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abstr act

This paper addresses the problem of state assignment for Finite State Machines (FSM). This is an
important problem in digital system design where added functionality often comes at the expense
of a larger (and slower) FSM to control the system. We present a new scheme to solve the graph
embedding problem which is the main step in the state assignment process. This new approach
places the graph in a two-dimensional array (grid) while minimizing the total edge length, and
then maps this two-dimensional array intonasimensional hypercube with dilation of at most 2.
Experimental results are presented and compared against those of NOVA. These results demon-
strate the effectiveness of the proposed approach.

Key Words: state assignment, finite state machine, graph embedding, placement, hypercube, dila-
tion.
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1.0 Introduction

Controller synthesis is an important problem in the high performance digital system design where
added functionality often comes at the expense of a larger (and slower) FSM to control the sys-
tem. State assignment which takes high-level specifications such as control flowgraphs, state tran-
sition tables or state transition graphs as inputs and produces binary codes for the states is an
important step in the synthesis of controllers. Once binary codes have been assigned to the states,
next-state and output equations are defined and subsequently optimized with classical logic mini-
mization tools. State assignment must therefore be performed in a way that favors simplification
of the next-state and output logic (implemented by PLA’s, standard cells, ROM's, etc.).

With the rapid advances in circuit complexity and chip density, automatic synthesis tools have
become a necessity for integrated circuit design. FSM synthesis techniques must be able to cope
with the increasing complexity of the machines with thousands of states [1]. Existing state assign-
ment techniques are however either inefficient or inadequate for handling such large finite state
machines. This motivated us to develop a very fast state assignment procedure for handling large
machines which is comparable in quality to more sophisticated and elaborate techniques. As
PLAs are used extensively in the structured design of high-performance controllers, we will
focus on two-level implementation as the target.

1.1 Previous Work

Approaches to state assignment can be divided into two broad classes. The first class derives from
the classicastructure-theory. Examples are [2] and [3] which use algebraic methods based on the
partition theory and the reduced dependency criterion. The second class is basegraphthe
embedding formulation since it formulates the problem as a graph embedding problem on Bool-
ean hypercubes. This class is further divided into two categories. The first category [4][5] formu-
lates the encoding problem as ambedding problem, where an adjacency graph defining
adjacency relations between the states is mapped into the hypercube. The second category [6][7]
applies symbolic minimization on an unencoded specification followed by extraction of a set of
face (input) constraints from the minimized symbolic cover. These constraints are then enforced

as much as possible during the embedding.

1.2 A Unified View

The concepts of adjacency graph and face constraints are somewhat similar. Both of them
describe the desire to assign similar codes to a group of states. The main differences between the
two are the followings: (1)The order of logic minimization and encoding is different; (2) One
approach involves a cost minimization process while the other involves constraint satisfaction.
The first category is different in sense that the goal is to minimize a cost function rather than
attempting to satisfy distance relations. Hagetial constraint satisfaction method described in

[8] can be considered as a mixed method.

If we consider the state assignment problem as placing statesnedirmansional hypercube (n-

cube), then we can combine the structure-theory-based and graph-embedding-based methods.
From the structure theory point of view, each state variglii¢roduces a partitiom; on the set of

states, such that two states are in the same blotkifodnd only if they are assigned the same
value ofy;. Therefore, we can think of each state variable assignment as a hyperplane which cuts
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the n-cube. Thisis similar to aline separating cellsin VLS| placement which cuts the chip area
into two parts. On the other hand, from the graph-embedding point of view, the set of adjacency
relations or input constraints act like the nets or connection constraints in VLS| placement. This
viewpoint enables us to combine the structure-theory-based and graph-embedding-based methods
into an effective hybrid method.

The graph embedding approach for state assignment is attractive because it can be easily modified
to optimize different objective functions. For example, in addition to the minimum area objective
mentioned above, it has been used in low power applications [9]. Furthermore, the formulation in
[10] that requires some state values to be encoded with non-adjacent binary vectors to improve
the testability can be easily modified to adjacency-relations. The state-adjacency graph must be
embedded on a Boolean hypercube so that the cost is minimum. Unfortunately, this problem is
NP-complete.

