limitation of I/O pins count. Hence, a scan chain
structure is used to load data serially into all the NDROs of

the circuit. Scan chain mechanism is popular in the testing of
CMOS circuits.

A scan chain is formed by serially connecting multiple pro-
gram and store (PS) units. A single unit is shown with a dashed
rectangle in Fig. 2(a). Data is serially given at the input data
in, one input per a programming clock pulse, Prg clk. Each PS
unit has a Prg clk input and the programming clock pulse can
either reach all units (in a block) at the same time or consecu-
tively beginning from the first cell to which the data are serially
given at input, data in to be stored in the block. In the case of
programming clock pulse not arriving at all PS units at the same
time, the time difference between its arrival at two consecutive
cells cannot be more than the time period with which data are
given serially as input at data in. With the input data arrival,
input (either 1 or 0) is stored in a PS unit’s D-flipflop (DFF).
Each (input) pulse at Prg clk first resets the respective PS unit’s
NDRO and then clocks the DFF to release the data value stored
in it. Then, it gets subsequently stored in the NDRO along with
passing the same data to the next PS unit to receive with the next
Prg clk input (if present). So, the serial input data given at data
in keeps moving down by one PS unit with every programming
clock pulse.

The scan chain as shown in Fig. 2(a) can be programmed with
four Prg clk pulses with the bottom-most PS unit’s input going
as the first input to Data in and the top most PS unit’s input
going at the end. The stored values can be read with the arrival
of respective PS unit’s Read input. Hence, this PS block has two
modes: programming mode and reading mode. Data out pin of
a PS block will be connected to Data in pin of the next PS block
in the FPGA fabric implying that all PS blocks in the fabric
are serially connected (making a large PS block). Hence, all PS
units in the fabric can be programmed with presenting the data-
to-be-programmed at the first PS unit’s data in pin in a serial
bit stream. Programming clock pulses need to be given to all
PS units along with the input bit stream whose number should
be equal to the number of PS units in the fabric with the same
frequency of input bit stream. Programming new data into a PS
block will automatically erase the old data stored in it. Using
this PS block, we have designed two CLBs that are presented
in the following subsections. These two types of CLBs will be
modified by replacing NDRO-based PS block with magnetic
switches and will be presented in a later section.

2) LUT-Based CLB: Fig. 3 shows our implementation of the
LUT-based CLB unit for a two-input gate. A four-PS unit block
as shown in Fig. 2(a) is used to store four different output values
for all four combinations of the two inputs of any two-input
gate. Initially, PS block in a CLB has to be programmed with
the truth table of the gate to be implemented, in the programming
mode. The truth table stored in a PS block will be held in it until
it is in programming mode again, i.e., the arrival of the next
programming clock pulse for a PS block. Once the programming
of PS block is finished, it will be operated in the reading mode.
The circuitry to the left of PS block is the implementation of an
SFQ decoder that gives out only one of the Read signals (of a
total of four) based on the inputs to the CLB. The Read signal
then reads the proper value stored in the PS block to give out the
output of CLB. A 4-to-1 merger is used at the end to merge all
four outputs of the PS block to collect the output signal at one
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Fig. 3. Implementation of the LUT-based CLB for a two-input gate using a
decoder with DFFCs, PS block with NDRO-based switches and a 4-to-1 merger.
DFFC : D-Flipflop with complementary outputs.

Fig. 4. Implementation of the FS-based CLB for four two-input SFQ gates
using a PS block with NDRO-based switches, an actual implementation of gates
and a 4-to-1 merger.

node. Merger produces an output pulse for an incoming pulse
at any of its inputs. Since only one output can come out of PS
block per clock cycle, no two signals would ever be merged, but
only one of the four out signals will be presented at the CLB
output.

