

Power-Aware Bus Encoding Techniques for I/O and Data

Busses in an Embedded System

Wei-Chung Cheng and Massoud Pedram

Dept. of EE-Systems

 University of Southern California

Los Angeles, CA 90089

ABSTRACT

Microprocessors with built-in Liquid Crystal Device (LCD) controllers and equipped with

Flash ROM are common in mobile computing applications. In the first part of the paper, a

software-only encoding technique is proposed to reduce the power consumption of the

processor-memory bus when displaying an image on the LCD. Based on the translation

mechanism of the LCD controller, the approach of this paper is to start with the palette as a

coding table for the pixel buffer and then reassign the codes according to the image

characteristics. Experimental results prove the efficacy of this approach; power reduction

reaches 29% for text-based and 17% for graphics-based images. In the second part of the

paper, another software-only encoding technique is presented to reduce the transitions on the

processor-CompactFlash bus. The device driver in a Linux operating system is modified to

perform Bus-Invert encoding when the data is read from or written to a Compact Flash file

system. With minimal software overhead, the transitions on the bus are reduced by up to 25%.

 2

1. Introduction

Mobile computing has evolved as a potent and influential cultural phenomenon. Portable devices such

as Personal Digital Assistants (PDA), cellular phones, and GPS navigators are indispensable

components of today’s high tech society. Because computing power is growing and product size is

shrinking, power consumption in microelectronic circuitry has become a critical concern because high

degrees of power consumption severely limit product usefulness.

For these kinds of applications, semiconductor vendors offer highly integrated “system-on-chip”

(SOC) solutions [1][2][3][4]. These systems integrate a Reduced Instruction Set Computer (RISC)

microprocessor with many of the essential peripheral controllers (e.g., memory controller, Direct

Memory Access controller, LCD controller, Personal Computer Memory Card International

Association (PCMCIA) controller, etc.) on the same chip. A system designer can thus easily build a

complete mobile system by combining the SOC solution with different kinds of memory chips, I/O

devices, power supplies, and clock generators [5][6]. Use of the off-the-shelf commodity components

lowers overall system cost, reduces development cycle time, and accelerates product introduction.

Although these highly integrated micro-controller solutions are quite useful, they tend to restrict

designers’ ability to perform aggressive optimizations, including attempts to reduce the system power

consumption. Most of the hardware-level power saving techniques, such as clock gating and dynamic

voltage scaling, cannot be applied to systems composed of off-the-shelf commodity components

because of fixed architecture and interface requirements of these components.

Previous studies have proposed a number of low-power techniques for the Active Matrix LCD

(AMLCD) [7][8], but they are only applicable at the logic or gate levels and, therefore, are not within

the scope of this paper. In addition, many low-power bus-encoding techniques have been developed

[9][10][11][12]. However, these techniques require hardware modification. The interest of this paper

is the application of system-level or software-level techniques (which are adjustable) to reduce power

consumption on the data bus and the I/O bus.

In this paper, two power-saving techniques for embedded systems that combine a micro-controller

with an LCD and a Flash ROM are presented. The target system is described in Section 2. In Section

3, a low-power bus-encoding technique that uses the LCD frame buffer palette is presented. Section 4

 3

introduces another encoding technique for reducing power consumed on a PCMCIA bus. Section 5

concludes this work.

2. Target System

The target portable system is built around the Intel StrongARM SA-1110/SA-1111 evaluation boards

[13]. SA-1110 is a highly integrated microcontroller, including a CPU core, a memory controller, an

LCD controller, a PCMCIA interface, and other peripheral controllers. One or more Dynamic RAM

chips, used as the main memory, are also included on the board. The microprocessor is a standard off-

the-shelf product and cannot be modified. The memory chips are also commodity parts with fixed

standard interfaces.

The LCD controller needs a specific memory region to store the displayed image data. This memory

region is known as the frame buffer, which is also the interface to the application programmer who

wants to draw graphical objects on the LCD. Pixel information is stored in the pixel buffer.

Depending on the required color depth, 1, 2, 3, or even more bytes are used to represent each pixel.

For example, to provide a 32-bit color depth, each pixel needs 4 bytes of memory. Therefore, the size

of the pixel buffer depends on the total number of pixels and the color depth to be displayed. The

LCD controller reads the pixel information from the pixel buffer at an acceptable rate (based on the

refresh rate) through the data bus (D_bus in Figure 1), interprets the pixel, and sends the video signals

(via L_bus in Figure 1) to LCD.