In this paper, we propose a very fast yet effective heuristic method for solving this graph embed-
ding problem. The basic idea is to place the adjacency graph in a two-dimensional array (grid)
while minimizing the total interconnection length. The placement solution is then mapped into an
n-dimensional hypercube while nearly preserving the adjacency relations. To obtain good state
assignment results, one has to decide what kind of multi-pin net representation should be adopted
during the two-dimensional placement, what kind of objective function should be used, and what
kind of hypercube mapping should be applied. Some of the contributions of the present paper are
in answering these questions either theoretically or empirically. Indeed, we will show that the
straight-forward choices are not the right choices for this application. Experimental results of this
approach are very good terms of both the CPU time and the circuit area. A preliminary version of
thiswork was published in [11].

The rest of this paper is organized as follows. In section 2 an overview of our proposed approach
isgiven. In section 3 the procedure for constructing the adjacency graph is presented. In section 4
the procedure for two-dimensional placement of the graph is described. In section 5 the procedure
for mapping the placement solution into a hypercube of given dimensionality is presented. Exper-
imental results and conclusions are given in section 6 and 7.

2.0 Outline of the Proposed Approach

We are given a weighted graph that describes the adjacency between various states or the desir-
ability for giving a group of states similar codes. The larger the weight at an edge, the more desir-
able it becomes to give the corresponding states adjacent codes. The basic idea is the following.
We trandlate the problem of finding the best hypercube embedding into the following mathemati-
ca one. Define the distance, d;;, between any two vertices, i, j of an n-cube to be the minimal
number of edges that must be traversed to get from i to j. Then the n-cube can be coded so that the
n-bit codes assigned to verticesi and j differ in only dj; bits. We now wish to assign the nodes of
the adjacency graph to the vertices of the n-cube so as to minimize the function:

Cost = ;Wij Edn(i),n(j) (EQ1)

wherew;; isthe weight of edge(i, j) in the adjacency graph, and dry;y 1) is the distance of TI(i) and
TWj) where TU(i) and TT(j) are coordinates of vertices in the hypercube to which i and j have been
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assigned. Our strategy, code narhigger-Place, for solving the problem is to find an embedding
on a two-dimensional array and then map that solution to a hypercube of minimum dimensional-

ity.
Hyper-Place is composed of three steps as shown in Figure 1.

< Build the weighted adjacency graph >

: < Place the graph in a two-dimensional grid

Y

Map the placement solution to a
hypercube of given dimensionality

N

Figure 1: Main procedures in our state assignment approach Hyper-Place

Step 1. An adjacency graph is constructed based on the controller specification. In this graph,
each node represents a state and there exists an edge between two nodes if the corresponding
states should be given adjacent codes (i.e., codes that differ in only one bit).

Step 2. The adjacency graph is then placed on a two-dimensional array. The placement procedure
interleaves a global optimization step with a bi-partitioning step in order to minimize the intercon-
nection length while avoiding congestion on the placement plane.

Step 3. The placement solution is mapped to a hypercube. The question of interest here is how

can we find a mapping from the nodes of a two-dimensional placement solution to the nodes of a

hypercube so that the relative distances between pairs of nodes in the placement solution is intact
after the mapping. A promising result is that: grid neighbors can be always mapped to hypercube

nodes such that the worst case distance between grid-neighbors in the hypercube is two [12]. So,
as long as we keep vertices adjacent in grids, we can nearly achieve our original goal which was
to keep those vertices adjacent in the hypercube.

3.0 Construction of the Adjacency Graph

An adjacency graph is formed from high-level FSM specification such as control flowgraphs,
state transition tables or state transition graphs. In an adjacency graph, each node represents a
state. Between any two nodes, there exists a weighted edge if these two nodes (states) have to be
adjacent to reduce the circuit area after state assignment and logic minimization [13].