3) Function Selection (FS) Based CLB: FS-based CLB con-
sists of an actual implementation of logic gates instead of LUTs.
In the case of CMOS, this kind of CLB implementation is un-
desirable. However, the comparable cost of implementation and
the relatively small size of an SFQ cell library makes this imple-
mentation equally desirable for SFQ. Fig. 4 shows a (single-PS
block) CLB implemented with four two-input gates. One or more
of them can be one-input gates (e.g., inverter or D-flipflop). Each
NDRO output of the PS block clocks one of the foure gates in
the CLB and it is programmed such that the only gate in the
CLB that is to be implemented will have the respective NDRO
set. Inputs A and B reach all four gates, but only the gate being
implemented will be clocked, and hence only one of the gate’s
result will be received at the CLB output. Since the inputs A
and B reach all four gates in the CLB but only the implemented
gate is clocked, the other three gates are not reset, implying
that these gates must be reset if these are to be used later. To
reset the CLB, all NDROs in the PS block are to be set, and
consequently, CLB is to be clocked once. To avoid this resetting
before reprogramming, a triple-PS block CLB can be used with
two additional PS blocks that select the gate toward which input
A and B should be delivered. However, this will increase the cost

Fig. 5. Switch implementation with MJJ as limiting junction in ERSFQ
biasing. (a) Circuit schematic and representational symbol for MJJ-
based switch. Ic0 = 100 μA; Ic1 = Ic2 = Ic3 = 200 μA; L1 = L2 = L3 =
4 pH . (b) Circuit simulation: result of switch output Q when Ic of MJ0 is 150
and 250 μA showing the blocking and the passage of input pulse, respectively.

of implementation by twofold. Note that the CLB needs to be
reset only when the whole FPGA fabric is being reprogrammed
for the implementation of a different circuit.

B. Programmable Routing

1) Programmable Switch Implementation: Our approach is
based on the ability to program the value of critical current
(Ic ) of an MJJ by manipulating the magnetization of its ferro-
magnetic layers using a magnetic field or eventual spin-torque
transfer. The MJJ is used in place of a dc bias limiting junc-
tion in ERSFQ biasing. This allows the use of a single MJJ
instead of bulky SQUID and SFQ gates (e.g., NDRO) to per-
form FPGA programming. Please note that the typical size of
the MJJ is comparatively much smaller than the size of a typical
SQUID or an SFQ gate. In principle, any type of MJJ exhibit-
ing modulation of critical current [26]–[32] can be used for the
programmable bias current limiting junction. However, we con-
sider a superconductor-insulator-superconductor-ferromagnet-
superconductor (SIsFS)-type MJJ [29]–[31] as preferable for
several reasons:

1) simpler and higher yield fabrication due to a simpler struc-
ture with a single ferromagnetic layer and somewhat larger
dimensions (2 μm × 2 μm);

2) an acceptable bias current flowing through the MJJ pro-
viding the necessary reference self-field;

3) higher IcRn compatible to that of regular JJs used in SFQ
circuits.

The SFT-based MJJ [32] due to its high IcRn would also
work as a programmable current limiting junction in ERSFQ
biasing for implementing switches.

Fig. 5(a) shows the implementation of a programmable switch
with an MJJ used in ERSFQ biasing. Simulations [see Fig. 5(b)]
show that the incoming SFQ pulse would pass from input to Q
only when the Ic of MJJ bias junction (MJ0) is 250 μA (high).
When the Ic is 150 μA (low), the pulse would not pass because
of the insufficient bias current delivered to make J2 switch
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(undergo a 2π phase slip) upon the arrival of an incoming pulse.
In this case, J0 switches. As one can see, the programmable
switch is implemented using a very simple, robust, and compact
circuit, which is essentially a variant of a Josephson transmission
line (JTL) stage.

2) Switch Box: In a general CMOS FPGA, a fixed and same
number of metal tracks run horizontally and vertically, orga-
nized in channels. A programmable switch box is placed at each
intersection of horizontal and vertical routing channels. In our
FPGA fabric implementation, because of the proposed unidirec-
tional data flow in the horizontal direction, we use two (can be
more) horizontal tracks going from left to right and four vertical
tracks: two each running in up and down directions. We have
modified the Wilton switch box topology for our switch box im-
plementation to fit the unidirectional data flow in the horizontal
direction and due to the relative difference in the number of
tracks between horizontal and vertical channels. It is presented
in Fig. 6(a) and it comprises of splitters combined with afore-
mentioned programmable switch implementation and mergers.
A 1-to-3 splitter is used for a signal coming from the left in
order to transfer the signal from the left to either the top, right,
or bottom. MJJ-based switches attached to the splitter outputs
control the direction in which the signal is being transferred.
Similarly, 1-to-2 splitter with switches is used for a signal com-
ing from either top or bottom. Bias MJJs of switches attached
to these splitters will be programmed in such a way that the
signals are routed according to the circuit being implemented
on the FPGA. Fig. 7 shows the schematic of Fig. 6(e), which
is represented as a dotted rectangle in switch box architecture
of Fig. 6(a). A 3-to-1 merger (2-to-1 mergers) is used to merge
signals coming from the rest of the three (two) directions on
the right side (top and bottom). Note that the programming of
MJJ-based switches, which is based on the routing of signals,
will ensure that no more than one input signal will be active for
any merger.

