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Abstract

We propose a new power consumption model which accounts for the power consumption
at the internal nodes of a CMOS gate. Next, we address the problem of minimizing the
average power consumption during the technology dependent phase of logic synthesis.
QOur approach consists of two steps. In the first step, we generate @ NAND decomposition
of an optimized Boolean network such that the sum of average switching rates for all
nodes in the network is minimum. In the second step, we perform a power efficient
technology mapping that finds a minimal power mapping for given timing constraints
(subject to the unknown load problem).



1 Introduction

With recent advances in microelectronic technology, smaller devices are now possible
allowing more functionality on an integrated circuit (1C). Portable applications have
shifted from conventional low performance products such as wristwatches and calcu-
lators to high throughput and computationally intensive products such as notebook
computers and cellular phones. The new applications require high speed, yet low power
consumption as for such products longer battery life translates to extended use and bet-
ter marketability. With the convergence of telecommunications, computers, consumer
electronics, and biomedical technologies, the number of low power applications is ex-
pected to grow. Another driving force behind design for low power is that excessive
power consumption is becoming the limiting factor in integrating more transistors on
a single chip or on a multi-chip module due to cooling, packaging and reliability prob-
lems. Exploring the trade-offs between area, performance and power during synthesis
and design is thus demanding more attention.

1.1 Prior Work

Many researchers (in solid state circuits and technology areas) have been studying low
power/ low voltage design techniques. For example, research is being conducted in low
power DRAM and SRAM designs, aggressive voltage scaling and process optimization
for active logic circuits, device modeling and simulation tools for low power circuits,
low power analog circuit design, etc. Other researchers (in computer architecture area)
are exploring instruction set architectures and novel memory management schemes for
low power, processor design using self-clocking, static and dynamic power management
strategies, etc. The computer aided design community has recently started paying more
attention to power estimation and low power design.

Several researchers have studied the problem of estimating power consumption. Cirit
[6] estimates the dynamic power consumption at the transistor level based on the prob-
ability of the drain of a transistor making a power consuming transition. Burch et al.
[4] introduce the concept of probability waveforms. Given such waveforms at the pri-
mary inputs and with some convenient partitioning of the circuit, they examine every
sub-circuit and derive corresponding waveforms at the internal circuit nodes. Najm et
al. [15] use a probabilistic simulation approach to estimate the average current drawn
by a circuit. Their approach is built on the notion of transition probabilities over a time
period. Given transition probabilities (over time) at the circuit inputs, the transition
probabilities (over time) at internal nodes are derived by propagating transition prob-
abilities through nodes using an approach often employed by timing simulators. These



methods assume inputs to sub-circuits are independent and thus do not account for the
reconvergent fanout and input correlations.

Ghosh et al. [9] propose symbolic simulation in order to produce a set of Boolean func-
tions which represent conditions for switching at each gate in the circuit. Given input
switching rates, the switching probability at each gate is calculated by performing a
linear traversal of the Binary Decision Diagrams (BDDs) representation of the corre-
sponding Boolean function [14]. A general delay model which correctly computes the
Boolean conditions that cause glitchings is used and correlations due to the reconver-
gence of input signals are taken into account.

Recently, researches on synthesis for low power have been carried out. Shen et al,
[19] present algorithms for reducing power consumption during technology independent
phase of logic synthesis. Intermediate nodes of a Boolean network are simplified so as to
reduce the switching probabilities. Logic transformations which realize each node in the
network as a disjoint cover are applied to further reduce the average power consumption.

Prasad et al. [16] tackle the low power kernelization problem in multi-level logic min-
imization. During the factorization process, common sub-expressions which result in
maximum reduction in switching activities are extracted. The result is a technology
independent logic network with minimal total switching activities. Roy et al. [17] pro-
pose a low power state assignment method which use simulated annealing to find the
state encoding of a finite state machine which the total probability weighted Hamming
distance of the states are minimized.

Vaishnav et al. [21] tackle the low power synthesis problem in physical domain. They
propose a low power performance driven placement procedure which minimizes the
length, hence the capacitance loading, of the high switching nets and at the same time
satisfying the delay constraints.

All the above power estimation tools and low power synthesis and design algorithms
are based on a simple power consumption model where power is consumed only during
the charging and discharging of the external capacitances driven by the gates. This
assumption surely underestimates the power consumption of the circuit since it does
not account for the power consumption due to the charging and discharging of the
source/drain capacitance of the internal nodes of the gates. Power consumption due to
internal capacitances contributes a significant portion of the total power consumption
in the circuit (see Section 5). Any power estimation tool ignoring this factor will thus
be inaccurate.

In this paper, we propose a new power consumption model which considers the internal
power consumption and then present a technique to estimate the average internal power



consumption for dynamic DOMINO CMOS as well as static CMOS circuits. We also propose
a low power technology decomposition procedure which produces a decomposed network
with minimum switching activities and a low power technology mapping algorithm which
hides the high switching nodes inside gates and reduces the fanout load driven by high
switching activity nodes.

1.2 Calculation of Switching Probabilities

In what follows, we assume a zero delay model where gate delays are assumed to be zero
[9] and thus ignore signal transitions due to glitching. Primary inputs are assumed to
be uncorrelated (issues regarding the use of a real delay model and correlated primary
inputs are discussed in Section 6).

For n-type dynamic circuits, the output is precharged to 1 and hence the switching
probability is given by
P

01—->0

= Po=o (1)

where P,_q is the probability of signal o assumes value 0.

For p-type dynamic circuits, the output is predischarged to 0 and hence the switching
probability is given by

P,

00—>1

=1 (2)

where P,_; is the probability of signal o assumes value 1.

For static circuits, we assume that the present input signal value is independent of the
previous value. Hence, switching probabilities are given by

P00_>1 = O:OPO:1 (3)
PO1(0—>1')|02(0—>1) = P01=0|02=0P01=1|02=1 (4)
where P, _;|,,=, is the probability that signal o; assumes x given that signal 0, assumes

y. The signal probability at the output of a node is calculated by first building an
Ordered Binary-Decision Diagrams (OBDD) [3] corresponding to the global function of
the node and then performing a linear traversal of the OBDD using the procedure given
in [14].



1.3  Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we review the conventional
power consumption models and present an extended model which accounts for the in-
ternal power consumption. We also introduce the notion of charging and discharging
functions for an internal node of a gate and present techniques which use these functions
to estimate the internal power consumption. In Section 3, we describe a procedure for
constructing a NAND-decomposed network which has minimum total switching activ-
ity. Section 4 presents a technology mapping paradigm for low power which exploits
the power/delay tradeoff curves to generate a mapped network with minimum power
consumption subject to given timing constraints. Experimental results are presented in
Section 5. We discuss some issues and extensions in Section 6 and give conclusions in
Section 7.

2 Power Consumption Modeling and Analysis

2.1 A Simple Power Consumption Model

Power consumption in CMOS circuits is caused by three sources: the charging and dis-
charging of capacitive loads during output switchings, the short circuit current which
flows during output transitions and leakage current. The last two sources can be made
small with proper device and circuit design techniques [22]. We therefore concentrate
on the dynamic power consumption.

The average power consumption for a gate ¢ in a synchronous CMOS circuit is given by

V2
Poglg) = 0.5T WM Coaa B(switching) (5)
cycle
where |
Cou= ¥ ChtCun ©
J€ fanout(g)

and Cg; is the gate capacitance of j, Cy;.e is the wiring capacitance of the output net,
Via is the supply voltage, Tiycle is the clock cycle time, and FE(switching) is the expected
number of transitions at the output of ¢ per clock cycle (See Section 1.2).