We adopt the following scheme to generate the adjacency relations. We use symbolic logic mini-
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mization to group together states that are mapped by some input combination into the same next-
state and assert the same output values. It is desirable to give states in each group adjacent codes.
This kind of grouping is actually the combination of Type-I and Type-IIl adjacency heuristics in

[13] and is also the state grouping which creates face constraints in [6].

3.1 Connection Model of Nodes

There are two ways to describe the connections among nodes representing states in the same state
group. Thehyperedge model forms one net (hyperedge) connecting all the nodes (states) in each
group. That is, the adjacency graph is a hypergraph. The weight of each net is the number of
nodes connected by that net. Tdhgjue model creates a clique on the nodes belonging to each
group. In this case, all connections are two-terminal edges. Modern VLSI placement algorithms
tend to use the hyperedge model as it more accurately reflects the connection strengths. In the
remainder of this section, we will however show that the clique model is better for the state
assignment application.

Definition: An m-subcube of a hypercubéd is anm-dimensional hypercube containedHn

Definition: Thesupercube of a graphG embedded on a hypercuHeis the smallesn-subcube in
H which containg.

Definition: The supercube isinimal if G hasn nodes andn = [log,nLl

Theorem3.1: The minimum edge length embedding ofumode clique on a hypercubb¢ is
always contained in a minimal supercube.

Proof. The proof is by induction oN. ForN=1 andN=2, the theorem holds. In order to prove the
result for arbitraryN, we assume that it is true fidk and the nodes of this clique all locate in an
m-dimensional hypercube which is also a minimal supercube of the hypdicWde will show

that when we add th&€1)st node to form a new clique with minimum total edge length, that is
when N=k+1, the result is still correct. Before we continue the proof, we need some lemmas.
Proofs of these lemmas are straight-forward and omitted.

Lemma3.2: The (k+1)st node is adjacent to at least one node of the old clique.

Lemma3.3: The larger the number of nodes which are adjacent to the (k+1)st node, the shorter
the total edge length of the new clique.

We consider two cases.

Case 1k = 2™ The (k+1)st node forces an increase in the dimension of its supercube of the new
cliqgue which is also minimal.

Case 2k < 2". There is always at least one node within the old supercube which is not occupied.
By Lemma 3.3, the minimum edge length embedding will require the new node to be placed
inside the old supercube, as in that case the adjacency of the new node can be strictly larger than
one. (Compare this with the case where the node goes outside the old supercube in which case the
adjacency is at most one.) Clearly, the new supercube will then be the same as the old supercube
which is also minimalo

By Theorem 3.1, the group of nodes connected using a clique can be mapped to a minimal super-
cube. On the other hand, the group of nodes connected by a hyperedge does not necessarily map
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to a minimal supercube. That is, the clique model tends to generatedgefaces [6] than the
hyperedge model. Figure 2 illustrates the concepts described above. Four nodes belonging to a
group are placed in a 3-dimensional hypercube. For the hyperedge model, all 3 configurations
(Figure2(a), (b) and (c)) have the same connection cost. Any one of these 3 configurations may
be the placement solution which needs minimum total connection length. For the clique model,
Figure2(c) has the minimum total connection length. We note that Figure 2(c) is the configuration
that minimizes the final circuit area after logic minimization.

]

Hyperedge model: total length = 3 total length = 3 total length = 3
Clique model: total length = 10 total length =9 total length = 8
(@) (b) (c)

Figure 2: Examples of total connection length using different models

4.0 Placement on a Two-Dimensional Grid

To minimize the cost function EQ1, we use a two-phase approach. First, we relax the grid con-
straints and place the nodes in a continuous plane. Then, this global placement is modified to map
the nodes to the grid points [14][15].

4.1 Global Placement

During global placement the total edge length among nodes is minimized while neglecting slot
constraints. Global placement is interleaved with netlist partitioning. The set of nodes is recur-
sively divided into smaller subsets while the placement area is dissected into subregions. The slic-
ing procedure generates constraints for the next global placement step in subregions. These
constraints aim at a better distribution of the nodes over the plane.

4.1.1 Influence of Various Distance Measures

The distance functiodyy;) ;) in EQ1 can be measured in various ways and this in turn affects the
final state assignment solution.

