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Abstract

In this paper, we investigate the problem of minimizing
the total power consumption during the binding of opera-
tionsto functional unitsin a scheduled data path with func-
tional pipelining and conditional branching for data inten-
sive applications. We first present a technique to estimate
the power consumptionin a functionally pipelined data path
and then formulate the power optimization problem as a
max-cost multi-commodity flow problem and solve it opti-
mally. Our proposed method can augment most high-level
synthesis algorithms as a post-processing step for reducing
power after the optimizations for area or speed have been
completed. An average power savings of 28% has been ob-
served after we apply our method to pipelined designs that
have been optimized using conventional techniques.

1 Introduction

Low power has become a primary concern for the class of
portable computer and consumer electronic devices as well
as wireless communications and imaging systems. It has
thus become necessary to devel op estimation and optimiza-
tion techniques that help achieve low power in these sys-
tems. Thisis a chalenging task that requires power mod-
eling, estimation and minimization at al levels of design
abstraction from system and behavioral down to logic and
layout levels. This paper focuses on the behavioral level.
The behavioral synthesis process consists of three
phases: allocation, assignment and scheduling. These pro-
cesses determine how many instances of each resource are
needed (allocation), on what resources a computational op-
eration will be performed (assignment) and when it will be
executed (scheduling) [GaDu92] [Stok91] [DeMi94]. Tra
ditionally, behaviora synthesis attempts to minimize the
number of resources to perform a task in a given time or
minimize the execution time for a given set of resources.
With the increasing demand for low power circuits, it has
become necessary to modify the three phases of the behav-
ioral synthesis processto minimize the power dissipation.
A number of researches have addressed the problem of
minimizing power dissipation during module allocation and
binding [RaJh94], scheduling, register allocation and bind-
ing [RaJh94][ChPe954] and by trading off area for power
through pipelining or parallelization combined with voltage
scaling [GoOr94] [ChPo92]. The work of [ChPe95a] de-
scribes a single-commodity network flow solution for the
register assignment in a non-pipelined data path. Of par-
ticular relevance to the present work is however the work
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of [RaJh94] where the authors describe a heuristic mod-
ule binding scheme for low power based on iterative im-
provement of some initial solution. In contrast, we address
the optimization problem in a functionally pipelined data
path with conditional branching under arbitrary input statis-
tics and our solution technique is provably optimal with-
out increasing the controller and multiplexor cost or the
circuit delay. Our proposed method can also work with
most high-level synthesis algorithms (i.e., those which per-
form scheduling before resource allocation and binding) as
a post-processing stage for reducing power optimization af -
ter the optimizationsfor areaor speed have been completed.

The paper is organized as follows. Section 2 provides
some terminology and gives an overview of the proposed
algorithm. In Section 3, we describe our switching activ-
ity calculation procedure. Section 4 describes our power
model and the module binding problem. Section 5 caststhe
problem as amulti-commodity flow problem. Experimental
results are reported in Section 6 while further discussions,
future extensions and concluding remarks are given in Sec-
tion 7 and 8, respectively.

2 Terminology and Overview

This paper assumes a data flow graph (DFG) with condi-
tional branches and functional pipelining that has already
been scheduled with a scheduling algorithm (such as the
feasible-scheduling in Sehwa [PaPa88]). The scheduling al-
gorithm takes the data flow graph and the given latency (the
number of time steps between two consecutive initiations
of the data flow algorithm) and produces a feasible sched-
ule subject to constraints on the total number of available
modules (functional units) of each type.

The resulting information can be compactly represented
inabasic allocation table (AT). In thistable, rows represent
functional units (operators) and columns represent c-steps.
A c-step refers to a group of concurrent time steps across
different pipeline initiations. For example, if a data flow
graph is scheduled with alatency of 3, then c-step 1 in the
associated AT represents time steps 1 and 4 in the original
data flow graph while c-step 2 in that AT represents time
steps 2 and 5 in the DFG, etc. Furthermore, we annotate
each operation in the table with its initiation index (shown
as a superscript on each operation).

In the previous work [PaPa88], after scheduling and al-
location of the functionally pipelined data path, the main
optimization tasks on the data path are complete as the cir-
cuit speed and the hardware resources have aready been
determined. Although the binding of different operations
of the compatible type to a set of functional units (FU'’s)
is not yet determined, to afirst order, this binding does not



have much of an impact on the circuit speed or area (see
Section 7 for adetailed discussion). The binding however
has an important effect on the power dissipation as is ex-
plained next. Operations that are assigned to a FU in some
c-step may be permuted with other compatible operations
that are scheduled in the same c-step but are assigned to a
different FU. This permutation may have a big effect on
the power consumption in the functional units asit changes
the sequence of data values going through each functional
unit in the data path, thus influencing the switching activity
at the inputs of the functional unit.

In afunctionally pipelined data path, for a given latency
L, there are L c-steps in the allocation table. Operations
which share the same FU across consecutive c-steps form
adirected cycle of L vertices starting with some vertex in
c-step 1 and ending with the same vertex in c-step L + 1.
The total switching activity across all cycles can be deter-
mined once we select specific permutations of compatible
entriesin each c-step (cf. Section 3). The problem of min-
imizing total switching activity isthen equivalent to finding
the optimal permutation of the entriesin each column of the
allocation table. This problem can be formulated as a max-
cost multi-commodity network flow problem and solved op-
timally (cf. Section 5). Since latency of most problemsis
small even when the data flow graph has a large numbers
of levels !, exhaustive search is also possible. Experimen-
tally, we have observed that the ratio of power consumption
in a data path between the power-minimal binding and the
area-minimal binding is an average of 0.72.