E(switching) is a function of the design style, the logic function being computed, the
delay model, and switching probabilities of the primary inputs. Under a zero delay
model, F(switching) is always less than 1.



Figure 1: Charging and discharging of an internal node of a 2-input NOR gate.

2.2 Power Consumption at Internal Nodes of a Gate

In a typical 0.8um technology, the diffusion capacitance is about 20% of the gate capaci-
tance [1]. The charging and discharging in the source/drain capacitance of transistors in
a gate thus makes a considerable contribution to the power consumption of the gate. In
particular, note that the internal capacitances may be charged and discharged without
any change in the gate output. This is illustrated in Figure 1. For a two input NOR
gate, if the inputs are changing from 01 to 10, the output remains unchanged. However,
when the inputs are 01, the capacitance of node A is charged which is then discharged
when the inputs are changed to 10. This contributes to the power consumption in the
circuit. The amount of power consumption depends on the frequency of charging and
discharging and the source/drain capacitances (hence sizes of the transistors).

The power consumption at the internal node n of gate g in a static circuit is given by
Via

cycle

Pimt(n) = 0.5

g CspEn(charge/discharge) (7)
where C7%, is the source/drain capacitance at n, and FE,(charge/discharge) is the ex-
pected number of charge and discharge events at n per clock cycle.

C%p and E,(charge/discharge) for internal nodes of gates in dynamic circuits is some-
what different and deserves more explanation. We consider n-type dynamic circuits.
Similar results can be derived for p_type dynamic circuits. Here, output nodes are
charged to 1 during the precharge period while all the gate inputs which are fed from
the previous stage are maintained at 0. Therefore only the precharged output nodes



Figure 2: Charge sharing in dynamic circuits.

have direct charging path to Vz4. Consider Figure 2, during the evaluation period, if #;
is 1 and 23 is 0, there will be charge sharing between output node out and internal node

n and the voltage seen at n will be equal to Ct"jl‘_tc Vid.

The power consumption due to charge sharing is thus equal to

n) = 0. By (charge/discharge
e Tcycle Cout + Cn g g
Via_om :
= 0.5 ¢ En(charge/discharge) (8)
Tcycle
where O = (Coft"jl‘_tcn)QCn is the effective capacitance seen at n.

The effective capacitance of an internal node depends on how many internal nodes are
connected to the precharged node at the same time. In Figure 2, if 25 is also 1, then
m is connected to n and out. The effective capacitance seen at n is thus smaller and is

: b Cn _ Cout 2 C
glven y (iff - (Cout+cn+cm) n:

In general, the effective capacitance of a node can be approximated as

Cr, = Cout 2 C (9)

eff Cout + E C] .
where C; is the source/drain capacitance of internal node j which lies on the path from
n to the precharged node. Charge sharing creates a drop in the output voltage and if



this drop is greater than a threshold voltage, it may create a logic error or loss of noise
margin in the subsequent stages. Therefore for a dynamic circuit to operate properly,
the voltage drop due to charge sharing must be small. This implies that C,,; > > C},
and Cgff ~C,.

When the charge sharing problem is severe, designers often precharge the internal nodes
of the pulldown NFET chain for n-type circuits. In this case, for each precharged node
n, since it is precharged every cycle, F, (charge/discharge) is equal to P, (n).

2.3 An Extended Power Consumption Model

To capture the power consumption due to internal capacitances, equation (5) must be
augmented as follows:

1% ’
Pasy(g) = 0.5 (OloadE(switchmw + X Péﬁé(i)) (10)
cycle

1€internal_nodes(g)

where P (i) is given by either equation (7) or equation (8).

avg

2.4 Calculation of Expected Number of Charge/Discharge
Events

The internal power consumption depends on C;, which is determined by the size of
transistors in the gate, and F;(charge/discharge) which depends on the global function
of ¢ in terms of the primary inputs, the switching probabilities of the primary inputs,
and the internal structure of the gate.

The main theorem for calculating the F;(charge/discharge) is given next.

Theorem 2.1 The expected number of charge/discharge events per clock cycle at some
internal node i@ which is not precharged (or predischarged) is given by

Pi l Pow l
Ei(charge/discharge) = Ph'hhg(hi()ll ZPZ (L()Z,) (11)
1g ow

where Prign(t) and P, (1) denote probabilities of ¢ being charged to Vyy and discharged
to Gnd.



Proof We find E(n), the expected number of patterns h(f*)l in a string of charac-
ters consisting of n elements from the alphabet {k, f,[} where h, f,{ denote the input
combinations which give rise to charging, floating, and discharging conditions at node :
respectively, and f* means zero or more f characters.

E(n) is composed of two parts. The first part is the expected number of patterns h(f*)I
in a string of n—1 characters (i.e. £(n—1)). The second part is the product of P(h) and
the probability P ((f*)l,n — 1) that a string with n — 1 characters begins with pattern
(f*)I. The reasoning for this is that if the first character is an [ or f, it will not create
any pattern in addition to those included in E(n —1); If the first character is an &, then
any string of n — 1 characters that begins with pattern (f*)! will add one additional
h(f*)l pattern to E(n). Since

P+ P(HIP()+ ...+ P(f)"*P(])

P(f)l,n—1)

E(n) is given by the following recurrence formula
E(n) = E(n—1)+ P(R)P((f)l,n—1)
1 —P(f)~!
= E(n—1)+ P(h)P(]) (1_—%) .

This recurrence formula can be solved to yield

E(n) = P(h

) -
)

Each character represents an input vector, and n input vectors means n cycles have
elapsed. So the expected number of charge/discharge events per clock cycle is given by

Prign (i) Prow(2)

FE;(charge/discharge) = 12
(charge/ ge) = 1— — (12)
as n approaches oo. Because

thgh( )‘I’Plow( )‘I’Pfloatzng( ) = 17 (13)

9



this is equal to

o1+ P s
.
In the following, we show how to calculate Ppign(2) and Pryy(2).
For both dynamic and static circuits, Py n(n) and Ppy,(n) are given by
Prign(n) = P(Fe(n)) (15)
Piow(n) = P(Fy(n)) (16)

where F.(n) and Fy(n) are Boolean functions representing conditions for n to be charged
and discharged, respectively.

Let TG(N, F) be transistor graph of gate g where each node represents an internal node
of the gate, Vj; and Gnd and each edge represents a transistor of the gate. For static
CMOS gates, two T'(Gs are formed, one for the NMOS transistors and one for the PMOS
transistors. For dynamic circuits only one NMOS (or PMOS) T'G is formed depending on
the logic type used. At the same time, Vyy (or Gnd) is replaced by the precharged (or
predischarged) node. For the NMOs T'G, each edge is labeled with the signal name of the
gate of the corresponding n-transistor. For the PMOS T'G, each edge is labeled with the
inverted gate signal of the corresponding p-transistor (Figure 3). From the transistor
graph, logic functions which charge/discharge the internal nodes can be obtained as
stated below.