Definition: An l-norm distance measurelgx;,X) := |% - xj|'.
Forl =1, we have the Manhattan distance measurex||. Forl = 2, we have the Euclidean
square distance measire- x)2.

We will describe the impacts of a quadratic and a linear objective function on the placement [16]

and discuss how that influences our state assignment approach. It is difficult to make definitive
statements about which objective function is better in the context of the state assignment problem.
Examples are used to demonstrate the impacts of using different objective functions.
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Figure3 shows a subregion placement situation: two fixed nodes X, Z and a movable mode Y.
They are connected by neisb, ¢ with lengthsl,, |, |, respectively. Minimizing the quadratic
objection®, = 1,2 +1,% + 1.2 yields the placement in Figure 3(a) wige I, = 1/21 .. Minimizing

the linear functior, =1, + 1, + . results in the placement in Figure 3(b) wlith=1, = 0.

e s

(a) quadratic objective function (b) linear objective function

Figure 3: Optimal placement for different objectives

It is generally observed that the quadratic objective function tends to make long net$n(net
Figure3) shorter, at the expense of increasing the length of the short netsa (aetsb in
Figure3). In other words, the standard deviation of the net lengths is smaller for a quadratic
objective function.

Modern VLSI cell placement tools tend to use a linear objective function [16]. This is because a
linear objective function directly captures the interconnection length and thus produces denser
layout. For example, wire segmeiatsb in Figure 3(a) may cause more tracks or feedthroughs
than zero wire segmendsb in Figure 3(b). However, number of tracks and feedthroughs is not a
concern in the state assignment application. On the other hand, the quadratic objective function
tends to create a better balance between nodes in relation to their connectivity strengths. For
example, in Figure 3(b), if linear objective function is adopted, the ratio of distance of X-Y to Y-Z
will be 0 which overstates the adjacency desirability of X-Y to Y-Z. Therefore, a quadratic objec-
tive function reflects the actual adjacency demands more accurately than the linear objective func-
tion in our application. The statements made here are experimentally confirmed in section 6.

4.1.2 Quadratic Programming For mulation and Techniques

The objective function of the global optimization step is then the weighted sum of the squared
rubber band lengths of the edges of the given adjacency graph:

0
L =1/20 c; EH(Xi —xj)2+ (y; —yj)zm (EQ2)

A% 1£])
wherec;; represents the total number of connections between wgraady;. (x.y;) and (xy;)
represent the locations gfandy;. The cost function can then be rewritten using matrix notation

as follows [17]:

L(x,y) = Xx"Bx+yT"By (EQ 3)

wherex is a vector of the x-coordinates of the vertex locationsyasd vector of the y-coordi-
natesB is a symmetric matrix witB =D - C where C = [g] is the connectivity matrix and is a
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n
diagonal matrix withd,; = Z Cij - It has been shown that if the nodes (vertices) cannot be parti-
=1

tioned into disconnected subsets, then B is positive semi-definite [17]. That means the objective
function is a convex function. This fact allows the calculation of a unique global optimum solu-
tion and plays an important role in our approach. In addition, B is amost always sparse for practi-
cal cases. This enables efficient numerical techniques to be applied to the matrix. Since the
coordinate vectors x and y enter separately in the sum of two quadratic forms, we may consider
each coordinate independently.

To avoid collapsing al nodes to the center of the placement region, in our implementation, we
choose four nodes to be connected to four dummy nodes in the four corners of the placement
region. These four dummy nodes will enable us to obtain a non-trivial placement solution. This
corresponds to assigning distant codes to these four nodes and thus we pick 4 nodes that are not
connected or are weakly connected.

Following the scheme mentioned above, we obtain aglobal placement asillustrated in Figure 4.

Figure 4. An global placement example

4.2 Mappingto Grid Positions

Since the global placement doesn’t restrict the nodes to be placed on grid, a detailed placement
step has to be performed. The goal of this step is to change the global placement as little as possi-
ble while mapping the nodes to the grid positions.