The PCMCIA interface provides control functions for accessing external CompactFlash (CF)

memory, which is used as non-volatile memory in the system. The data transfer between the micro-

controller and the CF memory card take place via the I/O bus (P_bus in Figure 1).

 4

Figure 1: The target system

3. Encoding for the Memory Bus

3.1 LCD background

As stated earlier, the video information for images that are to be displayed on the LCD is stored in the

frame buffer in a bitmapped manner. The video controller reads the information from the frame buffer

and drives the LCD to display the corresponding image. Consider an LCD that is capable of

displaying 320 by 240 pixels in a 24-bit color depth. If the refresh rate is 60Hz, the data rate between

the frame buffer and the controller will be 320*240*24*60=111 M bits per second (bps)! This is an

excessive amount of data. Thus, in practice, a palette is used to relieve the data traffic.

A palette is simply a one-dimensional index table, which is stored both on the main memory and the

micro-controller. An entry in the palette with index i (i=0,…, 255) is initialized with ci, which in turn

represents a 24-bit color. The controller simply reads the color indices for pixels from the pixel buffer

via the D_bus and decodes them by using its local copy of the palette. For a 256-color palette, the data

rate between the memory and the controller is 320*240*8*60=37 M bps, which amounts to a 66%

reduction in memory-controller traffic. The tradeoff, of course, is that in this scheme, out of 224 colors,

at most 256 different colors can be displayed on the LCD at any time. Furthermore, some memory is

required on the controller side to store the palette. The color index decoding performed by the LCD

controller provides the context for the software bus encoding approach presented here.

LCD Cntl.

Memory

LCD

Palette

Pixel
Buf.

CPU A_bus

D_bus

L_bus

PCMCIA

P_bus

CF

 5

During each LCD refresh cycle, power dissipation on the D_bus is proportional to the total bit-level

activity on the bus when the color indices from the pixel buffer are sent to the LCD controller. When

the LCD controller is in burst mode, it sequentially fetches the index values stored in the pixel buffer.

This data transfer causes the bit-level activity, which is in turn proportional to the expected Hamming

distance between color indices of consecutive index values.

One can think of the palette as an encoding table that assigns an 8-bit color index to each of the 256

24-bit colors. By changing this encoding table and rewriting the pixel buffer values, the activity on the

D_bus can be reduced because of the minimization of the expected Hamming distance between

consecutive index values fetched on the bus. Note that the displayed image will not change as a result

of this palette reordering and the corresponding pixel buffer rewriting.

3.2 Problem formulation

In this section, a technique is proposed to reduce the transitions on the memory data bus that are

generated when the LCD controller reads the data in the pixel buffer. From the previous description of

the palette, one can see that the palette and the pixel buffer can be reassigned to compose the same

image while reducing the switching activity related to accessing the frame buffer.

Consider a palette containing 2k colors }...,{
1210 −

= kcccC . Assuming that the data bus width is k, the data

stream that is present on the data bus when reading the pixel data from the pixel buffer can be

represented by a sequence of binary values:
110 ..., −= lxxxX , where Cxi ∈ and l denotes the pixel count.

The total switching activity of X is calculated as the sum of the Hamming distances between

consecutive binary values xi and xi+1 denoted as),(1+ii xxH . The goal is to find an optimal palette

assignment (i.e., a color permutation) CC →:π such that the following objective function is

minimized:
1

1
0

((), ())
l

i i
i

H x xπ π
−

+
=
∑ . This optimization problem is called the Palette Assignment (PA)

problem.

If the bus width is 4k, then the objective function becomes
4

4
0

((), ())
l

i i
i

H x xπ π
−

+
=
∑ . This is because four

pixels are transmitted at the same time, therefore, the bit-level transitions occur between codes for

pixels i and i+4. Formulating and solving the corresponding problem is straightforward. Details are

omitted.