Theorem 2.2 Let O denote the gate output node, G be the logic function of O, paths(ny,ns)
denote the set of all simple paths connecting ny and ny in TG(N,FE), and L(P) =

Ty Ao A ... Nz, where P is a simple path consisting of edges ey, €es, ..., €, and x; is the
label of edge e;. The charging and discharging functions for internal node n are given

as follows

n-type dynamic

Fccié/namic(n) =GA \/ L(P% (17)
Pepaths(n,precharged_node)
iy =\ L(p) (15)

Pepaths(n,Gnd)

p-type dynamic

Fgremem) =\ L(P), (19)

Pepaths(n,Vaq)

10



Fi ™ (n) = G A V L(P) (20)

P
Pepaths(n,predischarged_node)

static NMOS

mE ) =Ga\ LP) 1)
Pepaths(n,0)
B =\ LP) (22)

Pepaths(n,Gnd)
static PMOS

e )=\ L(P), (23)
Pepaths(n,Vaq)
F =G\ I(P) (21)

Pepaths(n,0)

where A and V denote Boolean AND and OR operations.

Proof In the following we present the proof for cases where internal node n is in an
n-type dynamic circuit or in the PMOS part of a static cM0OS gate. Proofs for other cases
are similar.

Consider a path P in TG(N, E) connecting ny and ny. If the input signal vector satisfies
L(P), ny and ny are connected. For n-type dynamic circuits, internal node n is charged
up when there is a path from the precharged node to n during the evaluation period,
and at the same time the output node is not discharged. The logic function representing
logic conditions for the connection between the precharged node and the internal node
n is equal to the disjunction of all the input signal vectors that create a connected path
between n and the precharged node. The logic function representing the condition that
the output node is not discharged is simply G. Therefore, we have

Fignamic(n) =GA \/ L(P). (25)
Péepaths(n,precharged_node)

n is discharged when there is a path connecting n to Gnd and hence the discharging
function is given by

Fimmimy =\ L(P). (26)

N
Pepaths(n,Gnd)

For an internal node n in the PMOS part of the static cMOS gate, the logic conditions for
having a charging path from V; to n is equal to the disjunction of all the input signal
vectors that create a connected path between n and V. Hence

Fstatic (p) = \/  L(P). (27)

¢PMOS
PEPath(n,Vdd)

11



Figure 3: The transistor graph and charging/discharging functions for a 3-input NOR
gate.

An internal node n in the PMOS part has a discharging path when there exists a path
connecting n to the gate output and a path connecting the gate output to the Gnd.
Logic conditions which connect n to the gate output are given by Vpepan(n,0) L(P)
while the logic condition which give rise to a path connection between the gate output

and Gnd is the complement of the gate’s logic function (G). Thus

Fjiete (my=GA \/  L(P). (28)

dpymos
PePath(n,0)

Figures 3 shows an example of the charging and discharging functions for a 3-input NOR
gate.

12



3 Power Efficient Technology Decomposition

It is difficult to come up with a decomposed network which will lead to a minimum
power consumption implementation after power-efficient technology mapping is applied
since gate loading and mapping information are unknown at this stage. Nevertheless, we
have observed that a decomposition scheme which minimizes the sum of the switching
activities at the internal nodes of the network, is a good starting point for power-efficient
technology mapping. We illustrate this point with a simple example (Figure 4a). A four-
input AND gate can be decomposed into a tree of 2-input AND gates in two ways. These
two decompositions have different total switching activities. Assuming n-type dynamic
circuit and independent inputs, let P(a)=0.7, P(b)=0.3, P(¢)=0.3 and P(d)=0.7. The
total switching activities for configurations A and B are 2.317 and 2.464, respectively.
Configuration A appears to be better than configuration B since the sum of the switching
activities at its internal nodes is smaller. Furthermore, if we assume that the cell library
has 2-input and 3-input AND gates, the minimum power mapping with a power value
of 2.107 is obtained from configuration A (Figure 4b). In this example, decomposition
with lower switching activity leads to mapping with lower power consumption.

We denote the problem of generating a NAND-decomposed network with minimum total
switching activity as the MINPOWER decomposition. The performance-oriented version
of the above problem requires that the increase in the height of the decomposed network
(compared to the undecomposed network) be bounded. We refer to this problem as the
BOUNDED-HEIGHT MINPOWER decomposition.

3.1 Tree Decomposition

We describe algorithms for solving the MINPOWER decomposition for a fanout-free logic
function (i.e. a function that has a tree realization).

The basic algorithm is similar to Huffman’s algorithm [10] for constructing a binary tree
with minimum average weighted path length. We denote the leaves of a binary tree
by vi,vq,...,v,, the “path length” from the root to v; by [;, and the weight of leaf v;
by w;. Assuming that the root is at level zero (the highest level), leaf v; is at level [,.
Given a set of weights w;, there is a simple O(nlogn)-time algorithm due to Huffman
for constructing a binary tree such that the cost function }°7" ; w;l; is minimum.

In a more general setting, a weight combination function F(x,y) (which is any symmetric
function chosen as a binary operator on the weight space U) is used to produce the weight
W of internal nodes during tree construction. For each tree T, a tree cost function

13



Figure 4: An example showing the effect of technology decomposition on total switching
activity.

G(Wy, Wy, ..., W,_1) gives the cost.! Parker [11] characterized a wide class of weight
combination functions, for which Huffman’s algorithm produces optimal trees under
corresponding tree cost functions. We give some definitions first and then state Parker’s
main theorem.

Definition 3.1 A weight combination function F is quasi-linear if F(z,y) = ¢~ (Ag(x)+
AP(y)) where X is a nonzero constant and ¢ is a real-valued invertible function on the
weight space U. (Note F is symmetric, and conjugate under ¢ to the linear map Mz+y).)

Definition 3.2 A tree cost function G: U"!' — R is Schur concave if
oG 0G
i—x) | ——=—1]<0 29
=) (o - 52 < (29)
forallz;,z; €U, v,5€l,....,n—1.

Theorem 3.1 [11] If the weight combination function F is quasi-linear and the cor-
responding function ¢ is convex, positive, (or concave, negative) and strictly monotone

In Huffman’s original paper, F(z,y) = z + y and G = E?:_f W;. Tt is easy to show that G =

> iy wili.

14



and A > 1, then the Huffman tree will have the least cost when G is any Schur concave
function of the internal node weights.

If F(x,y) does not satisfy the above conditions, then Huffman’s algorithm may not
produce the optimal solution. We propose the following O(n?logn) greedy algorithm to
solve the decomposition problem for general weight combination functions.

Algorithm 3.1 For every pair w; and w; of the n non-negative weights wy,ws, .. ., w,,
compute Fj(w;, w;) and store in list L . Find the smallest F;;, say Fi5. Replace the two
nodes by a single node having the weight Wy = Fiy and two sons with weight w, and ws.
Eliminate all Fig(wy,wi) and For(wse, wy) from L. Compute Fy;(Wi,w;) and insert it
into L. Do this recursively for the n — 1 weights Wy, ws, ..., w,. The final single node
with weight W,,_1 is then the root of the binary tree.

To solve the MINPOWER tree decomposition problem, we must use appropriate weight
combination and tree cost functions. We thus distinguish among two cases as follows.
Dynamic Circuits

For (n-type circuits), dynamic gate outputs are precharged to 1 and switching occurs
when the output changes to 0 during the evaluation phase. For a 2-input AND gate
composed of a 2-input NAND gate and a static inverter (Figure 5a), the inverter output
is 0 during the precharge period and the switching probability (without input signal
correlations) is given by

W, = w;, w;, (30)

where W, and w;, values are probabilities of the output and inputs assuming value 1.