This mapping procedure is done by a minimum squared error linear assignment which maps the
movable modules from the global placement to all the legal positions simultaneously. The error to
m
be minimized is Z &, [ (x,—m,) 2+ (y, - 1) 2] where x;, y; are the coordinates of the ith mod-
ij=1
ule and my,I; are the coordinates of the jth legal slot. 6”- [1{0,1} isaselection variable.
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Figure 5 shows the final placement for the solution shown in Figure 4.

R
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Figure 5: Final Placement

5.0 Mappings of Gridsinto Hypercubes

We want to embed the adjacency graph into hypercube. However, the problem of deciding
whether a given graph is embeddable into any dimensioned hypercube is NP-complete [18] and
the problem of embedding a given graph into a fixed-sized hypercube is also NP-complete [19].
We thus try to achieve the best partial embedding according to the cost function given by EQL.
Therefore, this section addresses the following graph-mapping problem: given a placement solu-
tion on a two-dimensional grid and a hypercube with at least as many nodes as grid points, how
can we assign the grid points to hypercube nodes so that the placement cost on the hypercube
remains “nearly the same” as that on the grid. In both cases, the costs are calculated by EQ1. The
term “nearly the same” will be made more precise later in this section.

In the following discussion, we define the desired properties for the optimal mapping between
grids and hypercubes. When these properties are absent we will describe conditions under which
those sub-optimal properties can be achieved.

Let G andH denote grapks and hypercubel andd denote a distance function.

Definition: A mapf: G - H is distance-preserving if [1a,b LIG, d(f(a),f(b)) = d(a,b). We also say
thatG is adistance-preserving subgraph oH.

Definition: A mapf: G- H isfull if a, b[JG are adjacent exactlyfia), f(b) LIH are adjacent and
vice versa. We also say thatis afull subgraph oH.

If we can make a distance-preserving mapping for grids into hypercubes, then we will have the
same placement cost in hypercubes as we have in grids.

Theorem 5.1 [20]: If a graphG is a distance-preserving subgraph of some hyperduiieenG
must be full.

Definition: Theminimal hypercube of a two-dimensional array is the smallest hypercube with at
least as many nodes as the array.
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Theorem 5.2: A k-node two-dimensional array (grid) cannot be a distance-preserving subgraph of
its optimal hypercube wheiiog, k[ > 4.

Proof. Supposés is ak-node two-dimensional array ahtis ann-dimensional hypercube, where
n= [Dog, k(Jand there exists a mapG:— H. Because 2! < k< 2", we can always find a vertex

v,[ ]G and its corresponding vertéx,) in H wheref(v,) is adjacent tm other vertices which are
all mapping nodes dB. On the other hand, verte in a two-dimensional array has at most 4

vertices which are adjacentv¥p Becauser> 4, we can always find at least one velf(&@()DH
which is adjacent té(vy), butvy is not adjacent ta, in G. According to Theorem 15 is not a dis-
tance-preserving subgraph of hyperctibe ]

By Theorem 5.2, we know that most of the two-dimensional grids are not distance-preserving
subgraphs of their optimal hypercubes. Specifically, for those FSM’s with more than 16 states, we
need to find other mapping properties that could be applied to their sizes of grid.

Definition: Thedilation of a grid-hypercube mapping is the maximum distance of grid-neighbors
in the hypercube.

We want the dilation of the grid-hypercube mapping be minimum. For example, if dilation 1 map-
ping can be achieved, then we will have at most the same placement cost in hypercubes as we
have in grid. An example of grid-hypercube mapping with dilation 1 is shown in Figure 6. A
number of researchers have studied this problem in parallel processing domain, with the follow-
ing results. Over 61 percent of all two-dimensional grids can be embedded into their minimal
hypercubes with a dilation 1 by using binary-reflected Gray codes [21]. Recently, Chan intro-
duced an embedding strategy which makes all the two-dimensional grids to be embeddable in
their minimal hypercubes with at most dilation 2 [12].

Array edges are shown with solid lines, the unused hypercube edges are shown with dashed line

Figure 6: Embedding of a 4x4 grid in a 16-node hypercube

Note that we can always get grid-hypercube mappings with dilation 1 if we use bigger size hyper-
cubes. However, this corresponding to using non-minimal length encoding which is a problem
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that we do not consider in this paper.