 6

3.3 Palette encoding algorithm

Another way of stating the PA problem is to construct a state transition graph G, where each color ci

is represented by a node ni in the graph. There exists an edge eij in the graph if the two colors ci and cj

are fetched on the bus consecutively. The weight of edge eij, which is denoted by wij, is equal to the

transition probability tpij between ci and cj in the sequence of binary values X. With this terminology

and notation, the PA problem can be restated as that of assigning index values (codes) to the colors so

as to minimize 2

0

.
k

ij ij
i j i

tp w
= >
∑∑ . Notice that this problem is identical to the problem encountered during

low-power state assignment [14][15]. This problem is known to be NP-hard. It has been solved using

a simulated annealing (SA) algorithm. The solution quality can be very good, but the excessive

runtime of an SA algorithm can be a concern. In this particular case, however, the SA algorithm is run

only once per image to create the color-mapped image that will be stored in memory. At runtime, the

LCD controller simply fetches the pixel color indices from the previously processed and optimized

image file. This scheme works for image files that are statically generated.

For a given color, its brightness (for example, as the average of the R, G, and B values in an RGB

color space) is calculated. Next, the 256 colors that are present in the palette are sorted by their

brightness and use Gray code [16] to encode the sorted list of colors. For example, brightness levels 0,

1, 2, and 3 are assigned the Gray code sequence 0, 1, 3, and 2. This heuristic is based on the

observation that the color brightness is likely to change continuously because of the reflective surface

of subjects such as the human skin. This method works very well for black and white images where

the only relevant distance metric in the color space is the brightness.

For color images, a more general distance metric can be defined based on the chrominance and

luminance values and used for sorting the palette colors.

3.4 Experimental results

The images displayed in an embedded system are usually from two sources: (1) the graphics user

interface (GUI), such as a window system, or (2) image files. For example, a navigation system

displays map images, which are pre-produced and then downloaded. The proposed approach is to

modify the GUI or the image files in advance. The following heuristic algorithm is used to solve the

PA problem.

 7

Figure 2 shows the histograms, which provide a plot of the occurrence frequency vs. brightness for

two images (“win1” from Figure 3 and “elaine” from Figure 4). “win1” is generated by a GUI and

exhibits a sparse distribution, whereas “elaine” is from an image file and exhibits a continuous

distribution function. Based on this, the images are classified into “text mode” and “graphics mode.”

win1

elaine

Figure 2: Text mode vs. graphics mode histogram

Based on the techniques described in Section 3.3, a software tool called Palladia (Palette Assignment

Diagnostician) was developed to achieve the desired frame buffer encoding. The program

implements two options: a Simulated Annealing (SA) based algorithm and a Palette-Sorting (PS)

based heuristic.

The reduction in transition counts on the D_bus for the two GUI images depicted in Figure 3 is shown

in Table 1. The SA-based and heuristic algorithms reduce the switching activity by 15% to 29%. One

can see that the heuristic algorithm is quite effective in spite of its much faster runtime and lower

computational requirement.

 8

win1

win2

Figure 3: GUI benchmark images (a) win1 and (b) win2

Transition Count Saving %
Image

SA-based
Algorithm

PS-based
Heuristic

win1 29.3 25.4

win2 17.9 15.7

Table 1: Results for SA-based and PS-based heuristic algorithms applied to win1 and win2

lena

elaine

pentagon

 9

bellagio

paris

car

nyny

montecarlo

mgm

Figure 4: Photo/graphics benchmark images

Table 2 shows the test results of the heuristic algorithm running on the image files shown in Figure 4.

Results for an 8-bit and a 32-bit D_bus are provided. Transition count savings are slightly higher for

the 8-bit bus.

Image Transition Count Saving %

 8-bit 32-bit

lena 7.7 6.6

elaine 17.6 15.8

pentagon 18.8 17.7

bellagio 12.9 6.6

paris 11.7 4.9

car 15.2 13.9

nyny 12.6 8.0

montecarlo 10.7 7.6

 10

mgm 12.6 7.8

Table 2: PS-based heuristic algorithm results for the photo/graphics images

4. Encoding for the Compact Flash Bus

4.1 Compact Flash background

In this section, a software encoding technique for an I/O bus is presented. The power dissipated on I/O

busses in embedded systems drew little attention previously because it was small compared to the

power consumed by external devices (e.g., LCDs, hard drives, and network interface cards).