For p-type circuits, dynamic gate outputs are predischarged to 0 and transition occurs
when output evaluates to 1. The corresponding formula for the switching probability
for a 2-input AND gate composed of a 2-input NAND gate and a static inverter (Figure
5b) is then given by

We=1—(1—-wg)(l —wg) (31)
where the W5 and w;- values are probabilities of the output and inputs assuming value

0.

The weight combination functions F'(w;,, w;,) = W, or F(w;, wi;) = Wz are used during
the AND decomposition. The corresponding tree cost function G is given by

n—1
G=Y W (32)
=1

Lemma 3.2 W, and W5 given in (30) and (31) above are quasi-linear functions.



Figure 5: 2-input n-type and p-type dynamic AND gates.

Proof For ( 30), since w; is within the range of [0,1] we can take ¢(z) = —log(x)
which is a convex, positive and decreasing function and A= 1. This shows that W, is
quasi-linear.

Similarly, for ( 31), since wy is within the range of [0,1] we can take ¢(z) = —log(1l — )
which is a convex, positive and increasing function and A= 1. This shows that W5 is
quasi-linear. m

Lemma 3.3 G given in (32) above is Schur concave.

: 9G 9G oG oG :
o _— 94 W. — W LCAS SN °AS S ( . m
Proof Since IW; W, » ( 4 ]) (8”’1‘ QW]) 0, 1s Schur concave

Theorem 3.4 MINPOWER tree decomposition for dynamic CMOS circuits with uncor-
related input signals can be solved optimally by Huffman’s algorithm using the weight
combination functions (30) and (31).*

Proof Follows from Lemma 3.2 and 3.3. =

If the input signals to the AND gate are correlated, (30) and (31) cannot be used as the
weight combination function. The switching probabilities for n-type and p-type circuits
are then given by

W, = w; wi, i, (33)

?Indeed, a chain-like tree decomposition will be obtained.

16



Wo=1— (1 - wg)(l - wgy,) (31)

respectively where w,;, (wz;,) is the conditional probability of (i2) given i;.

Lemma 3.5 W, and W5 given in (33) and (34) are not quasi-linear functions.

Proof We present the proof for (33). Proof for the other case is similar.

One criterion for a function F' to be quasi-linear is increasingness, i.e. F(u,z) < (>
JF(u,y) if < (>)y [11]. However, in (33), we could have w;, < w;,, yet wi, i, > wi,i,,
thus F(w;,,w;,) > F(w;,w;,). W, does not satisfy the increasingness property and
hence is not quasi-linear. =

Since W,’s given in equations (33) and (34) are not quasi-linear, hence we use Algorithm
3.1 to solve the decomposition problem.

Static Clircuits
For static cMOS circuits, we need to minimize sum of the probabilities for output switch-
ings from 0 to 1 and 1 to 0. Thus, the weight combination function W, for a 2-input

AND gate is equal to W,,__, + W,,__, where
W00—>1 = Witg_51 Wi2g_5, + Wity 5 Wi2g_5,y + Wilg_51 Wiz _5q (35)
WO1—>0 = Wity 5, Wi2y_5o + Wiy _5oWi21 54 + Wiy _5oWi2y _50- (36)

If input signals are correlated, conditional probabilities between the input signal tran-

sitions have to be used in order to calculate the output transition probability. W, __,

and W,,__, are then given by
W00—>1 = Wilg_5 Wi2g_5qlilo—s1 + Wity _ 51 Wi2g_5q]ili_sy + Witlg 51 Wi2i_sqlilo—>1s (37)
W01—>0 = Wiy 5 Wi2y_5olili—sg + Wity 50 Wi2y_5qili—s0 + Wity _5oWi2y_5olili—so- (38)

Note that for static circuits, every internal node is assigned multiple weights (i.e. w;,_.,,
Wiy ooy Wip_s,). The weight combination uses all these weights through equations (35)
to (38). This general class of problems cannot be solved using the Huffman’s algorithm
which applies when each internal node is given a single weight. Therefore, we resort to

Algorithm 3.1.
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3.2 Bounded-Height Tree Decomposition

Here, the objective is to construct a MINPOWER binary tree for a given list of weights
(signal switching probabilities) with the restriction that the height of each weight (de-
fined as max; [;) does not exceed a given integer L. The best known algorithm for
solving BOUNDED-HEIGHT MINSUM problem is an O(nL) algorithm due to Larmore and
Hirschberg [13]. Their approach (based on the PACKAGE-MERGE algorithm) transforms
the BOUNDED-HEIGHT MINSUM tree decomposition problem to an instance of the COIN
COLLECTOR’s problem.® The PACKAGE step in this algorithm uses the Huffman’s Al-
gorithm to merge two items at level 2 to form a new item at level : + 1. The MERGE
step merges the newly formed items with the original items at each level. Details of the
algorithm can be found in [13].

For the general weight combination functions, the Larmore-Hirschberg’s algorithm has
to be modified as follows: In the PACKAGE step, replace the Huffman’s algorithm by
Algorithm 3.1; the MERGE step is unchanged. Using the modified Larmore-Hirschberg’s
algorithm, the BOUNDED-HEIGHT MINPOWER tree decomposition can be solved heuris-
tically for the general weight combination functions.

4 Power Efficient Technology Mapping

The problem of technology mapping for low power can then be stated as follows: Given
a Boolean network representing a combinational logic circuit optimized by technology
independent synthesis procedures and a target library, we bind nodes in the network to
gates in the library such that average power consumption of the final implementation
is minimized and timing constraints are satisfied. A successful and efficient solution
to the minimum area mapping problem was suggested in [12] and implemented in pro-
grams such as DAGON and MIS. The idea is to reduce technology mapping to DAG
covering and to approximate DAG covering by a sequence of tree coverings which can
be performed optimally using dynamic programming.

Traditional goal for technology mapping is to minimize the total area (or delay) of the
mapped circuit. In [5], a near-optimal solution is presented for finding the minimum
area solution under delay constraints. Their approach consists of two steps: In the first
step, delay functions (which capture arrival time-gate area tradeoffs) at all nodes in the
network are generated. In the second step a mapping solution based on the computed

3An instance(l, X) of the COIN COLLECTOR’s problem is defined as given a set I of m items each of
which has a width and weight, find a subset of S of I whose widths sum to X and has minimum total
weight.
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delay functions and the required times at the primary outputs is found. For a NAND-
decomposed tree, subject to load calculation errors, this two-step approach finds the
minimum area mapping satisfying all delay constraints if such solution exists.

Our low power technology mapper follows a procedure similar to the above, with the
difference that the objective is to minimize the sum over all gates of the average power
consumed in the mapped network subject to given required time constraints. The ap-
proach also consists of two steps: First a postorder traversal is used to determine a
set of possible arrival times and accumulated power consumptions at each node of the
network. Once the user specifies a single required time, a second preorder traversal
starting from the primary outputs is performed to determine the mapping solution that
minimizes the average power subject to the required time constraints.

4.1 Terminology

Consider a match ¢g at node n of a NAND-decomposed tree. The inputs to node n
consist of nodes n; which fanout to node n (that is, n = n{ + n), if n has two inputs or
n = n if n has a single input). The nodes which are covered by match g are denoted
by merged(n,g). The nodes which are not in merged(n,g) but fanin to merged(n,g)
are denoted by inputs(n,g). The mapped-parent(n;) is some node n for which there
exists a matching gate g such that n; € inputs(n,g). Note that given node n and gate
g matching at n, inputs(n,g) are uniquely determined. However, n; may have many
distinct mapped-parents.