Definition: Theexpansion of grid-hypercube mapping is the ratio of the size (in number of nodes)
of the embedding hypercube to the size of the minimal hypercube.

Theorem 5.3 [22]: The smallest hypercube that can embdgad, x ... x d grid using unit dila-
tion has dimensioflog, d; [+ [log, d,[ 1+ ... + [log, d, [

As a direct consequence of Theorem 5.3, we know that all two-dimensional grids can be embed-
ded in hypercubes with dilation 1 using an expansion of at most 2. However, the trade-off is that
when we use expansion 2 mappings, we need to add one more bit to encode the states. We adopt
the approach in [12] which is summarized in Appendix 1.

6.0 Experimental Results

To increase the flexibility of this assignment method, we distinguish the nodes into two sets, fixed
and movable. Fixed nodes correspond to the states whose codings have been decided in advance.
For example, in microprocessors some instructions (states) that invoke co-processors are often
assigned fixed codes in advance. Their coordinates could be obtained easily by a reverse transfor-
mation of their codes. Also, we choose the ratio of the two dimensions of plane (grid) to be 1.
This is based on the observation that the minimum cost of placement solution is often obtained on

a square grid. In current implementation, we use GORDIAN [15] to generate the placement solu-
tion.

Tablel shows the statistics of examples tested. These examples include all of the large FSM
examples (state number > 20 and product number > 200) in the MCNC logic synthesis and opti-
mization benchmarks [23]. We also generated random examples to cover a more complete range
of the size of circuits to be tested. In Table 2, we compare our results with NOVA [7]. In both
cases, the code lengths were limited to the minimum number of bits and the number of cubes
(product terms) after logic minimization [24] were compared. Basically, NOVA has three modes.
The exact mode which produces the best results. However, its CPU run time is very high. For
most of these examples, NO\act could not produce an answer because the run time (SUN
SFARC 1+) was over one week and the process had to be terminated. Therefore, we compare with
its default andhybrid modes. In Table 2, area ratio is the ratio of the number of cubes of NOVA to
that of our Hyper-Place. CPU time ratio is the ratio of the CPU time (SUN SPARC 1+) of NOVA

to that of our Hyper-Place. On average, NOd&ault mode produces results with 29% higher

area (number of cubes) and almost the same CPU time compared to Hyper-Placehyhy/A

mode takes over 62 times the CPU time required by Hyper-Place and produces almost the same
quality of results (in terms of the number of cubes).

10
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Table 1 Statistics of benchmark examples

FSM Name Inputs Outputs Products States
s820 18 19 232 25
s832 18 19 245 25
s1494 8 19 250 48
51488 8 19 251 48

x3643 3 3 368 64
x4322 4 2 383 32
d5326 5 6 384 32
d5322 5 2 427 32
x4326 4 6 449 32
ds5324 5 4 511 32
d5323 5 3 730 32
x5322 5 2 767 32
x5321 5 1 809 32
x5324 5 4 920 32

s298 3 6 1096 218
x5643 5 3 1464 64
xX5642 5 2 1535 64

thk 6 3 1569 32
x5641 5 1 1617 64
X63210 6 10 1649 32
x6326 6 6 1793 32
m6325 6 5 2048 32

11
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Table 2 Comparisons of NOVA and our Hyper-Place

NOVA (default) NOVA (hybrid) Hyper-Place
Example CPU CPU
cubes gﬁ? ti%PeL(Js) ti me cubes gﬁ? ti(rfz(Js) ti me cubes tii:;té)
ratio ratio