3) Connection Blocks: In our SFQ FPGA implementation,
the HCB, and the VCB connect the CLBs with the routing chan-
nels and are part of programmable routing. We have separate
and dedicated functions for HCB and VCB. Inputs are taken
from the routing network to the CLBs through vertical CBs
and the output of CLBs is taken to the routing network through
horizontal CBs. Their implementation can be seen in Fig. 8. In
VCB, a signal from each vertical channel is split (with a switch
at the output to control its destination) and one split output from
each vertical channel is merged to be given as input to one of
the CLB inputs. Similarly, an output from CLBs is split (with
switches to control their destination) and then merged into each
of the horizontal channels.

C. Magnetic CLB

In Section III-A, two kinds of CLBs are explained with details.
However, the implementation of CLBs is done through the use
of NDROs that consume a significantly large area and require
extra steps for programming. We have presented these NDRO-
based CLBs earlier in order to explain our prior work and also
to illustrate the advantages and savings that come with the usage
of MJJ-based switches.

Fig. 6. (a) Switch box implementation. Inputs and outputs are represented
by red and green color labels, respectively. Dashed connection lines repre-
sent the programming of MJJ switches to let the pulse pass through them.
(b)–(e) Representational figures: (b) Three signal merger. (c) Two signal merger.
(d) Three-way splitter (S3) with attached switches at outputs. (e) Two-way split-
ter (S2) with switches. (f) Functional waveforms of Verilog HDL simulation of
switch box for the programmed switches shown in (a) with dashed connection
lines.

For an LUT-based CLB with magnetic switches (MJJ-based
switches), the PS block in the CLB (see Fig. 3) can be replaced
with four instances of MJJ switch [shown in Fig. 5(a)], each
of which either transfers or blocks the signal from each of the
four Read locations to respective out locations [see Fig. 9(a)].
These four MJJs will be programmed to have critical currents in
a way to reflect the truth table of the gate to be implemented. For
example, in the case of AND gate implementation, MJJs in top
three switches will be programmed to have a low critical current
(150 μA) and the MJJ of the last switch will be programmed
to have a high critical current (250 μA). Because of this pro-
gramming, only in the case of arrival of both of the inputs, the
decoded signal will pass through the switch producing a pulse
at the CLB output.

For an FS-based CLB with magnetic switches (MJJ-based
switches), the PS block in Fig. 4 will be replaced by a
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Fig. 7. Circuit implementation of a two-way splitter with MJJ-based switches
[see Fig. 6(e)] used in FPGA subcircuits. BJ refers to a regular JJ that is used
as bias limiting junction in ERSFQ biasing that does not require programming.
MJ refers to a magnetic JJ that will be used in switch implementation with
programmable Ic .

Fig. 8. Connection blocks (CB). (a) Vertical CB. (b) Horizontal CB.

Fig. 9. MJJ-based magnetic CLBs: (a) LUT-based; (b) FS-based (triple-
switch); (c) S4sw block: representation of four-way splitter with switches.