Mobile applications such as digital cameras, MP3 players, and PDAs require small, lightweight, and

power-conserving devices for data storage. Therefore, solid-state storages such as Flash ROM have

emerged as an alternative to hard drives. Flash ROM products are available to consumers in a card

form such as a PC card [17] or a CompactFlash (CF) card [18]. Inside the card are the Flash ROM

chips and a controller, which takes care of the PCMCIA/CF interfacing. An advanced process

technology is used to fabricate these memory and controller chips. Compared to the internal power

dissipation of the card, the I/O bus tends to consume a lot of power, as is explained below.

Take CF as an example. Its form factor is quite small. The 50 signals of CF are compatible to (a

subset of) the 68 PCMCIA signals. The latter is more mature and is well supported by mobile

computers. As a result, most embedded computer systems support PCMCIA cards but not CF cards.

For a computer that does not support CF, a CF-to-PCMCIA adaptor (defined in the CF specification)

can be used. Consider the power consumption of the I/O bus in this scenario: the voltage is fixed at

3.3V (to comply with the CF and PCMCIA standards), the capacitance is high (the wires inside the

credit-card size PCMCIA adaptor card are physically long), and the frequency is high because of the

speed of solid-state memory. Hence, the power dissipation on the bus can be quite high.

According to the CF specification [18], a CF-card has to support three operation modes: CF-Memory,

CF-IO, and CF-ATA (AT Attachment). The first two modes define the card as a memory component

attached to the PCMCIA bus. To operate the CF-card in these two modes, the OS has to be aware of

this special memory device and control it with a specific device driver. For this reason, the

implementation of the third mode, CF-ATA, is mandatory in order to provide backward compatibility.

In this mode, the card emulates an Integrated Drive Electronics (IDE) hard drive, which is virtually

 11

standard equipment for every IBM-compatible PC. In the target system – as well as many other

embedded systems – the CF is treated as a hard drive, and therefore the CF-ATA mode is in use.

The IDE interface protocol is defined in the ATA specification [20]. Briefly, it provides seven 8-bit

command registers and one 16-bit data register. The IDE device is controlled by a program (i.e., the

device driver) that writes different commands and parameters into the command registers. These

commands include read, write, erase sector, format track, standby, idle, recalibrate, etc., while the

parameters include the sector number and the sector count. In the read/write operation, after the

command word is written into the command registers the actual data can be read/written through the

16-bit data register. For example, to read sectors, first the sector number, sector count, and read

command are written to the command registers and then one or more sectors (512k bytes per sector)

are read from the data register. The controller inside the CF-card internally translates the sector

addresses into memory addresses and performs the corresponding operations to the Flash ROM chips.

The translation is transparent to the software, so any computer without any additional software can

use CF-cards as long as it supports IDE devices. The software (i.e., the IDE device driver) can access

the hard drives by using either DMA or Program IO (PIO). DMA relieves the CPU load while PIO is

used for high-speed devices or when DMA is unavailable.

4.2 PCMCIA bus encoding

A software bus encoding technique used to reduce the transitions on the PCMCIA bus is presented

here. The goal of this technique is to analyze the data (files) on the CF-card off-line. According to the

analysis results, the data in the files are processed by a bus-invert algorithm [11] and then stored back

to CF. The processing steps are as follows. The file is divided into blocks of data. Each block is

analyzed to derive the “best” inversion pattern. The 16-bit wide inversion pattern is exclusive-or’ed

with all the 16-bit wide words in the block, and the results are written back to the file. Of course, the

inversion pattern for each block is also stored in the file so that performing another exclusive-or

operation with the encoded value can restore the original value. When the file is loaded into the main

memory, the device driver of the CF-card recovers the data by performing the necessary exclusive-or

operation on the fly.

The idea is simple but different from a typical bus-invert technique in the following ways. (1) The

CPU performs the inversion without needing extra hardware. (2) The calculation of the inversion

 12

pattern per block of data is made at the compilation time by solving an optimization problem (which

is called the inversion pattern selection problem or IPS problem). (3) The redundant information is

carried in the file header instead of being sent along with the data (i.e., using extra bus signals). (4)

The inversion pattern is changed for each block of data to adapt to the specific characteristics of the

block.

