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ABSTRACT 

Microprocessors with built-in Liquid Crystal Device (LCD) controllers and equipped with 

Flash ROM are common in mobile computing applications. In the first part of the paper, a 

software-only encoding technique is proposed to reduce the power consumption of the 

processor-memory bus when displaying an image on the LCD. Based on the translation 

mechanism of the LCD controller, the approach of this paper is to start with the palette as a 

coding table for the pixel buffer and then reassign the codes according to the image 

characteristics. Experimental results prove the efficacy of this approach; power reduction 

reaches 29% for text-based and 17% for graphics-based images. In the second part of the 

paper, another software-only encoding technique is presented to reduce the transitions on the 

processor-CompactFlash bus. The device driver in a Linux operating system is modified to 

perform Bus-Invert encoding when the data is read from or written to a Compact Flash file 

system. With minimal software overhead, the transitions on the bus are reduced by up to 25%. 
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1. Introduction 

Mobile computing has evolved as a potent and influential cultural phenomenon. Portable devices such 

as Personal Digital Assistants (PDA), cellular phones, and GPS navigators are indispensable 

components of today’s high tech society. Because computing power is growing and product size is 

shrinking, power consumption in microelectronic circuitry has become a critical concern because high 

degrees of power consumption severely limit product usefulness.  

For these kinds of applications, semiconductor vendors offer highly integrated “system-on-chip” 

(SOC) solutions [1][2][3][4]. These systems integrate a Reduced Instruction Set Computer (RISC) 

microprocessor with many of the essential peripheral controllers (e.g., memory controller, Direct 

Memory Access controller, LCD controller, Personal Computer Memory Card International 

Association (PCMCIA) controller, etc.) on the same chip. A system designer can thus easily build a 

complete mobile system by combining the SOC solution with different kinds of memory chips, I/O 

devices, power supplies, and clock generators [5][6]. Use of the off-the-shelf commodity components 

lowers overall system cost, reduces development cycle time, and accelerates product introduction. 

Although these highly integrated micro-controller solutions are quite useful, they tend to restrict 

designers’ ability to perform aggressive optimizations, including attempts to reduce the system power 

consumption. Most of the hardware-level power saving techniques, such as clock gating and dynamic 

voltage scaling, cannot be applied to systems composed of off-the-shelf commodity components 

because of fixed architecture and interface requirements of these components. 

Previous studies have proposed a number of low-power techniques for the Active Matrix LCD 

(AMLCD) [7][8], but they are only applicable at the logic or gate levels and, therefore, are not within 

the scope of this paper.  In addition, many low-power bus-encoding techniques have been developed 

[9][10][11][12]. However, these techniques require hardware modification. The interest of this paper 

is the application of system-level or software-level techniques (which are adjustable) to reduce power 

consumption on the data bus and the I/O bus. 

In this paper, two power-saving techniques for embedded systems that combine a micro-controller 

with an LCD and a Flash ROM are presented.  The target system is described in Section 2. In Section 

3, a low-power bus-encoding technique that uses the LCD frame buffer palette is presented.  Section 4 
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introduces another encoding technique for reducing power consumed on a PCMCIA bus. Section 5 

concludes this work. 

2. Target System 

The target portable system is built around the Intel StrongARM SA-1110/SA-1111 evaluation boards 

[13]. SA-1110 is a highly integrated microcontroller, including a CPU core, a memory controller, an 

LCD controller, a PCMCIA interface, and other peripheral controllers. One or more Dynamic RAM 

chips, used as the main memory, are also included on the board. The microprocessor is a standard off-

the-shelf product and cannot be modified. The memory chips are also commodity parts with fixed 

standard interfaces.  

The LCD controller needs a specific memory region to store the displayed image data. This memory 

region is known as the frame buffer, which is also the interface to the application programmer who 

wants to draw graphical objects on the LCD. Pixel information is stored in the pixel buffer. 

Depending on the required color depth, 1, 2, 3, or even more bytes are used to represent each pixel. 

For example, to provide a 32-bit color depth, each pixel needs 4 bytes of memory. Therefore, the size 

of the pixel buffer depends on the total number of pixels and the color depth to be displayed. The 

LCD controller reads the pixel information from the pixel buffer at an acceptable rate (based on the 

refresh rate) through the data bus (D_bus in Figure 1), interprets the pixel, and sends the video signals 

(via L_bus in Figure 1) to LCD. 

