
Power-optimal Encoding for DRAM Address Bus
Wei-Chung Cheng and Massoud Pedram

University of Southern California
Los Angeles, CA 90089

{wccheng, massoud}@zugros.usc.edu

ABSTRACT
This paper presents Pyramid code, an optimal code for
transmitting sequential addresses over a DRAM bus. Constructed
by finding an Eulerian cycle on a complete graph, this code is
optimal for conventional DRAM in the sense that it minimizes the
switching activity on the time-multiplexed address bus from CPU
to DRAM. Experimental results on a large number of testbenches
with different characteristics (i.e. sequential vs. random memory
access behaviors) are reported and demonstrate a reduction of bus
activity by as much as 50%.

1. INTRODUCTION
Modern electronic systems have a dichotomy of simultaneously
needing to be low power and high performance. This arises
largely from their use in battery-operated portable (wearable)
platforms. Even in fixed, power-rich platforms, the packaging and
reliability costs associated with very high power and high
performance systems are forcing designers to look at ways to
reduce power consumption. Power-efficient design requires
reducing power dissipation in all parts of the design and during all
stages of the design process subject to constraints on the system
performance and quality of service (QoS). Sophisticated power-
aware high-level language compilers, dynamic power
management policies, memory management and bus encoding
techniques, and hardware design tools are required to satisfy these
often conflicting design requirements [1] [2]. This paper focuses
on the low power bus encoding problem.

In [3], Su et al proposed the use of Gray code to implement the
program counter of a microprocessor to minimize the switching
activity of sequential memory accesses. The authors showed that
the Gray code is asymptotically optimal among all irredundant
codes. Bus-Invert code [4] toggles the polarity of the signals
according to the Hamming distance between two consecutive data
values by using an additional bit line on the bus. Similarly, the T0
code [5] uses a redundant signal to indicate that the bus is in
normal mode or in increasing address mode. In the latter case, it
needs to change only one signal. Benini et al proposed an
adaptive encoding scheme that switches between the T0 and Bus-
invert codes depending on whether sequential or random data
streams are encountered [8]. The Working Zone code [6]
addresses the problem that the address bus does not behave

completely sequentially because the accesses to different zones
are usually interleaved. The Beach code [7] exploits the temporal
correlations to further reduce the switching activity on the bus. All
these techniques deal with simple address formats where the bus
is not time-multiplexed. The key idea behind all of these
techniques is to reduce the Hamming distance between
consecutive addresses for a sequential memory access pattern,
e.g., instruction fetching for large array access. However, these
schemes cannot be applied to DRAM address bus encoding
because of the time-multiplexed addressing scheme used therein.

Dynamic RAM (DRAM) is often layed out in a two-dimensional
array. To identify a memory cell in the array, two addresses are
needed: row and column. To reduce the address pin count and for
legacy reasons, the row and column addresses are usually
multiplexed. The row address is sent over the bus first and is
latched in the DRAM decoder. Subsequently, the column address
is sent to complete the address. Because the switching activity on
a DRAM bus is totally different from that of a non-multiplexed
bus, we need another Gray-code-like encoding scheme to
minimize the switching activity for sequential memory access on a
DRAM bus. In this paper, we present the problem formulation for
the switching activity minimization, the Eulerian cycle
isomorphism, and an optimal solution which we call the Pyramid
code.

2. PROBLEM FORMULATION
Consider an address space of size N22 , which is represented by an
ordered set

nS 22
={0, 1, … , 122 −N }. We will use

NS 22
to

represent both the range and the increasing sequence of the N22
integer numbers. Each address

NSb 22
∈ has N2 bits:

,,...,, 2212 NNN bbb −−< >− 0,11,..., bbbN
. Consider executing a sequence

of RISC-style instructions with instruction addresses
S={ ,...,, 210 bbb }. These addresses tend to be sequential unless
branch instructions are present. Let S denote a sequential access
pattern of arbitrary size. In the target system, if the code and data
address busses are separated, then we can calculate the bus
switching activity from S only. The switching activity between
two addresses x and y is defined by the Hamming distance

i
i

i yxyxH ⊗=∑),(, where ‘ ⊗ ’ denotes the Boolean exclusive-

OR operation. For a non-multiplexed bus (such as SRAM), the
switching activity is),()(1+∑= ii

i
NOMUX bbHSSA .