s820 85 113 13 0.24 76 101 4.2 0.78 75 54
s832 71 0.97 13 0.25 72 0.99 4.2 0.79 73 53
s1494 149 114 31 0.09 139 1.06 388.8 10.83 131 35.9
s1488 141 1.07 2.7 0.07 133 1.01 416.6 11.23 132 37.1
x3643 271 1.04 7.8 0.17 251 0.97 | 2560.2 55.90 260 45.8
x4322 261 1.30 2.7 0.18 155 0.77 732.6 50.18 201 14.6
d5326 295 115 19.2 114 233 091 | 36219 | 215.60 257 16.8
ds5322 217 1.10 55 0.28 233 1.18 984.4 50.74 197 194
x4326 359 124 29.7 1.62 266 0.92 | 33220 12.08 290 18.3
ds5324 374 134 26.1 143 248 0.89 | 2148.0 | 118.02 279 18.2
d5323 423 1.16 59.7 321 330 0.90 | 32123 | 172.70 365 18.6
x5322 428 1.33 28.3 1.46 232 0.72 | 17184 88.58 323 194
x5321 525 124 7.1 0.53 378 0.89 | 23010 | 171.72 423 134
x5324 557 137 8.9 0.49 388 0.95 | 22848 | 12554 408 18.2
s298 723 1.07 58.1 0.65 624 0.92 | 5460.1 60.67 678 90.0
x5643 750 1.48 75.1 0.65 656 1.09 | 4020.3 34.84 518 | 1154
x5642 840 220 | 1299 0.95 347 0.91 | 3070.7 22.50 382 | 1365
tbk 176 1.76 171 0.85 154 154 922.9 45.92 100 201
x5641 936 137 284 0.33 833 122 | 3889.7 4512 682 86.2
X63210 1072 123 210 2.66 859 0.99 9884 | 12511 872 7.9
x6326 421 149 23.2 127 278 0.98 388.9 21.25 283 18.3
me6325 1675 119 | 2281 11.46 1341 0.95 | 6619.5 | 332.64 1406 19.9

Tota 1.29 1.005 0.99 62.84

12
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Table 3 compares the results of state assignment using different objective functions in the place-
ment phase. The approach using the linear objective function costs 6% more cubes than the one
using the quadratic objective function which confirms our observation in Section 4.1.1.

Table 3 Comparisons of using linear and quadr atic obj ective functions

Linear obj. fun. Quz_adratlc
Example obj. fun.
cubes arearatio cubes
s820 80 1.07 75
s832 68 0.93 73
s1494 139 1.06 131
s1488 133 101 132
x3643 253 0.97 260
x4322 184 0.92 201
d5326 264 1.03 257
ds5322 188 0.95 197
x4326 293 101 290
d5324 278 1.00 279
d5323 370 0.99 365
x5322 310 0.96 323
x5321 477 113 423
x5324 402 0.99 408
s298 713 1.05 678
x5643 593 114 518
x5642 388 1.02 382
tbk 188 1.88 100
x5641 e 114 682
X63210 935 1.07 872
X6326 280 0.99 283
m6325 1534 1.09 1406
Total 1.06

13
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7.0 Conclusions

In this paper, we presented a new state assignment approach Hyper-Place which runs asfast asthe
NOVA's default mode but produces same quality results as the NOVA's hybrid mode. This was
made possible by breaking the hypercube embedding problem into two steps: (1) mapping of the
adjacency graph to agrid; (2) mapping the solution on the grid to one on a minimum dimensional-
ity hypercube with dilation at most two. Hyper-Place is thus able to handle large FSM’s (up to 500
states, equations with more than 1000 product terms) efficiently and robustly.
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Appendix 1

Grid-hypercube mapping procedure

Notation: Let N, denote the sequenceloebit binary-reflected Gray code, and{(p) denote the
(p+1)st element in the sequendg. For exampleN; = (0,1), N, = (00,01,11,10),N; =
(000,001,011,010,110,11101,100) andi5(4) = 110.

Assume all logs are in base 2. Suppose we are givenx ggrid G.

CASE 1.qy>2Hoodrlloovl+1 oy o pllooxgp g = pllooy.

Then, embed G into its optimal hypercube using the binary-reflected Gray code strategy, and
hence, with dilation 1.

CASE 2. otherwise.

Assume, without loss of generality< SZUOQXJ (otherwise, G could be rotated by 90 degrees).