TABLE I
COMPARISON OF JJ COUNT FOR CLBS

CLB type Switch type JJ count MJJ count

Logic Bias

LUT NDRO 137 33 0
LUT MJJ 64 14 4
FS, single-PS NDRO 156 38 0
FS, single-switch MJJ 86 17 4
FS, triple-PS NDRO 316 78 0
FS, triple-switch MJJ 106 17 12

1-to-4 splitter with switches attached to the splitter outputs sim-
ilar to the ones shown in Fig. 6(d) and (e). Only one out of four
MJJs belonging to four splitter outputs [S4sw block shown in
Fig. 9(c)] will be programmed to have a high critical current and
this splitter output will be clocking the gate-to-be-used out of
the four gates in the FS-based CLB. Due to this programming
of MJJs, though the input reaches all the gates, only one of the
gates will be clocked, subsequently producing the output (de-
pending on the internal state of that particular gate based on the
inputs). After the replacement of NDRO-based switches with
MJJ-based switches, we will call triple-PS block and single-PS
block CLBs as triple-switch block and single-switch block CLBs,
respectively. Comparison of the JJ count between NDRO-based
CLBs and MJJ-based CLBs is shown in Table I. Note that the
bias JJs refer to the regular JJs that are used in the ERSFQ
biasing scheme (e.g., BJ1 in Fig. 7) and MJJs replace these reg-
ular biasing JJs whenever programming is required (e.g., MJ1
in Fig. 7).

D. Switch Programming

Fig. 10 describes our approach to implement the FPGA pro-
gramming by setting MJJ-based ERSFQ switch biasing into
high or low Ic values. The MJJ limits dc bias current deliv-
ered to the corresponding switch from a common power plane
depending on the value of its Ic . The Ic can be programmed
by applying currents via vertical (VAL) and horizontal (HAL)
access lines (ALs) that are magnetically coupled to each MJJ
at their intersection in the crossbar structure [33] made by ALs
[see Fig. 10(a)]. According to our estimate, each FPGA mo-
saic unit may require a maximum of 42 MJJs for a two-input
CLB (maximum MJJs are required for a mosaic with two-input
triple-switch FS-based CLBs). One can arrange the program-
ming FPGA layer as a matrix of blocks with 7 × 7 ALs shown
in Fig. 10(b). Programming decoders can set the programming
currents for each MJJ as shown in Fig. 10(c). These decoders
can be SFQ-based (e.g. [34], [35]) and located on the periphery
of the FPGA fabric.

HAL and VAL are connected to program decoders through
output current drivers. From a room temperature (RT) controller,
one can send the MJJ address and the signal (1/0) for program-
ming (N address bits + a programming bit to set the MJJ to either
high or low Ic value). These bits can be sent in parallel through
N + 1 lines or in series via a single line to the on-chip serial
to parallel converter. The serial operation would take longer
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Fig. 10. Programming layer for MJJs on chip with current lines (ALs).
(a) Programming unit of MJJ. HAL: Horizontal AL; VAL: vertical AL.
(b) MJJs are located near the intersections of crossbar made by HALs and
VALs used for programming MJJs. (c) Using external decoders to access spe-
cific MJJs out of all MJJs belonging to the FPGA fabric.

but requires the minimum number of lines. In general, the pro-
gramming speed is not a priority. This approach is also readily
scalable, as the on-chip programming is done by the minimal-
istic MJJ crossbar wiring and the RT connection is minimized
by on-chip periphery decoders and serial to parallel convert-
ers. Typical programming time for the MJJ is from 100 ps to
1 ns and it depends on the programming current value (currents
through VAL and HAL). Since MJJs are typically fabricated
using separate process steps compared to conventional SFQ
JJs, the whole FPGA programming layer including the power
plane, programmable MJJs, and ALs can be implemented sepa-
rately from the FPGA logic and later be connected with the rest
of the SFQ circuit implementation. As a result of this vertical
integration, the area overhead of the programming layer will
be minimized. A brief summary of the comparison between
NDRO-based switches and MJJ-based switches is presented in
Table II.

E. SFQ FPGA Operation

SFQ circuits (especially, RSFQ which is widely imple-
mented) are operated in two well-known ways: synchronous
and asynchronous wave-pipelining (AWP). Synchronous oper-
ation: each logic cell in the circuit requires a clock pulse for the
operation and there is a minimum clock period determined by
the implemented circuit for the proper operation of the circuit.