With each node in the network we store a power-delay curve. A point on the curve
represents the arrival time at the output of the node and the average power consumed in
its mapped transitive fanin cone (but excluding the power consumed at the load driven
by the node which has yet to be decided by a later mapping). In addition to the power
and delay values, the matching gate and input bindings for the match are also stored
with each point on the curve. Points on the curve represent various mapping solutions
with different tradeoffs between average power and speed. A point (t1,p;) is inferior if
there exists another point (Z3,p2) on the curve such that either p; > p; and ¢; > ¢; or
p1 > p2 and t; > ty (Figure 6). All inferior points are dropped from the power-delay
curve.

4.2 Arrival time and Power Cost Calculation

We have adopted the pin-dependent sis library delay model for the calculation of the
arrival time and power consumption. Suppose that gate ¢ has matched at node n, then
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Figure 6: Inferior and non-inferior points on a power-delay curve.

the output arrival time at n is given by
A(n,g, Cn) = maxnieinputér(mg)(ﬂ,g + Ran + A(ni,gi, Cm)) (39)

where 7; ; is the intrinsic gate delay from input ¢ to output of g, R; ; is the drive resistance
of ¢ corresponding to a signal transition at input z, C,, is the load capacitance seen at n,
A(n;, gi, Cy,) is the arrival time at input ¢ corresponding to load C,, seen at that input,
and g; is the best match found at input 2.

Under the simple power consumption model, the power cost for gate ¢ matching at node
n is given by

V2
Poyy(n,g) = S (05C,, 2B, + Pay(ni, gi)) (40)

ni€inputs(n,g) cycle

where F,, is the expected switching activity at node n;, and P,,,(n;, g;) is the accumu-
lated power cost at n; assuming a gate matching g;.

The input to the technology mapper is a 2-input NAND(NOR) decomposed network of
the optimized network from the technology independent phase. The signal probability
P(n) of each node n of the decomposed network is calculated prior to the mapping.

Under the extended power consumption model, the power cost is given by
Vi

cycle

Paug(n, g) = > PrGY+ Y. (050,

j€internal_nodes(g) n;€tnputs(n,g)

Enz‘ + Pavg(nivgi)) (41)
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where P (5) is given by equation (7).

avg

The typical gate library model contains information such as input capacitance for each
input pin, pin-dependent intrinsic gate delay, and the pin-dependent output drive. To
support the calculation of the internal power consumption, we add to this data the
following information: a) the source/drain capacitance for each internal node; b) the
charging and discharging functions in terms of the gate inputs for each internal node.

When calculating the power cost at node n, the power contribution from the output
load driven by n is not included. We however have the following lemma for the power
cost calculation:

Lemma 4.1 The power cost of a match g at node n given by equation (41) is the exact
power cost for a zero delay model.

Proof Under a zero delay model, the switching activity at node n only depends on the
global function of the node in terms of the circuit primary inputs and not its particular
implementation. Hence, £, is independent of the gate matching at n. Furthermore,
note that since the power consumption due to output load of n is calculated only when
the fanout gate of n is known, equation (41) is not subject to the unknown load problem.

The average power contribution of the n’s output load will be included at mapped-
parent(n). When the mapping reaches a primary output, every point on the power-
delay curve has a power value equal to the total average power consumption of the
mapped tree minus the power consumption at the primary output load. The power
consumption at the primary output load depends on FE, at the output and the load
capacitance connected to it which are both independent of the mapping configuration.
Hence, it only causes a fixed shift of the curve along the power axis. It does not affect
the selection of the optimal point from the power-delay curve.

4.3 Tree Mapping

In this section, we focus on tree mapping. Later, we shall describe the extension to DAG
mapping. In particular, we describe two tree-traversal operations which are applied
to a NAND-decomposed tree in order to obtain a technology mapping solution which
minimizes the average power consumption while satisfying the timing constraints.
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4.3.1 Tree Traversals

On the first traversal, we begin at the leaf nodes of the NAND-decomposed tree. Since
each node n possesses a set of possible arrival time - average power points which are
reflected in its power-delay function, the power-delay function at any mapped-parent(n)
must also reflect these possible arrival time - average power tradeoffs. A postorder
traversal of the NAND-decomposed tree is performed, where for each node n and for
each gate g matching at n, a new power-delay function is produced by appropriately
merging the power-delay functions at the inputs(n,g). Merging must occur in the
common region in order to ensure that the resulting function reflects feasible matches at
the inputs(n, g). The power-delay functions for successive gates ¢ matching at n are then
merged by applying a lower-bound merge operation on the corresponding power-delay
functions (see [5] for details of these operations). At a given node n, the resulting power-
delay function will describe the arrival time - average power tradeoffs in propagating a
signal from the tree inputs to the output of n.

The second traversal begins when the mapping reaches the root(primary output). The
user is allowed to select the arrival time - average power tradeoff which is most suitable
for his application. Given the required time t at the root of the tree, a suitable (¢, p)
point on the power-delay function for the root node is chosen. The gate ¢ matching at
the root which corresponds to this point and inputs(root,g) are, thus, identified. The
required times ¢; at inputs(root,g) are computed from ¢ and g. The preorder traversal
resumes at tnputs(root, g) where t; is the constraining factor and a matching gate g;
with minimum power consumption satisfying ¢; is sought.

4.3.2 Timing Recalculation

The gate delay is a function of the load it is driving. During the postorder tree traversal,
the output of current node n;, is not mapped hence the load capacitance is unknown
(unless, all the gates in the library have identical pin capacitances). At this time the
load value is assumed to be that offered by the smallest two-input NAND gate in the
library. When we come to a node n =mapped-parent(n;) with matching gate g, we know
the exact load seen by n;. This load is equal to the input capacitance of ¢ and is,
in general, different from the default load. Therefore, in order to calculate the arrival
time at node n, the output arrival times for all nodes in inputs(n,g) must be adjusted
to account for the change in the load capacitance. Similarly, during the preorder tree
traversal, when a gate ¢ is selected to match at n, the load seen by inputs(n,g) must
be recalculated.

In order to account for this load change (A;), the power-delay curves at the inputs have
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to be appropriately shifted. In particular, since the drive resistance of gate matching at
n; and giving rise to a point p; on power-delay curve of n; is stored with that point, the
delay shift is computed as A; X p;.gate.drive.

4.3.3 Optimality of the Tree Mapping Algorithm

The following theorem can be stated.

Theorem 4.2 Under a zero delay model, the tree mapping algorithm finds the mini-
mum power consumption solution for given delay constraints (subject to the error due
to unknown loads during the arrival time calculation).

Proof From Lemma 4.1, under a zero delay model, the power consumption calculation
is exact and not subject to the unknown load problem and hence is similar in nature
to the area calculation. The proot of optimality of the tree mapping algorithm is thus
similar to that of the area-delay mapping algorithm. =

4.4 DAG Mapping

Most of the real circuits are not trees, but general DAGs. The problem of mapping a
DAG even for the unit fanout model is Np-hard [2]. Therefore, we resort to heuristics.
During the power-delay curve computation step, nodes are visited in postorder. For
each node, we compute the power-delay curve as in case of trees. However, if the input
for a candidate match at the node is coming from a multiple fanout node, we divide the
average power contribution of that input by the fanout count of the input node . By
reducing the average power contribution, we favor a solution in which multiple fanout
nodes are preserved after mapping, which reduces logic duplication and improves the
final mapped average power. This heuristic which permits tree boundary crossing only
for nodes with relatively few fanouts was also adopted by the MIS mapper [7]. During
the gate selection step, if we come to a node which has already been mapped, we check
if the mapped solution at the node satisfies the timing requirement. If so, we keep the
mapping; otherwise, we replace it with another solution from the power-delay curve
which satisfies the current timing requirement and has minimum average power.
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4.5 Complexity Analysis

The technology mapper calculates the switching probabilities of each intermediate node
of the network prior to the actual mapping process. The calculation employs OBDDs
and hence the time complexity is equal to that of building OBDDs for the network.