4.2.1 Implementation details

If the sectors are read into memory in the PIO mode, the data will stay in the data cache. For example,

the StrongARM SA-1110 has an 8KB main data cache, which is large enough to cover a 4KB page in

ARM Linux. The inversion operations can be performed efficiently at a maximum clock frequency of

206 MHz by a loop consisting of five instructions (load the word, conditional XOR, store the word,

rotate the invert vector, and branch). In addition, the remaining unused components can be put into

sleep mode during the inversion period to reduce the overhead.

For ARM Linux, the IDE device driver (i.e., linux/drivers/ide/ide-disk.c) was modified so that it

inverts the data after (before) a sector is read from (written to) the CF-card. Notice that the encoding

occurs during not only the regular file read/write operations but also the page in/out events when the

CF-card is used as a swap device.

4.2.2 IPS problem formulation

The problem of finding the optimal inversion pattern (α) can be formulated as the following

minimization problem:

∑
=

++ ⊗⊗⊗
l

i
iiii xxxxMIN

0
11 },{ α

where xi denotes the codes for the words in a block of data. This problem, which is also known as the

partial bus-invert problem in the literature, has been shown to be an intractable problem [19]. A

number of heuristic algorithms have been proposed to solve the IPS problem. The goal is to reduce

the power consumption of a mobile system in which the applications are pre-determined. Therefore,

the optimization problem can be solved off-line without worrying about power dissipation overhead

for solving this optimization problem. In practice, a branch-and-bound algorithm is used to find the

best possible inversion pattern. Since the number of words in a block is rather small and the bus width

is limited, this approach is practical.

 13

4.2.3 Determining the block size

The standard bus-invert technique uses a fixed inversion pattern α, which is a pattern of all 1’s. Better

results can be achieved by using different patterns for different blocks of data (pages or sectors). A

smaller block size increases power savings on the bus but also tends to increase the overhead in terms

of the space for inversion pattern storage and the time spent on performing inversion during the

decoding phase (the encoding phase is not of concern since it is done on a non-power-constrained

processor).

4.2.4 Preserving data cache entries

In the encoding algorithm described above, it is necessary to perform an exclusive-or operation on all

the data entries that are written to or read from the CF. Assume that the data cache is not flushed upon

entering a system call and that DMA is used for data I/O. The CF data coding will potentially flood

the cache with block data and change the cache behavior. To solve this problem, the cache can be

disabled (frozen) prior to accessing the main memory to perform the exclusive-or operation. After the

encoding/decoding process, the cache is unfrozen and the normal computational processes will

continue their execution on a cache that is kept “hot.”

4.3 Experimental results

The SPEC95 integer benchmarks were used to generate the data traces. Consider a 16-bit PCMCIA

bus. First, two software applications were used to examine the effect of smaller block sizes. Data is

divided into blocks. In each block, the optimal inversion pattern was found. The numbers of

transitions in different block sizes are reported in Table 3. As expected, the results improve

monotonically as the block size becomes smaller, but the marginal improvement is not impressive.

This suggests the use of a larger window size of 1024 or even 4096 bytes in order to minimize the

storage space and computation time requirements. The 4KB size is more desirable for this set of

experiments because it matches the page size in Linux.

Block

Size

256 512 1024 4096

compress 81.5% 80.1% 78.9% 76.7%

ijpeg 87.6% 85.7% 85.1% 83.1%

 14

Table 3: Results as a function of block sizes

Eight benchmarks with a page size of 4 KB were tried. Results are reported below.

 Length Opt-4k 93e5 BI

compress 88k 0.82 0.90 0.94

gcc 1,286k 0.75 0.81 0.90

go 500k 0.71 0.75 0.87

ijpeg 167k 0.78 0.84 0.93

li 98k 0.75 0.79 0.91

m88ksim 177k 0.79 0.87 0.93

perl 286k 0.76 0.80 0.89

vortex 813k 0.69 0.74 0.88

Table 4: Results of comparing adaptive partial bus invert, partial bus invert w/ fixed inversion pattern,

and full bus invert

The first column lists the data trace lengths for each of the benchmarks. The remaining three columns

report the ratio of the bit-level transition count with the bus-invert encoding to the count without the

encoding. Thus a smaller ratio reveals a larger power saving. In the second column, the adaptive

partial bus-invert algorithm was used with a block size of 4KB. In the third column, “93e5,” the fixed

pattern 0x93e5 (hex) is used for all the files. This particular pattern was chosen because it happens to

be the most common optimal-inversion pattern in all of the applications that were tried. The last

column, BI, lists the original bus-invert results for reference.