Consider next a DRAM address bus with N signals. An address b
is transmitted over this bus by sending the row address

>=< −− NNN bbbbRow ,...,,)(2212
followed by the column address

>=< − 0,11,...,)(bbbbCol N
. The external switching activity of two

consecutive addresses ib and 1+ib is =+),(1ii
E bbSA

LEAVE THIS TEXT BOX IN PLACE

AND BLANK

))(),((1+ii bColbRowH . The internal switching activity of an

address ib is =)(i
I bSA))(),((ii bColbRowH . The total switching

activity of a multiplexed bus is

∑∑ += +

i

i
I

i

ii
EMUX bSAbbSASSA)(),()(1 (1)

A 2N-digit fixed-length code or simply code is a permutation of

NS 22
, e.g., a bijection from

NS 22
to itself. The idea of irredundant

memory bus encoding is to find a function f such that sequence S
can be replaced with sequence f(S) and the resulting activity

)(SSA can be reduced to))((SfSA . For example, to exploit the

sequentiality of the instruction addresses, Gray code g was used in
[3] to minimize the switching activity from)(22 NSSANOMUX

to

))((22 NSgSANOMUX
, which is the minimum possible. Similarly, our

goal is to find a code f such that))((22 NSfSAMUX
is minimum.�

3. OPTIMALITY AND EULERIAN CYCLE
From equation-(1), the tight lower bound on)(22 NSSAMUX

is

)(22 NSSAI
, which is achieved when 0)(22

=NSSAE
. This is

because (i))(22 NSSAI
is a fixed value since a different f function

only affects)(22 NSSAE
(ii) the best lower bound on)(22 NSSAE

is

0, when 0),(1 =+ii
E bbSA , Ni 220 <≤ , which in turn implies

))(())((1+= ii bfRowbfCol . We call any f that forces

0)(22
=NSSAE

an optimal multiplexed code. We will find the class

of optimal multiplexed codes by transforming the minimization
problem into a graph problem.

Given a directed graph G=(V, E) where V={0, 1, ... , 2N-1}, a
cycle c of length k on G is a sequence of vertices [v0, v1, v2, …, vk-

1] if Evv ii ∈+1
for i = 0, 1, …, k-1 (modulo k). An Eulerian cycle

is a cycle that traverses every edge in E exactly once. Kn is the
complete graph (clique) of n vertices whereas Km,n denotes the
complete bipartite graph on m and n vertices. The problem of
finding an Eulerian cycle on Kn is denoted as ECPn. For each edge

Evv ii ∈+1
, we label it with the function

NSEL 22
: → ,

bvvL ii =+)(1
such that

ivbRow =)(and
1)(+= ivbCol .

Intuitively, each edge represents an address in the memory space

NS 22
.

Consider an Eulerian cycle
Nc 22

=[
210 ,, vvv , …,

122 −Nv] on a

complete graph
NK

2
with N22 directed edges. The length of c is

N22 . It is easily proved that the ordered set

=Λ)(22 Nc =)...}(),({ 2110 vvLvvL },...,,,{ 12210 2 −N

bbbb (the labels of

all the edges on an Eulerian cycle of
NK

2
) is a permutation of

NS 22
. In other words,)(22 NcΛ is a code of

NS 22
. More

importantly,)(22 NcΛ is a code without external switching activity,

i.e., an optimal multiplexed code, because it is constructed from
an Eulerian cycle.

Theorem 1. Any Eulerian cycle c on a complete graph
NK

2
(V,E)

with ordered vertex set V={0, 1, ... , 2N-1} produces an optimal
multiplexed code)(cΛ of

NS 22
.

Proof. Because (i))(cΛ is a code of
NS 22

(ii) 0)(22
=NSSAE

,
)(cΛ is an optimal multiplexed code.