Several ways of distributing the clock pulse to every cell in a
circuit are described in [36]. An SFQ FPGA fabric containing
either LUT-based or FS-based CLBs support the synchronous
operation of FPGA. After the programming of all switches in an
FPGA fabric, a CLB will be representing a specific gate in the
implemented circuit and only a single clock is required per op-
eration of that gate. A straightforward way of clock distribution
to CLBs for synchronous operation is to use splitters and JTLs
to form an H-tree, resulting in the zero-skew clocking scheme.

Here, we present another way of clock distribution to the
CLBs, which is a variant of the clock-follow-data [36] clocking
scheme and is shown in Fig. 11. A self-clocked DFF cell is made
by feeding its data-input to its clock-input through a delay. The
output of this self-clocked DFF cell is fed to clock inputs of all
CLBs in a column. The clock-input of the last CLB in the column
is fed to a self-clocked DFF cell, which will again distribute the
clock to CLBs in the next column. Multiple self-clocked DFF
cells can be used to distribute the clock to CLBs of separate
sections of a column, based on the total number of CLBs in a
column. The delay element used in the self-clocked DFF cells
can be engineered according to the actual implementation of
FPGA fabric so that the circuit operation matches the delays of
routed signals between CLBs.

The clock-follow-data scheme requires all cells of level i
to be clocked and the input data to be prepared for the next
level before clocking any cell of level i+1 [37]. To implement
this scheme, CLB columns are to be partitioned into groups
designated for cells belonging to a specific level. For example,
column 1 belongs to level 1 cells and column n belongs to level
n cells. However, the number of cells belonging to a level of
a circuit can be larger than the number of CLBs in a column
of FPGA fabric. In such a case, a minimum consecutive group
of columns that are enough to implement the number of cells
of a level will be assigned to that level. Hence, consecutive
groups of columns from left to right will represent consecutive
levels in a circuit beginning from level 1 to the maximum level
of that circuit. In the case of cells belonging to a level taking
up more than a column of CLBs, clock distribution between
those columns need not be done through the self-clocked DFF
but will be bypassed with a connection between them using an
MJJ-based switch.

IV. SFQ FPGA FABRIC EXTENSIONS

Two possible extensions of the above presented SFQ FPGA
are to utilize the fabric for AWP and to modify the fabric for
gates with more than two inputs (multiple-input) or for more
than four gates.

A. SFQ FPGA for AWP

In AWP, some of the logical cells in the circuit do not require
a clock signal to operate and signals travel through the circuit
asynchronously [7] with additional timing requirements. How-
ever, a ready pulse that follows the data is used to reset/clock
some of the cells after a small period of time to make them
ready for the next set of input signals/to evaluate the current
state of the cell. Since some gates produce the output without
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TABLE II
NDRO-BASED SWITCHES VERSUS MJJ-BASED SWITCHES

Switch type NDRO-based MJJ-based

Active devices Regular JJs Regular and magnetic JJs
Implementation Bulky SFQ cells (e.g. NDRO) Part of biasing and I/O JTL, no additional cells
Area comparison Larger Smaller
Delay comparison Larger Smaller
Power comparison Larger Smaller
Programming method Serial programming of NDROs in a scan

chain structure
Magnetic coupling of MJJs with current lines in a
crossbar structure

Additional circuitry for programming Consumes a larger regular JJ chip space Most of it is implemented on a separate layer
Fabrication process Single-layer SIS JJ process Both SIS and MJJ processes, preferably a double

JJ-layer process

Fig. 11. Clock pulse distribution to synchronous CLBs in SFQ FPGA.

TABLE III
FS-BASED CLBS VERSUS LUT-BASED CLBS

CLB FS-based LUT-based

Can implement clocked gates Yes Yes
Can implement non-clocked gates Yes No
Synchronous operation of FPGA Yes Yes
AWP Yes No
Any SFQ gate can be implemented Yes No
Smaller area (JJ count) No Yes

the requirement of clock signal and just with the arrival of in-
put signals, only FS-based CLBs implemented with the desired
combination of asynchronous and clocked cells can be used for
the AWP operation of FPGA. A comparison of FS-based and
LUT-based CLBs is provided in Table III. FS-based CLB (for
asynchronous operation of FPGA) is shown in Fig. 9(b). In this
case, splitters distributing inputs to the gates and the splitter
distributing clock to the gates will have switches at their outputs
(triple-switch block CLB) and they will be programmed accord-
ingly. Note that all inputs including clock are directed toward
the gate that is to be implemented in the CLB by programming
the MJJ-based switches in S4sw block. A reset/clock signal as
per the requirement of a cell in the implemented circuit can be
distributed with the same mechanism as described in Section
III-E for the AWP operation. Zero-skew clocking with H-tree
implementation cannot be used for an AWP operation.