For the mapping procedure, the complexity is similar to that of area-delay mapping
given in [5] where it was shown that the complexity of generating power-delay curve for
each candidate match g is O(kNlog(Ny,qz)) where N = Ef:o N;, Nppaw = maz®_ N;, N;
denotes the number of points on the power-delay curve of input ¢ of gate g, and k& is the
number of inputs.

For a finite size library, the number of points on the power-delay curve of n will remain
linear in the total number of points in the power-delay curve of inputs(n, g). Therefore,
the number of points increases linearly from one level to another. If the tree is node-
balanced, then the number of points will remain polynomial. If we bound the number of
points to be generated for each power-delay curve to M, then the complexity becomes
O(kMlog(kM)) which is a constant since the number of inputs for any gate in the library
is bounded.

5 Experimental Results

Table 1 shows ratio of the internal power consumption (due to the parasitic source/drain
capacitances) to the power consumption due to the external gate capacitances for a sub-
set of [SCAS-89 and MCNC-91 benchmarks. It is seen that if internal power consump-
tion is disregarded, then the power consumption will be underestimated by an average

of 16.5%.

To evaluate the effectiveness of the technology decomposition and mapping for low
power, we applied our algorithms on the above benchmarks. Static CMOS circuits were
used in the experiments and all primary inputs were assumed to be pairwise and tem-
porally independent. The delay was calculated using the augmented pin-dependent SIS
library delay model as described in Section 4.2. We used an industrial library with 44
gates.

Table 2 shows the total switching activity of the decomposed networks for different
technology decomposition methods. It is shown that the low power technology decom-
position reduces the total switching activity in the networks by 5% over the conventional
balanced tree decomposition method.
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To study the effect of including internal power consumption in the power cost calculation
during technology mapping, we applied pd-map using equation (40) (without internal
power consumption) and then using equation (41) (with internal power consumption)
and compiled the internal and total power consumption in Table 3. It can be seen
that the internal power consumption and total power consumption are reduced by an
average of 6% and 0.8%, respectively if equation (41) is used. We expect that for libraries
which have more complex gates than the one we used, the percentage improvement will
be higher. In the rest of the experiments, equation (41) was used for the power cost
calculation.

Tables 4 and 5 contain our experimental results using different technology decompo-
sition and mapping combinations. All methods have the same starting point, that is,
circuits optimized by the SIS rugged script[18]. Method A uses area-delay mapping (ad-
map) algorithm of [5] and methods B to D use power-delay mapping (pd-map). Methods
A and B take in a NAND-decomposed network generated by the conventional balanced
tree decomposition algorithm. Method C uses the MINPOWER technology decomposition
(minpower_t_decomp) while method D uses the BOUNDED-HEIGHT MINPOWER decom-
position (bh_minpower_t_decomp).

To see the impact of the pd-map on the average power consumption, we compare results
of methods A and B. It is seen that with pd-map, the power consumption is improved
by an average of 15.9% over ad-map. The active cell area is increased by an average of
12.2% while the circuit delay is improved by 2%.

To illustrate the impact of the (minpower_t_decomp) on the average power consumption,
we compare the results of methods of B and C. The power consumption is improved by an
average of 2.5% at the expense of 3.5% increase in area and 2.8% degradation in perfor-
mance. From B and D, we see that bh_minpower_t_decomp improves the power consump-
tion by an average of 1.6% over the conventional decomposition at the expense of 0.8%
increase in area and 1.8% degradation in performance (Note that bh_minpower_t_decomp
improves performance by an average of 1% over minpower_t_decomp). The best overall
result is achieved when pd-map is applied after the network is decomposed using min-
power_t_decomp. The average power consumption is reduced by an average 18% at the
expense of 16% increase in area while the circuit delay is unchanged.

Comparing Tables 2 and 5, we observe that although the reduction in power con-
sumption after mapping is not directly proportional to the reduction in the switching
activities of the network before mapping, networks with lower switching activity often
result in a mapped circuit with lower power consumption. We believe the small gain
of minpower_t_decomp is due to the fact that most nodes in the optimized network are
relatively simple due to the fast-extract and quick decomposition operations performed
prior to the technology decomposition step. Therefore, the minpower_t_decomp does not



have much freedom in improving the power efficiency through NAND decomposition.

To see how power consumption is actually reduced by pd_map, we selected the s832
circuit and plotted the number of nets and the average loading on nets versus the
switching rate. Figures 7 and 8 summarize the results. From Figure 7, we can see that
pd-map tends to reduce the number of high switching activity nets at the expense of
increasing the number of low switching activity nets. From Figure 8, we can see that for
the remaining high switching activity nets, pd-map tries to reduces the average loading
on nets. By doing these, pd-map minimizes the total weighted switching activities and
hence the total power consumption in the circuit.
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circuit | power consumption | power consumption | ratio of int. power consumption

due to gate cap. due to internal cap. | to ext. power consumption * 100
C1908 207.00 49.00 23.67
€432 92.00 18.00 19.57
alu2 132.00 31.00 23.48
apexT 107.00 17.00 15.89
cordic 34.50 5.30 15.36
example2 134.00 18.00 13.43
pair 760.00 128.00 16.84
parity 34.70 7.20 20.75
pml 20.80 2.90 13.94
5208 34.90 6.20 17.77
s344 59.40 12.30 20.71
s382 75.00 11.80 15.73
s386 41.80 4.80 11.48
s400 75.80 12.20 16.09
s420 72.00 12.40 17.22
s444 76.40 12.40 16.23
s510 120.30 21.50 17.87
$526 95.90 15.40 16.06
s641 79.00 10.80 13.67
s713 80.30 10.70 13.33
s820 128.20 17.80 13.88
s832 122.70 18.50 15.08
ttt2 105.90 16.90 15.96
x1 147.30 20.50 13.92
x3 353.00 58.10 16.46
x4 168.40 25.90 15.38
avg. 16.53

Table 1: Internal power consumption versus external power consumption.
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circuit balanced power eff. % reduction
decomposition | decomposition | in switching rate

C1908 672.00 657.00 2.23
€432 335.00 318.00 5.07
alu2 422.00 389.00 7.82
apexT 394.00 385.00 2.28
cordic 119.00 110.00 7.56
example2 473.00 457.00 3.38
pair 2628.00 2491.00 5.21
parity 110.00 110.00 0.00
pml 75.00 70.00 6.67
5208 132.00 128.00 3.03
s349 207.00 206.00 0.48
s382 245.00 233.00 4.90
s386 125.00 109.00 12.80
s420 247.00 239.00 3.24
s400 275.00 258.00 6.18
s444 252.00 245.00 2.78
s510 410.00 392.00 4.39
s641 300.00 282.00 6.00
s713 309.00 284.00 8.09
s820 401.00 367.00 8.48
s832 385.00 352.00 8.57
ttt2 339.00 327.00 3.54
x1 499.00 453.00 9.22
x3 1224.00 1192.00 2.61
x4 598.00 584.00 2.34
avg. 5.08