4. PYRAMID CODE
The sufficient and necessary conditions for an Eulerian cycle to
exist on a directed graph are (i) the graph is strongly connected
(ii) for every vertex the in-degree is the same as the out-degree
[9]. There exist a large number of solutions to ECPn, each of them
leading to an optimal multiplexed code. One can apply algorithms
such as depth-first search or breadth-first search to easily obtain
an arbitrary solution. However, the memory bus encoding and
decoding functions will have to be realized in hardware. Simple,
yet efficient, functions are necessary for practical implementation.
These functions should not be too complex so as to offset the
power savings from the reduction of switching activity.

Our approach for finding a suitable solution to ECPn is based on
dynamic programming. Assume that

iW is the solution to ECPi on

complete graph
iK , and that

ijW <≤1
has been obtained previously.

If we consider
iK as being decomposed into two parts }{1 iKi ∪−

,

then the cut set is the edge set of the complete bipartite graph

1,1−iK . So,
iW can be decomposed into three parts

1−iW ,
1,1−iW , and

1W corresponding to solutions on
1−iK ,

1,1−iK and
1K ,

respectively. Note that
1,1−iW is an Eulerian cycle on Ki,1 and can

be constructed easily by traversing back and forth between
1−iW

and
1W . The final solution is constructed by joining the three

Eulerian cycles on
1−iK ,

1,1−iK , and
1K . The formal generating

formulas are:

]0[1 ==iW

]1,1,2,1,...,2,1,1,1,0[&

)1(

1221

11

!!!!!! "!!!!!! #$
!"!#$!"!#$"#$"#$

pairsi

ii

ii iiiiiiWW

−

−−
−> −−−−−−=

where ‘&’ denotes concatenation of two strings. For example:

2W = [0, 0, 1, 1] = [0] & [0, 1, 1]

3W = [0, 0, 1, 1, 0, 2, 1, 2, 2]

4W = [0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3]

Imagine a tetrahedron (a 4-vertex, 3-dimensional pyramid) with
six edges of the same non-zero length. Then

4W is a way of

traversing every edge in both directions exactly once.
Given

jW2
, we obtain the Pyramid Code for

jS 22
,

jPC2
, from

)(2 jWΛ directly1. For example:

2PC ={0000, 0001, 0101, 0100}

4PC ={0000, 0001, 0101, 0100, 0010, 1001, 0110, 1010, 1000,

0011, 1101, 0111, 1110, 1011, 1111, 1100}

1 For our DRAM model, the dimension must be an even number. Thus,
only PC2j are useful in our application.

Theorem 2. The Pyramid code is an optimal multiplexed code.

Proof. We only provide the proof outline due to space limitation.
We have to show that the Pyramid code generates an Eulerian
cycle on G(V,E). This in turn is proven by showing that (i) the
encoding is a one-to-one and onto mapping of the edge set E, and
(ii) the consecutive edges are connected so that they form a cycle.

We believe that Pyramid code is not only an optimal multiplexed
code, but also superior to other codes in this class because of the
following two properties: (1) N-independence: notice that PCj

(Wj) is a prefix of PCi (Wi) if j<i, which implies that the
encoding/decoding functions are independent of N, e.g., the size
of the address space (2) Rugularity: the rule of generating PC i

(Wi) is simple and regular, so the encoding/decoding functions
can be implemented efficiently.

Unlike the Gray code, Pyramid code is only optimal in one
direction. If the sequential access pattern is reversed, then the
Pyramid code has to be modified accordingly to be optimal. The
required modification is to switch the row and column addresses
in the encoding and decoding functions.

5. EXPERIMENTAL RESULT
The purpose of our experiments is to quantitatively assess the
performance of the Pyramid code compared to the Binary code.
We do not compare to the Gray code because its performance is
very similar to Binary code performance on time-multiplexed
busses.

We assume that the total memory space is 64K byte (16-bit
address). The address bus is 8-bit wide and row/column
multiplexed. We also assume that the code address bus and data
address bus are different, so the data addresses do not disturb the
sequential access pattern of the code addresses. Each instruction is
four-byte long. Because the address is increased by four each
time, we have to make the addresses consecutive by right-rotating
them two bits before the encoding. The rotation operation has low
overhead and can be integrated into the encoder.