B. SFQ FPGA With Multiple-Input Gates

SFQ fabric presented in the sections above has CLBs imple-
menting two-input gates and a routing network that can route

TABLE IV
JJ COUNT ESTIMATION FOR LUT-BASED CLBS WITH MULTIPLE INPUTS AND

SINGLE-SWITCH FS-BASED CLBS WITH LARGER NUMBER OF GATES

CLB type JJ count MJJ count

Logic Bias

LUT based with 2-inputs 64 14 4
LUT based with 3-inputs 152 35 8
LUT based with 4-inputs 322 76 16
FS based with 4 gates 86 17 4
FS based with 8 gates 190 35 8
FS based with 16 gates 422 72 16

signals only for a circuit implemented with two-input gates. This
fabric can be extended for multiple-input gates by modifying the
CLBs to handle gates with more than two inputs and by increas-
ing the number of routing tracks accordingly. An LUT-based
CLB can be modified as follows.

1) Implement a decoder that can decode the maximum num-
ber of inputs that a gate can have in the desired CLB
implementation.

2) Attach an MJJ-based switch at every decoder output.
3) Build a merge-block that can merge all of these switch

outputs to give the CLB output.
An FS-based CLB can be modified as follows.
1) Implement the desired gates for the CLB and implement

splitters (with switches) for carrying the inputs (and clock)
to all the eligible gates.

2) Implement a merger circuit to merge outputs of all the
gates in the CLB.

The routing network also must be modified according to the
number of inputs. The number of horizontal tracks and the num-
ber of vertical tracks both in up and down directions should at
least be increased to the maximum number of inputs that a gate
can have in the desired CLB implementation. Consequently,
switch box and connection blocks should be upgraded to handle
an increased number of tracks and the inputs to the CLB. An
estimation of JJ count for the larger size CLBs (for synchronous
operation) is given in Table IV. JJ count estimation is based
on the following observations: LUT-based CLB with n inputs
should implement LUT with 2n entries (thus, an n-to-2n de-
coder with 2n MJJ switches) and use a merger of size 2n -to-1.
FS-based CLB with n gates should implement gates with log2n
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TABLE V
JJ COUNT AND AREA ESTIMATION OF FPGA SUBCIRCUITS

FPGA subcircuit JJ count MJJ count Area estimation (μm2 )

Logic Bias

HCB 28 8 4 14 400
VCB 70 22 12 33 600
Switch Box 82 26 14 48 400
CLB 106 17 12 56 200
Total mosaic 286 73 42 1 52 600

inputs, log2n number of 1-to-n splitters with one splitter having
MJJ switches at the output, and a merger of size n-to-1. For FS-
based CLBs, JJ count can be smaller than the number given in
the table, considering the fact that not all gates will have log2n
inputs out of total n gates.

V. RESULTS

All the proposed circuit elements are designed and simulated
in WRSpice circuit simulator with ERSFQ biasing. All circuit
JJs have a βc value of 1. For the sake of simulations, the typ-
ical high and low Ic values of MJJs are chosen based on the
switch circuit implementation. They are changed manually to
have either low (150 μA) or high value (250 μA) in the circuit
simulator due to the lack of simulation models. Verilog models
have also been developed for all the FPGA subcircuits such as
CLB, PS block, switch Box, HCB, and VCB for simulating the
complete FPGA circuit. Circuit blocks related to the fabric ex-
tensions presented in Section IV are also modeled in Verilog.
All simulations have given us the expected results and verified
the operation of FPGA.