The PCMCIA interface provides control functions for accessing external CompactFlash (CF) 

memory, which is used as non-volatile memory in the system. The data transfer between the micro-

controller and the CF memory card take place via the I/O bus (P_bus in Figure 1). 
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Figure 1: The target system  

3. Encoding for the Memory Bus 

3.1 LCD background  

As stated earlier, the video information for images that are to be displayed on the LCD is stored in the 

frame buffer in a bitmapped manner. The video controller reads the information from the frame buffer 

and drives the LCD to display the corresponding image. Consider an LCD that is capable of 

displaying 320 by 240 pixels in a 24-bit color depth. If the refresh rate is 60Hz, the data rate between 

the frame buffer and the controller will be 320*240*24*60=111 M bits per second (bps)! This is an 

excessive amount of data. Thus, in practice, a palette is used to relieve the data traffic.  

A palette is simply a one-dimensional index table, which is stored both on the main memory and the 

micro-controller. An entry in the palette with index i (i=0,…, 255) is initialized with ci, which in turn 

represents a 24-bit color. The controller simply reads the color indices for pixels from the pixel buffer 

via the D_bus and decodes them by using its local copy of the palette. For a 256-color palette, the data 

rate between the memory and the controller is 320*240*8*60=37 M bps, which amounts to a 66% 

reduction in memory-controller traffic. The tradeoff, of course, is that in this scheme, out of 224 colors, 

at most 256 different colors can be displayed on the LCD at any time. Furthermore, some memory is 

required on the controller side to store the palette. The color index decoding performed by the LCD 

controller provides the context for the software bus encoding approach presented here. 
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During each LCD refresh cycle, power dissipation on the D_bus is proportional to the total bit-level 

activity on the bus when the color indices from the pixel buffer are sent to the LCD controller. When 

the LCD controller is in burst mode, it sequentially fetches the index values stored in the pixel buffer. 

This data transfer causes the bit-level activity, which is in turn proportional to the expected Hamming 

distance between color indices of consecutive index values.  

One can think of the palette as an encoding table that assigns an 8-bit color index to each of the 256 

24-bit colors. By changing this encoding table and rewriting the pixel buffer values, the activity on the 

D_bus can be reduced because of the minimization of the expected Hamming distance between 

consecutive index values fetched on the bus. Note that the displayed image will not change as a result 

of this palette reordering and the corresponding pixel buffer rewriting. 

3.2 Problem formulation 

In this section, a technique is proposed to reduce the transitions on the memory data bus that are 

generated when the LCD controller reads the data in the pixel buffer. From the previous description of 

the palette, one can see that the palette and the pixel buffer can be reassigned to compose the same 

image while reducing the switching activity related to accessing the frame buffer.  

Consider a palette containing 2k colors }...,{
1210 −

= kcccC . Assuming that the data bus width is k, the data 

stream that is present on the data bus when reading the pixel data from the pixel buffer can be 

represented by a sequence of binary values: 
110 ..., −= lxxxX , where Cxi ∈  and l denotes the pixel count. 

The total switching activity of X is calculated as the sum of the Hamming distances between 

consecutive binary values xi and xi+1 denoted as ),( 1+ii xxH . The goal is to find an optimal palette 

assignment (i.e., a color permutation) CC →:π  such that the following objective function is 

minimized: 
1

1
0

( ( ), ( ))
l

i i
i

H x xπ π
−

+
=
∑ . This optimization problem is called the Palette Assignment (PA) 

problem.  

If the bus width is 4k, then the objective function becomes
4

4
0

( ( ), ( ))
l

i i
i

H x xπ π
−

+
=
∑ . This is because four 

pixels are transmitted at the same time, therefore, the bit-level transitions occur between codes for 

pixels i and i+4. Formulating and solving the corresponding problem is straightforward. Details are 

omitted. 



 6  

 

3.3 Palette encoding algorithm 

Another way of stating the PA problem is to construct a state transition graph G, where each color ci 

is represented by a node ni in the graph. There exists an edge eij in the graph if the two colors ci and cj 

are fetched on the bus consecutively. The weight of edge eij, which is denoted by wij, is equal to the 

transition probability tpij between ci and cj in the sequence of binary values X. With this terminology 

and notation, the PA problem can be restated as that of assigning index values (codes) to the colors so 

as to minimize 2

0

.
k

ij ij
i j i

tp w
= >
∑∑ . Notice that this problem is identical to the problem encountered during 

low-power state assignment [14][15]. This problem is known to be NP-hard. It has been solved using 

a simulated annealing (SA) algorithm. The solution quality can be very good, but the excessive 

runtime of an SA algorithm can be a concern. In this particular case, however, the SA algorithm is run 

only once per image to create the color-mapped image that will be stored in memory. At runtime, the 

LCD controller simply fetches the pixel color indices from the previously processed and optimized 

image file. This scheme works for image files that are statically generated.  