Since xy < 2H°F IOV 1ok objective is to label each node of the grid with a unique
(_logx | +[ logy | + 1)-bit binary number with the restriction that grid-neighbors can only differ
in at most 2 bit positions.

Step 1. Determine the firgtlogx | bits of each node’s label.

2L|09XJ p

Create chains”, each of which is described lyyvactor of 1's and 2’s.

The vector of the first chain is

— X 2xX | _ X yx |_[ (y=1)x
1,081,208y y) gzuong]’ {ZLlong—| {ZLlong—|’ o {ZLlong—| [ 2|_Iong

The vector for théth chain (i = 2, 3, ...ZUOQXJ ) is

_ i—1 i —2 0
(& 18 508 y) = ( )X—|_[(I )X—|1ai—1,11ai—1,21---1ai—1,y—1E

(a

[

ol logx] ol logx]

Each chain vector represents a “chain”. Figure 7 is an example.

Chain vector: (2,1,2,1,1,2,1,1,2,1,2)

S~ Fso Feo [
~ < |
| ~ ~
~ ] ~ | ~ f ~
] ~ ~ ~ ~ ]
S~ I S< f ~ ~
< —_— S e | ~
| < *. =< < |
~ / ~ ] ~ f -~
| heS f S S S~o |
| - - . ~J
< <4

Figure 7: An example of chain vector and “chain”
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An 11 x 11 grid is associated with

(21,21,1,2,1,1,2,1,2)
(1,2,1,2,1,1,2,1,1,2,1)
(1,1,2,1,2,1,1,2,1,1,2)
(21,1,2,1,2,1,1,2,1,1)
(1,2,1,1,2,1,2,1,1,2,1)
(1,1,2,1,1,2,1,2,1,1,2)
(21,1,2,1,1,2,1,2,1,1)
(1a211a112a111a211a211)1
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Figure 8: Chainsfor 11 x 11 grid

Aligning the nodes of the graph in Figure 8 into 11 rows, or in general x rows, we have graph G,
in Figure 9. The chainswill cover the x x y grid completely (proof can be found in [12]).

Then, each node of the x x y grid belonging to the ith chain is given Nl_long(i —1) asthe first
| logx | bitsof its (| logx | + | logy | + 1)-bit label.
Step 2. Determinethefirst | logy [+1 bits of each node’s label.

2|_Iogyj +1

First marking: The jth node of theith chain is marked with (tj+j) mod , Wheret;=-1 and
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oY)

N
AN

(4 ((4 ¢4

Figure 9: Redrawn chains: G,

tj= tj.1-g; 1+1. After this marking, we have the graph in Figure 10 for the 11 x 11 grid. Note that,
the marks of adjacent nodes of the grid differ by at most 2 (in mod 291 % 1),

Second marking: Each mark t is changed to | t/2 |. Note that, marks for adjacency nodes in the
grid will differ by at most 1 (in mod ptloay] ). Then, the chains are horizontally extended to have

exactly oHo9Y1* 1 hodes each. We get Figure 11 and call it the marked graph G,.

Next, we color each node of the grid either red or black so that

(a) two nodes marked with the same number belonging to the same chain are colored differently,
and

(b) two adjacent nodes marked with different numbers belonging to different chains are colored
the same.

The reason we can accomplish this coloring is shown in [12]. However, condition (a) ensures that
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Figure 10: First marking

each node of the grid is indeed mapped to a unique node in the hypercube, and condition (b)
ensuresthat dilation 2 is achieved for adjacent nodes of different chains.

Finally, with such acoloring, ared node marked tisgiven ON, .. () asthelast | logy [+1 bits of
itslabel, while ablack node marked tisgiven 1 NLIogyJ(t) asitsthelast | logy |+1 bits. In thisway
adjacent nodes of the same chain will differ in at most 2 bits position of their last | logy [+1 bits
and share the same initial | logx | bits, making a dilation of 2; adjacent nodes of different chains

differ in at most 1 bit position of their last | logy |+1 bits and 1 bit position of their initial | logx |
bits, again making for adilation of 2.
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Figure 11: Second marking: G,
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