A. Implementation Estimations

Table V shows the number of JJs required for each sub circuit
in SFQ FPGA and for an FPGA mosaic consisting of a CLB, a
switch box, an HCB, and a VCB. An FPGA fabric will be made
of several copies of this mosaic arranged symmetrically in an
array. A few JTLs might be needed for interconnection that are
not accounted for in the junction count. However, the area esti-
mations given in the table account for any extra JTLs required to
layout the circuit of mosaic properly. For the implementation of
a four-row and four-column FPGA fabric with FS-based CLBs,
we have an estimated maximum operating frequency of 15 GHz
for synchronous operation. This frequency is calculated based
on the time period required for a CLB to output its result on
a horizontal routing channel, transfer through the switch box,
routing channels, and then through VCB to go as an input to a
CLB in the next column.

B. Circuit Implementation Example on FPGA Fabric

An 8-b asynchronous wave-pipelined ALU is demonstrated
in [7]. We have synthesized the building blocks of this ALU
with all clocked cells so that it can be implemented on the de-
signed FPGA fabric with the synchronous operation. To assess

the efficiency of our FPGA approach, we implemented a cir-
cuit containing all the building blocks of the ALU as shown
in Fig. 12(a). In Fig. 12, we have shown the implementation
(synthesis, placement, and routing on FPGA fabric) of a part of
the ALU circuit containing all building blocks and the data path
representing signal flow from the inputs to the output (refer to
Figs. 1 and 2 in [7]). Logic synthesis of the circuit, placement on
FPGA fabric, and routing through the routing network is done
manually.

Fig. 12(b) shows the implementation of the ALU block with a
clock-follow-data clocking scheme (presented in Section III-E)
without the buffer DFFs for the signal paths that travel to any
higher level other than the next level [37]. This implementation
without buffer DFFs might require FPGA to be operated at a
lower frequency so that the timing violations would not occur. It
can be implemented on a 4 × 9 CLB array of SFQ FPGA fabric
with synchronous FS-based CLBs containing these four gates:
D-flipflop with complementary outputs, AND gate, OR gate, and
XOR gate. Only 11 out of 36 CLBs are not used, resulting in a
utilization of 69.5% of total CLBs. For the maximum frequency
of operation (or for clock distribution using H-tree), buffer DFFs
must be inserted for signal paths with signals traveling more than
one level. For this implementation, an FPGA fabric of 5 × 9
CLB array is required and it will have a utilization of 71% of
total CLBs. Note that the implementation of a complete ALU
circuit can result in a lower utilization of CLBs since there will
be more signals to route across different ALU blocks similar to
the block shown in Fig. 12(a).

C. Discussion

Some discussion points to consider are as follows.
1) We do not expect to use any passive transmission lines in

the implementation of SFQ FPGA fabric with our layout
estimations showing that all subcircuits can be laid out
side by side and can be connected to each other with JTLs
(if needed). No use of PTL helps in decreasing the delay.

2) Similar to the vertical routing channels, two horizontal
routing channels can also be run in both directions, left to
right and right to left. The tradeoff between implementa-
tion cost and routing advantage of bidirectional horizontal
tracks guided us toward unidirectional horizontal tracks.
However, in implementing circuits such as a complete 8-b
ALU with a few strategically placed bidirectional horizon-
tal tracks can help in increasing the utilization percentage
of CLBs.

3) CAD tools and the algorithms for logic synthesis of a
circuit for CLB specific SFQ FPGA fabrics, placement of
synthesized gates on the fabric, and routing among CLBs
are considered for future work. In this paper, we focused
mostly on the fabric design.

4) New timing techniques (for clocking the CLBs) along with
changes in routing channel structure can result in varia-
tions of the fabric for increasing the utilization percentage
of the CLBs and/or frequency of operation.

For example, 1) having two more vertical routing chan-
nels will help in routing different P and G signals
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Fig. 12. FPGA implementation example: (a) Circuit block of 8-b ALU that contains all building blocks and the signal path from the inputs to the output of an
asynchronous wave-pipelined ALU in [7]. (b) Synthesized (with all clocked cells), placed, and routed ALU block on our proposed SFQ FPGA. FPGA fabric grid
is shown with dotted lines. Routing of top-to-bottom and bottom-to-top vertical tracks and of horizontal tracks are shown in blue and gold, and black colored lines,
respectively.