For a given color, its brightness (for example, as the average of the R, G, and B values in an RGB 

color space) is calculated. Next, the 256 colors that are present in the palette are sorted by their 

brightness and use Gray code [16] to encode the sorted list of colors. For example, brightness levels 0, 

1, 2, and 3 are assigned the Gray code sequence 0, 1, 3, and 2. This heuristic is based on the 

observation that the color brightness is likely to change continuously because of the reflective surface 

of subjects such as the human skin. This method works very well for black and white images where 

the only relevant distance metric in the color space is the brightness.  

For color images, a more general distance metric can be defined based on the chrominance and 

luminance values and used for sorting the palette colors.  

3.4 Experimental results 

The images displayed in an embedded system are usually from two sources: (1) the graphics user 

interface (GUI), such as a window system, or (2) image files. For example, a navigation system 

displays map images, which are pre-produced and then downloaded. The proposed approach is to 

modify the GUI or the image files in advance. The following heuristic algorithm is used to solve the 

PA problem.  
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Figure 2 shows the histograms, which provide a plot of the occurrence frequency vs. brightness for 

two images (“win1” from Figure 3 and “elaine” from Figure 4). “win1” is generated by a GUI and 

exhibits a sparse distribution, whereas “elaine” is from an image file and exhibits a continuous 

distribution function. Based on this, the images are classified into “text mode” and “graphics mode.”  

 

 

win1 

 

 

elaine 

Figure 2: Text mode vs. graphics mode histogram 

Based on the techniques described in Section 3.3, a software tool called Palladia (Palette Assignment 

Diagnostician) was developed to achieve the desired frame buffer encoding.  The program 

implements two options: a Simulated Annealing (SA) based algorithm and a Palette-Sorting (PS) 

based heuristic. 

The reduction in transition counts on the D_bus for the two GUI images depicted in Figure 3 is shown 

in Table 1. The SA-based and heuristic algorithms reduce the switching activity by 15% to 29%.  One 

can see that the heuristic algorithm is quite effective in spite of its much faster runtime and lower 

computational requirement. 
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win1 

 

 

win2 

Figure 3: GUI benchmark images (a) win1 and (b) win2  

Transition Count Saving % 
Image 

SA-based 
Algorithm 

PS-based 
Heuristic 

win1 29.3 25.4 

win2 17.9 15.7 

Table 1: Results for SA-based and PS-based heuristic algorithms applied to win1 and win2 
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elaine 

 

pentagon 
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nyny 

 

montecarlo 

 

mgm 

Figure 4: Photo/graphics benchmark images 

 

Table 2 shows the test results of the heuristic algorithm running on the image files shown in Figure 4. 

Results for an 8-bit and a 32-bit D_bus are provided. Transition count savings are slightly higher for 

the 8-bit bus. 

Image Transition Count Saving % 

 8-bit 32-bit 

lena 7.7 6.6 

elaine 17.6 15.8 

pentagon 18.8 17.7 

bellagio 12.9 6.6 

paris 11.7 4.9 

car 15.2 13.9 

nyny 12.6 8.0 

montecarlo 10.7 7.6 
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mgm 12.6 7.8 

Table 2: PS-based heuristic algorithm results for the photo/graphics images 

4. Encoding for the Compact Flash Bus 

4.1 Compact Flash background 

In this section, a software encoding technique for an I/O bus is presented. The power dissipated on I/O 

busses in embedded systems drew little attention previously because it was small compared to the 

power consumed by external devices (e.g., LCDs, hard drives, and network interface cards).  

Mobile applications such as digital cameras, MP3 players, and PDAs require small, lightweight, and 

power-conserving devices for data storage. Therefore, solid-state storages such as Flash ROM have 

emerged as an alternative to hard drives. Flash ROM products are available to consumers in a card 

form such as a PC card [17] or a CompactFlash (CF) card [18]. Inside the card are the Flash ROM 

chips and a controller, which takes care of the PCMCIA/CF interfacing. An advanced process 

technology is used to fabricate these memory and controller chips. Compared to the internal power 

dissipation of the card, the I/O bus tends to consume a lot of power, as is explained below.  

Take CF as an example. Its form factor is quite small. The 50 signals of CF are compatible to (a 

subset of) the 68 PCMCIA signals. The latter is more mature and is well supported by mobile 

computers. As a result, most embedded computer systems support PCMCIA cards but not CF cards. 

For a computer that does not support CF, a CF-to-PCMCIA adaptor (defined in the CF specification) 

can be used. Consider the power consumption of the I/O bus in this scenario: the voltage is fixed at 

3.3V (to comply with the CF and PCMCIA standards), the capacitance is high (the wires inside the 

credit-card size PCMCIA adaptor card are physically long), and the frequency is high because of the 

speed of solid-state memory. Hence, the power dissipation on the bus can be quite high. 