We assume that the total size of the code segment is 1024 bytes.
To quantitatively evaluate the effectiveness of the different
degrees of address sequentiality, we divide this code segment into
blocks of 4, 8, ..., 1024 bytes. For example, if the block size is 8,
it means that we have 128 blocks with random starting addresses
and within each block we have 8 sequential addresses.

We apply statistical sampling techniques to report the results.
More precisely, we define a unit of sampling to be the total
number of bit switchings in a code segment of 1024 instructions.
We then form a sample by taking the mean of the switching
activity values for 30 randomly generated sampling units. We
report the expected value. The total number of bit switchings per
code segment of 1024 instructions by analyzing 3 sample results.
In our experience, the sample size and number of samples is
sufficient to provide high confidence (90% or higher) and low
error (5% or lower) for the reported results.

The Pyramid code is worse than binary code only in the case
when the block size is four (no sequential addressing whatsoever).

Note that this is highly unlikely. The case of blocks of 8 or 16
bytes is more typical. Once the block size is larger than eight, the
reduction of switching activity converges to near 50%, because
Pyramid code virtually eliminates all external switching activity.
We also notice that the binary code has similar internal and
external switching activity.

Therefore, if the access pattern exhibits pure sequential pattern,
the pyramid code will cut half of the switching activity by a factor
of two by eliminating the external switching activity.

6. CONCLUSION
In the paper, we addressed the switching activity minimization
problem on conventional DRAM busses, and formulated it as an
Eulerian cycle problem on a complete graph. To make the
implementation practical, we proposed an efficient traversal
algorithm for this problem, and presented very simple encoding
and decoding functions. Experimental results show that the
Pyramid code can reduce the switching activity on the bus by as
much as 50% if the access pattern exhibits sequential behavior.
For more advanced DRAM technology such as EDO DRAM, the
Pyramid code can be extended by modifying the formulation of
ECPn and applying a similar traversal algorithm.

7. REFERENCES
[1] E. Macii, M. Pedram and F. Somenzi, “High level power modeling,

estimation and optimization”, IEEE Trans. on Computer Aided
Design, Vol. 17. No. 11, November 1998, pages 1061-1079.

[2] M. Pedram, “Power minimization in IC design: principles and
applications,” ACM Trans. on Design Automation of Electronic
Systems, Vol. 1, No. 1 (1996), pages 3-56.

[3] C. L. Su, C. Y. Tsui, A. M. Despain, “Saving Power in the Control
Path of Embedded Processors,” IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 24-30, 1994.

[4] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-Power
I/O,” IEEE Transactions on VLSI Systems, Vol. 3, No. 1, pp. 49-58,
1995.

[5] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, C. Silvano, “Address
Bus Encoding Techniques for System-Level Power Optimization”,
DATE-98: IEEE Design Automation and Test in Europe, pp. 861-
866, Paris, France, Feburary 1998.

[6] E. Musoll, T. Lang, J. Cortadella, “Exploiting he Locality of
Memory References to Reduce the Address Bus Energy,” ISLPED-
97: ACM/IEEE International Symposium on Low Power Electronics
and Design, pp. 202-207, Monterey, CA, August 1997.

[7] L. Benini, G. DeMicheli, E. Macii, M. Poncino, S. Quer, “System-
Level Power Optimization of Special Purpose Applications: The
Beach Solution”, ISLPED-97: ACM/IEEE International Symposium
on Low Power Electronics and Design, pp. 24-29, Monterey, CA,
August 1997.

[8] L. Benini, G. DeMicheli, E. Macii, D. Sciuto, and C. Silvano,
“Address Bus Encoding Techniques for System-Level Power
Optimization,” Design Automation and Test in Europe, pp. 861-
866, Feb. 1998.

[9] D. E. Knuth, Fundamental Algorithms, vol. 1 of “The Art of
Computer Programming,” Addison-Wesley, 1973.

Figure 1. Total switching activity per code segment of 1024 bytes