Table 2: The total switching activity in the network for different decomposition schemes.
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circuit | int. power | tot. power | int. power | tot. power % red. % red.
for 1 for 1 for 11 for 11 int. power | tot. power
C1908 48.02 254.80 49.36 256.52 -2.79 -0.68
C432 19.54 110.53 18.19 110.32 6.95 0.19
alu2 28.83 160.68 31.03 163.80 -7.64 -1.94
apex7 18.46 125.79 17.39 124.84 5.76 0.75
cordic 6.28 41.38 5.30 39.87 15.65 3.67
example2 19.53 153.95 17.94 152.73 8.15 0.79
pair 138.53 896.15 127.95 888.07 7.64 0.90
parity 10.09 46.84 7.15 41.91 29.12 10.52
pml 2.90 23.36 2.92 23.77 -0.89 -1.78
s208 6.77 41.80 6.23 41.16 8.05 1.53
s349 12.24 71.35 11.82 71.76 3.47 -0.58
s382 12.57 87.77 11.79 86.79 6.27 1.11
s386 4.30 45.85 4.82 46.69 -11.99 -1.82
s400 13.40 89.16 12.15 88.01 9.33 1.29
s420 13.70 85.69 12.40 84.46 9.54 1.43
s444 13.30 89.38 12.40 88.82 6.74 0.63
s510 22.37 142.56 21.51 141.85 3.84 0.50
s641 11.72 90.73 10.80 89.87 7.84 0.95
s713 11.55 92.10 10.70 91.06 7.36 1.12
s820 19.34 146.62 17.80 146.02 7.99 0.41
s832 18.65 140.94 18.51 141.20 0.76 -0.19
ttt2 18.48 123.08 16.81 122.80 9.00 0.22
x1 22.90 168.99 20.51 167.82 10.44 0.69
x3 61.95 414.51 58.11 411.14 6.19 0.81
x4 27.30 193.51 25.81 194.30 5.45 -0.41
aver. 6.09 0.80

Table 3: Technology mapping results I: pd-map using equation (40), i.e. not considering
internal power consumption, II: pd-map using equation (41), i.e. considering internal
power consumption.
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cir- A B

cuit power area | delay | power area | delay
C1908 282.54 | 6091.44 | 26.17 | 256.52 | 6945.86 | 25.36
C432 131.18 | 2278.00 | 30.73 | 110.32 | 2429.64 | 30.11
alu2 200.67 | 4266.32 | 26.05 | 163.80 | 5246.88 | 29.03
apex’ 142.02 | 2734.96 | 11.69 | 124.84 | 2990.64 | 11.62
cordic 47.97 820.76 | 6.43 | 39.87 921.74 | 6.62
example2 | 176.77 | 3822.28 | 11.30 | 152.73 | 4371.04 | 9.76
pair 1001.34 | 18380.40 | 28.20 | 888.07 | 21583.88 | 29.86
parity 52.45 853.40 | 7.01 | 41.91 795.60 | 6.14
pml 31.11 592.96 | 5.17 | 23.77 659.60 | 5.15
5208 49.06 867.68 | 8.14 | 41.16 | 1007.76 | 9.99
$349 83.00 | 1637.44 | 12.57 | 71.76 | 1753.72 | 13.14
$382 97.26 | 1878.16 | 10.42 | 86.79 | 2127.72 | 10.44
s386 64.88 | 1579.64 | 11.36 | 46.69 | 2031.84 | 11.71
s400 98.49 | 1829.88 | 10.77 | 88.01 | 2056.32 | 11.26
s420 98.39 | 1785.00 | 15.23 | 84.46 | 2139.96 | 18.39
s444 101.44 | 1819.68 | 10.97 | 88.82 | 1993.76 | 12.24
s510 164.13 | 2869.60 | 20.39 | 141.85 | 3376.88 | 15.78
s641 108.22 | 2137.92 | 21.12 | 89.87 | 2297.04 | 20.21
s713 108.47 | 2119.56 | 21.52 | 91.06 | 2264.40 | 20.01
s820 183.51 | 3423.12 | 12.59 | 146.02 | 3982.76 | 11.36
s832 178.53 | 3450.32 | 14.30 | 141.20 | 3941.28 | 10.98
ttt2 146.04 | 2528.92 | 12.26 | 122.80 | 2760.12 | 12.67
x1 204.66 | 3683.56 | 9.38 | 167.82 | 4025.60 | 8.14
x3 485.68 | 9200.40 | 13.45 | 411.14 | 10509.06 | 11.50
x4 227.05 | 4714.44 | 18.79 | 194.30 | 4833.44 | 15.68

Table 4: Technology decomposition and mapping results A : ad_map with balanced

decomposition , B : pd_map with balanced decomposition.
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power_t_decomp, D :pd_map with bh_minpower_t_decomp.

cir- C D
cuit power area | delay | power area | delay
C1908 249.76 | 7226.36 | 26.84 | 254.41 | 7058.06 | 25.57
€432 106.39 | 2506.48 | 30.32 | 110.07 | 2456.84 | 29.12
alu2 161.28 | 5451.56 | 29.04 | 159.59 | 5375.40 | 28.50
apex7 123.89 | 3123.92 | 11.93 | 124.33 | 3090.94 | 11.52
cordic 37.65 866.32 | 8.26 | 38.80 879.92 | T7.24
example2 | 150.00 | 4522.68 | 10.21 | 150.92 | 4426.12 | 12.16
pair 867.31 | 21803.52 | 29.57 | 878.25 | 21896.68 | 29.75
parity 41.91 795.60 | 6.14 | 41.91 795.60 | 6.14
pml 22.60 683.40 | 5.88 | 22.59 637.84 | 5.82
5208 40.54 | 1054.00 | 9.87 | 40.68 | 1054.68 | 10.42
s349 71.78 | 1754.40 | 13.10 | 72.14 | 1765.96 | 13.10
$382 85.09 | 2188.92 | 10.38 | 85.31 | 2086.24 | 10.38
s386 45.19 | 2114.12 | 11.16 | 45.18 | 2036.60 | 10.49
s400 86.73 | 2112.76 | 11.13 | 87.39 | 2034.56 | 11.40
s420 81.06 | 2290.24 | 19.40 | 81.58 | 2243.32 | 18.62
s444 88.10 | 2043.40 | 12.14 | 88.46 | 1999.20 | 12.14
s510 138.73 | 3442.84 | 15.22 | 138.90 | 3344.92 | 15.50
s641 86.93 | 2512.60 | 19.69 | 88.56 | 2372.52 | 20.12
s713 87.99 | 2513.28 | 21.85 | 90.18 | 2337.84 | 20.10
s820 139.58 | 4162.28 | 10.51 | 141.55 | 4009.28 | 10.67
s832 134.25 | 4223.48 | 11.33 | 138.28 | 4024.92 | 10.86
ttt2 121.67 | 2887.28 | 12.50 | 122.56 | 2748.56 | 12.91
x1 159.14 | 4293.52 | 8.13 | 161.59 | 4125.56 | 8.94
x3 406.71 | 10691.64 | 14.23 | 409.77 | 10643.02 | 12.73
x4 191.04 | 4870.84 | 15.75 | 190.67 | 4784.48 | 15.26
Table 5: Technology decomposition and mapping results  C : pd_map

with min-



Figure 7: Number of nets vs. switching rate for s832 using ad_map versus pd_map.
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Figure 8: Average load per net vs. switching rate for s832 using ad_map versus pd_map.
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6 Discussions and Extensions

We assumed a zero-delay model (which does not account for power consumption due
to glitches) during the technology mapping phase. This shortcoming can be overcome
by using a real delay model (such as the Sis pin-dependent library delay model) when
calculating the expected number of transitions. Using a real delay model has however
several drawbacks. The first is the huge computational effort to calculate the possible
glitches for each nodes. In [9], symbolic simulation is used to produce a set of Boolean
functions which represent conditions for switching at each gate in the circuit at a specific
time instance. This procedure is exact, however, requires large computation time and
storage space. In [20], a faster method of estimating the power consumption including
glitches is described using the notion of transition probability. The transition probabil-
ities are propagated from the primary inputs to the circuit outputs using a linear time
algorithm. Although the later method significantly reduces the computation time and
space requirement, it is still costly.