According to the CF specification [18], a CF-card has to support three operation modes: CF-Memory, 

CF-IO, and CF-ATA (AT Attachment). The first two modes define the card as a memory component 

attached to the PCMCIA bus. To operate the CF-card in these two modes, the OS has to be aware of 

this special memory device and control it with a specific device driver. For this reason, the 

implementation of the third mode, CF-ATA, is mandatory in order to provide backward compatibility. 

In this mode, the card emulates an Integrated Drive Electronics (IDE) hard drive, which is virtually 
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standard equipment for every IBM-compatible PC. In the target system – as well as many other 

embedded systems – the CF is treated as a hard drive, and therefore the CF-ATA mode is in use. 

The IDE interface protocol is defined in the ATA specification [20]. Briefly, it provides seven 8-bit 

command registers and one 16-bit data register. The IDE device is controlled by a program (i.e., the 

device driver) that writes different commands and parameters into the command registers. These 

commands include read, write, erase sector, format track, standby, idle, recalibrate, etc., while the 

parameters include the sector number and the sector count. In the read/write operation, after the 

command word is written into the command registers the actual data can be read/written through the 

16-bit data register. For example, to read sectors, first the sector number, sector count, and read 

command are written to the command registers and then one or more sectors (512k bytes per sector) 

are read from the data register. The controller inside the CF-card internally translates the sector 

addresses into memory addresses and performs the corresponding operations to the Flash ROM chips. 

The translation is transparent to the software, so any computer without any additional software can 

use CF-cards as long as it supports IDE devices. The software (i.e., the IDE device driver) can access 

the hard drives by using either DMA or Program IO (PIO). DMA relieves the CPU load while PIO is 

used for high-speed devices or when DMA is unavailable. 

4.2 PCMCIA bus encoding 

A software bus encoding technique used to reduce the transitions on the PCMCIA bus is presented 

here. The goal of this technique is to analyze the data (files) on the CF-card off-line. According to the 

analysis results, the data in the files are processed by a bus-invert algorithm [11] and then stored back 

to CF. The processing steps are as follows. The file is divided into blocks of data. Each block is 

analyzed to derive the “best” inversion pattern. The 16-bit wide inversion pattern is exclusive-or’ed 

with all the 16-bit wide words in the block, and the results are written back to the file.  Of course, the 

inversion pattern for each block is also stored in the file so that performing another exclusive-or 

operation with the encoded value can restore the original value. When the file is loaded into the main 

memory, the device driver of the CF-card recovers the data by performing the necessary exclusive-or 

operation on the fly. 

The idea is simple but different from a typical bus-invert technique in the following ways. (1) The 

CPU performs the inversion without needing extra hardware. (2) The calculation of the inversion 
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pattern per block of data is made at the compilation time by solving an optimization problem (which 

is called the inversion pattern selection problem or IPS problem). (3) The redundant information is 

carried in the file header instead of being sent along with the data (i.e., using extra bus signals). (4) 

The inversion pattern is changed for each block of data to adapt to the specific characteristics of the 

block.  

4.2.1 Implementation details 

If the sectors are read into memory in the PIO mode, the data will stay in the data cache. For example, 

the StrongARM SA-1110 has an 8KB main data cache, which is large enough to cover a 4KB page in 

ARM Linux. The inversion operations can be performed efficiently at a maximum clock frequency of 

206 MHz by a loop consisting of five instructions (load the word, conditional XOR, store the word, 

rotate the invert vector, and branch). In addition, the remaining unused components can be put into 

sleep mode during the inversion period to reduce the overhead.  

For ARM Linux, the IDE device driver (i.e., linux/drivers/ide/ide-disk.c) was modified so that it 

inverts the data after (before) a sector is read from (written to) the CF-card. Notice that the encoding 

occurs during not only the regular file read/write operations but also the page in/out events when the 

CF-card is used as a swap device. 