Experimental results imply that with a globally fixed inversion pattern, the transitions on the I/O bus

can be reduced by 10-26%. Because the pattern does not change from block to block, there is no need

to store the inversion patterns. In other words, by a simple modification of the device driver, the

power dissipation can be reduced with zero hardware cost and minimal software overhead (which is

due to dynamic encoding and decoding of the data that is written to and read from the CF). Higher

savings can be obtained by changing the inversion pattern per blocks of size 4096. This is a tradeoff

that the system developer needs to consider.

 15

5. Conclusions

Two software approaches to reduce the power consumption of the memory and I/O busses in an

embedded system equipped with LCD and Flash ROM were proposed. For the memory bus, the

palette, which is the translation mechanism of the LCD controller, was used as a coding table. The

proposed technique re-encoded the palette and rewrote entries in the pixel buffer according to their

correlation to the image. The problem was formulated as a state assignment problem and an SA-based

and an efficient heuristic algorithm were presented for solving it. Experimental results proved the

efficiency of this approach; there is up to a 29% power reduction for the text-mode images and a 17%

reduction for the graphics-mode images. For the PCMCIA bus, up to 26% of the transitions can be

eliminated by a very simple modification of the OS kernel.

6. References

[1] Intel StrongARM SA-1110. http://developer.intel.com.

[2] Motorola M683XX DragonBall. http://www.motorola.com.

[3] Sharp 77790. http://www.sharpmeg.com/lh77/lh77.html.

[4] Hitachi H8/300L.http://semiconductor.hitachi.com/h8.html.

[5] Palm PalmPilot. http://www.palm.com/products.

[6] PocketPC. http://www.microsoft.com/pocketpc.

[7] J. S. Kim, D. K. Jeong, and G. Kim, “A multi-level multi-phase charge-recycling method for low-power

AMLCD column drivers,” IEEE Journal of Solid-State Circuits, vol. 35.1, pp. 74–84, Jan. 2000.

[8] S. W. Lee, J. S. Kim, and C. H. Han, “Pixel arrangement for low-power dot inversion liquid crystal

display panels,” Electronics Letters, vol. 34. 16, pp. 1604–1606, Aug. 1998.

[9] L. Benini, G. DeMicheli, E. Macii, M. Poncino, and S. Quer, “System-level power optimization of special

purpose applications: the beach solution,” ISLPED-97: ACM/IEEE International Symposium on Low

Power Electronics and Design, Monterey, CA., pp. 24-29, Aug. 1997.

[10] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality of memory references to reduce the address

bus energy,” ISLPED-97: ACM/IEEE International Symposium on Low Power Electronics and Design,

Monterey, CA., pp. 202-207, Aug. 1997.

[11] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Transactions on VLSI

Systems, Vol. 3, No. 1, pp. 49-58, 1995.

[12] W. C. Cheng and M. Pedram, “Power-optimal encoding for DRAM address bus,” ISLPED-00: ACM/IEEE

International Symposium on Low Power Electronics and Design, pp. 250-252, 2000.

 16

[13] Intel StrongARM processors SA-1110/SA-1111, Development Platform, http://developer.intel.com/.

[14] K. Roy and S. Prasad, “Syclop: Synthesis of CMOS logic for low power application,” Proceedings of the

International Conference on Computer Design, pp. 464-467, Oct. 1992.

[15] C. Y. Tsui, M. Pedram, and A. M. Despain, “Low power state assignment targeting two and multilevel

logic implementations,” IEEE Trans. on Computer Aided Design, vol. 17. No. 12, pp. 1281-1291, Dec.

1998.

[16] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving power in the control path of embedded processors,”

IEEE Design and Test of Computers, Vol. 11, No. 4, pp. 24-30, 1994.

[17] PCMCIA, PC Card Standard, 1995. http://www.pc-card.com/.

[18] CompactFlash Association, CF+ and CompactFlash Specification, July 1999.

http://www.compactflash.org

[19] Y. Shin, S. I. Chae, and K. Choi, “Partial bus-invert coding for power optimization of system level bus,”

ISLPED-98: ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 127-129,

1998.

[20] American National Standards Institute, AT Attachment Interface Document, X3.221-1994.

http://www.ansi.org.