The second drawback is that under a real delay model, the dynamic programming based
tree mapping algorithm does not guarantee to find an optimum solution even for a tree.
The mapping algorithm assumes that the current best solution is derived from the
best solutions stored at the fanin nodes of the matching gate. This is true for power
estimation under a zero delay model, but not for that under a real delay model. Consider
Figure 9 as an example. Let S; and S5 be two mapping candidates at n with the same
delay. Let n have a larger E,(switching) value for S;. It appears that Sy is superior
to S7 and thus Sy is dropped form the power-delay curve (Figure 9a). However, when
doing mapping at m, the mapped-parent of n, due to the difference in the transition
waveform timing for S; and S5, the best solution at m may be coming from 57 instead of
Sy (Figure 9b). So if 57 is dropped from the power-delay curve, the optimal solution may
not be found. The reason is that glitches depend on the gate delay and the transition
waveforms of the gate inputs which are not related to the minimum power mapping
solutions for the inputs. It is very expensive to store all partial solutions, so we have to
drop the locally inferior solutions. The dynamic programming approach only acts as a
heuristic approach (even for trees).

Another assumption we made was that primary inputs are pairwise uncorrelated. If
this assumption is relaxed, we must use the conditional probabilities to calculate the
signal probability at the outputs of intermediate nodes. It is, however, too costly to
consider conditional probabilities among all subsets of primary inputs. Instead, we only
use pairwise conditional probabilities as follows. Correlation coefficient C(z, j) is defined
by

P(ij) = PGP = PGPG)CG)), (12)
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Figure 9: An example to illustrate complications due to a real delay model.



that is,
PGl _ Pl
Py PG)

C(La.]) = (43)

Ercolani et al. [8] describe a method to approximate the correlation coefficients of the
outputs of gates given the signal probabilities and correlation coefficients of the inputs
as follows. Let ¢ be a gate with inputs ¢ and j and the correlation coefficients of ¢ and
J, ¢t and m, and j and m be given as C(z,j), C(i,m) and C(j,m). The correlation
coefficient of ¢ and m is approximated by

g = AND gate:

Clg,m) = Cli,m)C(j,m), (14)
g = OR gate:
_ PECGEm) 4+ PG)CG,m) = PEPG)CEm)C(5,m)C(1, )
clom= P+ PG)— POPGIC(,) W
g = NOT gate: |- P)C(m)
Clg,m) = . (46)

1 — P(2)
The signal probability of a product term is estimated by breaking down the implicant
into a tree of 2-input AND gates and then using the above formula to calculate the
correlation coefficients of the internal nodes and hence the signal probability at the
output. Similarly, the signal probability of a sum term is estimated by breaking down
the implicate into a tree of 2-input OR gates.

Several extensions can be made on the pd-map to improve its effectiveness and versatil-
ity. First, pin permutation can be considered during the gate matching procedure. In
general, library gates have pins that are functionally equivalent which means that inputs
can be permuted on those pins without changing function of the gate output. These
equivalent pins may have different input pin loads and pin dependent delays. If high
switching activity inputs are matched with pins that have low input load, the power
consumption can be reduced. In particular, the internal power consumption depends on
the switching activities and the pin assignment of the input signals. To find the mini-
mum power pin assignment for gate ¢ matching at node n, we must solve the following
optimization problem:

min CLE(w(1)) + CL E:(charge/discharge., © 47
m€PP(n.g) 1€pins(g) j€internal_nodes(g)

where PP(n,g) is the set of all valid pin permutations for gate g matching at node
n, pins(g) is the set of pins of g, #(7) is the input that is mapped to pin ¢ under pin
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permutation 7, and E;(charge/discharg, n) is the expected number of charge/discharge
events for an internal node j under pin permutation =.

Taking the 3-input NOR gate in Figure 3 as an example, the power cost for the specified
pin permutation, assuming inputs are uncorrelated, is calculated as

Pag = P@)[1 = P(u)]CG + P(i2) [1 = P(i2)] CF + P(is) [1 = P(i5)] ¢
[L = P)][P(ir)(1 = P(i2))(1 = P(ia))] 14
[ = P@i)] + [P(i2)(1 = P(i2))(1 = P(ia))] "
1= P(I[L = Pi2))((1 = P(i5))(P(i1) + P(iz) — P(i1)P(i2))] 5
[ = Pi)][L = P(i2)) + (1 = P(ia))(P(ia) + P(iz) — P(i2) P(i2))] ™"
+[(1 = P(ix))(1 = P(i2))(1 = P(ia)) [1 = (1 = P(ix))(1 = P(i2))(1 = P(is))] C3p.

The optimum solution can be found by enumerating all valid pin permutations. This is
not so costly since the number of pins for typical library gates is small (< 6).

+

The pin permutation can be directly incorporated in the technology mapping process
as follows. For each match ¢, all equivalent pin permutations are generated and the
corresponding power and delay costs are calculated. Permutations that result in inferior
power-delay trade-off points will be dropped. Permutations that result in non-inferior
solutions are stored in the power delay trade-off curve along with the corresponding
power and delay values. This may lead to a large number of points on the trade-off
curve. In that case, we can restrict the number of points on the curves to a user defined
number M and thus manage the space complexity (see Section 4.5).

The concept of power delay trade-off curve can be extended to include the area trade-off.
Instead of generating a set of (power, delay) values, the trade-off curve can consist of a
set of (power, delay, area) values. One drawback of the three dimensional trade-off space
is that the number of points which must be generated in order to find good mapping
solutions, is very large. A balance between optimality and computation cost has to be
reached in order to determine how many tradeoff points should be stored.

7 Concluding Remarks

We first described an extended power consumption model which includes the power con-
sumption at the internal nodes of a gate. We then showed how to calculate the internal
power consumption based on the notion of charging and discharging probabilities and
transistor graphs. Experimental results show that the internal power consumption can
be as much as 16.5% of the power consumption due to gate capacitances and hence is sig-
nificant. Based on the extended power consumption model, we presented algorithms for
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low power technology decomposition and mapping. In particular, we generate networks
with minimum total switching activity and feed them to a delay constrained power effi-
cient technology mapper which hides the highly active nodes inside the mapped gates.
Experimental results show that significant reduction in power consumption is achieved
without performance degradation.

Technology mapping for low power under a real delay model was also addressed where
we showed that even for trees, optimal mapping solution cannot be obtained. We then
described a method to estimate the average power consumption when the primary inputs
are correlated. Extensions to the power efficient technology mapper were also presented.
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