4.2.2 IPS problem formulation  

The problem of finding the optimal inversion pattern (α) can be formulated as the following 

minimization problem: 

∑
=

++ ⊗⊗⊗
l

i
iiii xxxxMIN

0
11 },{ α  

where xi denotes the codes for the words in a block of data. This problem, which is also known as the 

partial bus-invert problem in the literature, has been shown to be an intractable problem [19]. A 

number of heuristic algorithms have been proposed to solve the IPS problem. The goal is to reduce 

the power consumption of a mobile system in which the applications are pre-determined. Therefore, 

the optimization problem can be solved off-line without worrying about power dissipation overhead 

for solving this optimization problem. In practice, a branch-and-bound algorithm is used to find the 

best possible inversion pattern. Since the number of words in a block is rather small and the bus width 

is limited, this approach is practical. 
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4.2.3 Determining the block size 

The standard bus-invert technique uses a fixed inversion pattern α, which is a pattern of all 1’s. Better 

results can be achieved by using different patterns for different blocks of data (pages or sectors).  A 

smaller block size increases power savings on the bus but also tends to increase the overhead in terms 

of the space for inversion pattern storage and the time spent on performing inversion during the 

decoding phase (the encoding phase is not of concern since it is done on a non-power-constrained 

processor).  

4.2.4 Preserving data cache entries 

In the encoding algorithm described above, it is necessary to perform an exclusive-or operation on all 

the data entries that are written to or read from the CF. Assume that the data cache is not flushed upon 

entering a system call and that DMA is used for data I/O. The CF data coding will potentially flood 

the cache with block data and change the cache behavior. To solve this problem, the cache can be 

disabled (frozen) prior to accessing the main memory to perform the exclusive-or operation. After the 

encoding/decoding process, the cache is unfrozen and the normal computational processes will 

continue their execution on a cache that is kept “hot.” 

4.3 Experimental results 

The SPEC95 integer benchmarks were used to generate the data traces. Consider a 16-bit PCMCIA 

bus. First, two software applications were used to examine the effect of smaller block sizes. Data is 

divided into blocks. In each block, the optimal inversion pattern was found. The numbers of 

transitions in different block sizes are reported in Table 3. As expected, the results improve 

monotonically as the block size becomes smaller, but the marginal improvement is not impressive. 

This suggests the use of a larger window size of 1024 or even 4096 bytes in order to minimize the 

storage space and computation time requirements. The 4KB size is more desirable for this set of 

experiments because it matches the page size in Linux. 

Block 

Size  

256 512 1024 4096 

compress 81.5% 80.1% 78.9% 76.7% 

ijpeg 87.6% 85.7% 85.1% 83.1% 
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Table 3: Results as a function of block sizes 

Eight benchmarks with a page size of 4 KB were tried. Results are reported below. 

 Length Opt-4k 93e5 BI 

compress 88k 0.82 0.90 0.94 

gcc 1,286k 0.75 0.81 0.90 

go 500k 0.71 0.75 0.87 

ijpeg 167k 0.78 0.84 0.93 

li 98k 0.75 0.79 0.91 

m88ksim 177k 0.79 0.87 0.93 

perl 286k 0.76 0.80 0.89 

vortex 813k 0.69 0.74 0.88 

Table 4: Results of comparing adaptive partial bus invert, partial bus invert w/ fixed inversion pattern, 

and full bus invert 

The first column lists the data trace lengths for each of the benchmarks. The remaining three columns 

report the ratio of the bit-level transition count with the bus-invert encoding to the count without the 

encoding. Thus a smaller ratio reveals a larger power saving. In the second column, the adaptive 

partial bus-invert algorithm was used with a block size of 4KB. In the third column, “93e5,” the fixed 

pattern 0x93e5 (hex) is used for all the files. This particular pattern was chosen because it happens to 

be the most common optimal-inversion pattern in all of the applications that were tried. The last 

column, BI, lists the original bus-invert results for reference.  

Experimental results imply that with a globally fixed inversion pattern, the transitions on the I/O bus 

can be reduced by 10-26%. Because the pattern does not change from block to block, there is no need 

to store the inversion patterns. In other words, by a simple modification of the device driver, the 

power dissipation can be reduced with zero hardware cost and minimal software overhead (which is 

due to dynamic encoding and decoding of the data that is written to and read from the CF). Higher 

savings can be obtained by changing the inversion pattern per blocks of size 4096. This is a tradeoff 

that the system developer needs to consider. 
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5. Conclusions 

Two software approaches to reduce the power consumption of the memory and I/O busses in an 

embedded system equipped with LCD and Flash ROM were proposed. For the memory bus, the 

palette, which is the translation mechanism of the LCD controller, was used as a coding table. The 

proposed technique re-encoded the palette and rewrote entries in the pixel buffer according to their 

correlation to the image. The problem was formulated as a state assignment problem and an SA-based 

and an efficient heuristic algorithm were presented for solving it. Experimental results proved the 

efficiency of this approach; there is up to a 29% power reduction for the text-mode images and a 17% 

reduction for the graphics-mode images. For the PCMCIA bus, up to 26% of the transitions can be 

eliminated by a very simple modification of the OS kernel.  
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