[e.g., P 1
i , G1

i , P
2
i , G2

i in Fig. 12(b)] across several ALU blocks
for the implementation of whole ALU. Otherwise, unavailabil-
ity of vertical channels for routing across blocks due to the
interconnections within a block results in under-utilization of
CLBs; 2) some circuits (e.g. tree-based adders) have signals
flowing among identical blocks in an organized manner. Phase-
wise clocking of different blocks according to the signal flow
can help in the reduction of buffer DFFs and/or in the overall
latency of the implemented circuit.

1) Status of MJJs: The implementation of MJJs and MJJ-
based circuits is an active area of research and development
primarily for applications in cryogenic magnetic random access
memories (MRAM). There have been many different versions
of MJJs proposed and being developed over last several years
[26]–[32], [38], [39] for MRAM. There has been a significant
progress in the fabrication of MJJs including devices with com-
paratively complex layer structures. To a significant degree, the
cryogenic MRAM implementation challenges are related to the
efficient Read addressing schemes in the 2-D MRAM arrays
that requires the integration of a “memory cell selector super-
conducting device” like SQUID [39] or a three-terminal device
[24], [40] with an MJJ.

In contrast, the FPGA described in this paper has different and
simpler requirements for MJJs and for the MJJ array described in
programming layer. This array is a 2-D matrix in which all MJJs
are connected in parallel to the FPGA logic layer. There is no
Read function for an individual MJJ, but an application of bias
current through all MJJs. The Write function is similar to that of
the MRAM and is achieved by a simple crossbar configuration
of the current lines (VAL and HAL). On a device level, the pro-
posed FPGA requires the MJJ characteristic voltage (IcRn ) to
be comparable to that of conventional Josephson junctions used
in ERSFQ circuits. This is necessary for the correct operation of
the MJJs as bias limiting junctions [41]. This requirement leads

to the preference of MJJs with high IcRn [29]–[32]. Some MJJs
of this kind [29]–[31] have only one ferromagnetic layer that
significantly simplifies its fabrication and increases the yield.

2) Implementation Considerations: Implementation of the
proposed magnetic SFQ FPGA would require cofabrication
of conventional superconductor-insulator-superconductor (SIS)
junctions used in SFQ circuits, and MJJs. Such fabrication pro-
cess has recently been demonstrated in which both types of junc-
tion are fabricated within a four-layer process [39]. A greater
advantage will be achieved with MJJs and SIS JJs being located
on the different vertically integrated layers similar to the double
SIS JJ layer process recently developed in Japan [42]. Alterna-
tively, one can use a multichip module (MCM) integration with
the logic layer and programming layer implemented on different
chips. However, this would require a large number of fully su-
perconducting bump bonds. Currently, such MCM technology
with superconducting bonds is demonstrated only for <4K op-
eration [43]. Overall, the MCM integration approach appears to
be more challenging and less scalable than the double-JJ layer
integrated fabrication process described above.

VI. CONCLUSION

We have designed the first superconducting energy-efficient
magnetic FPGA. We used the ERSFQ biasing scheme in combi-
nation with MJJs to result in a switch implementation that can be
programmed with an external current source. We have designed
both an NDRO switch based and a magnetic switch based CLBs
whose programming is done serially with the use of an SFQ
scan chain in the CLB structure and with magnetic coupling
through current in the crossbar structure made by the current
lines, respectively. CLB is also designed for asynchronous op-
eration without a higher cost along with synchronous operating
CLBs. We have modified the CMOS switch box architecture
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and designed connection blocks appropriately in the context of
a unidirectional SFQ FPGA. A programming methodology to
program the critical current of MJJs to either low or high values
is presented. We simulated all the designed circuits in WRSpice
circuit simulator and verified the functionality of circuits. We
have also built Verilog models for each FPGA subcircuit for ease
of simulation for the implementation of whole FPGA structure.
To demonstrate the functionality of the proposed FPGA ap-
proach, a circuit containing all the building blocks of an ALU
is synthesized, placed, and routed on the fabric. According to
the estimations, our FPGA fabric takes much less area than the
previous implementations.
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