Our method can be used in conjunction with all other
techniques aimed to optimize power consumption at the
system or behavioral levels of design. For example tech-
niques of Hyper-L P[ChP092] that permit areduction of V4
(such as pipelining or parallelism) may be augmented with
the technique developed in this paper to further reduce the
power consumption without increasing chip area caused by
additional multiplexors or increased controller complexity.

3 Switching Activity Calculation

Consider two operations that share some FU consecutively
(that is there is no other operation that uses this FU in be-
tween). Let the two ordered operandsfor the first operation
be z; and y; , the two ordered operands for the second oper-
ation be z» and y», and the outputs of the two operations be
z1 and z», respectively. The switching activity at the inputs
of the FU for executing these operationsis given by:

sw” (op1,0p2) = N foren (w1, 32) - H(wr,w2) +
(z1,22)EE
> fuweuye) Hyuy) (D)
(y1,y2)€F

where f,, ., (z1,z2) is the (word-level) joint probability
density function (pdf) [Papo91] of variables z; and x, and
H(x,x9) isthe Hamming distance of the binary represen-
tations of 2, and x5, sets £ and F arethe legal sets (do-
mains) of pairs (z1, z2) and (y1,y=), respectively.

In afunctionally pipelined data path, the same algorithm
(data flow graph) is initiated every L time steps. We can
associate with each different instance of the data flow graph

IThis is aso referred as turn around time or computation time of one
input sample for the data flow graph.

aninitiation index. Similarly, the arcsin the dataflow graph
can also be indexed by an integer tag associated with their
data flow instance. Note that the interna arcs of each data
flow graph can be converted into only functions of the pri-
mary inputs indexed by their initiation index.

Consider a data flow graph with 4 primary inputs a,b,c
and d. Suppose we want to calculate the switching ac-

tivity between two operations op@ and opé’“) that be-
long to pipeline initiations ¢ and ¢ + 2, respectively. (We
use superscript of an operation to denote its pipeline ini-
tiation index). Furthermore, assume that the two ordered
operands of op; are z; and y; while the two ordered
operands of op» are z» and y» and the outputs of the two
operations are z; and z», respectively. If a:1 =a+b y
=c¢—d; zy =a X b, y2=c/d, then x(z)— )+ b, y(l) =

ROROF a:;“) alit2) x pli+2) §z+2)_ (i4+2) /q(i+2)
To utilize equation ( 1), we must have the the joint pdf of
the corresponding random variables. Here we create vi’) =

a(z) + b and U z+2) =q(i1+2) % b(i+2); UY):Z/%Z)
=c ( ) _ 4 and uéz): éz+2):c(z+2)/d(i+2); w%i) - Zy) and
() _, (z+2)

If a Iarge number of primary input vectors, say N, is
glven then we can calculate the sequence of vector pairs
(vi’),vél)), i = 1,2,3,.... If we assume that the se-
quences of primary inputs < aV,a®, ..., a™ > < pM),
b2, .., b(N) > etc. areidentically distributed, then we
can show that each one of the the intermediate sequences

(1) e L () C I (L LA v

|s also |d1ent|cally éhstnbuted \?Ve c?':xn therefere conclude
that the time average can be used to approximate ensemble
average, and using the classical frequency interpretation of
probability, the joint pdf of vy and va, fy, v, (v1,v2) iSap-
proximated by calculating the frequency of occurrence of
each (v1,v2) pair in the sequence [Papo91]. Similarly, the
joint pdf of u; and us, fu,wu, (u1,us) andthejoint pdf of w,
and wa, fu,w, (w1, w2) iscaculated.

Consider two %quences of datavalues < v{" »{?, ..,
o™ > and < vl w8, . i) > applied to the inputs
of a Muz. Switching activity at the inputs of the Mux is
given by

Wo

Mum(

sw v1,v2) = sw(vi) + sw(v2)

_12Hw

Calculation of the switching activity at the inputs of the
Muz can be done concurrently with calculation of thejoint
paf fu, s (u1,us). Using above procedures, we only need
a single scan through the input vectors to obtain al of the
switching activities and joint pdf’s. The run time is thus
proportional to the number of the primary input vectors.

We need the sequence of input vectors for the above
switching activity calculation procedure to work. This
sequence may be a “short” (in hundreds of vectors) se-
guence of typical data stream obtained by statistical sam-
pling [BuNa93] or may bea*“long” (in tens of thousands of
vectors) obtained from a dynamic execution trace for apro-
gram/application data runs on the target chip. We make no
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Figure 1: The definition of AT and T'C. Note that the superscript
on each operation denotes the pipeline initiation index (or data
sample index)

assumption about the data statistics, hence, our technique
is applicable to both DSP chips where the data tends to
exhibit a pseudo-random white noise behavior and ASICs
or general-purpose processor chips where the data may ex-
hibit any probability distribution. Furthermore, we only as-
sume that the sequence of input vectorsis identically dis-
tributed. A similar assumption is commonly used in other
fields like digital modulation, communication system per-
formance evaluation and spectral analysis. Thisassumption
is empiricaly justified and allows one to use forma meth-
ods to analyze the input streams [Gall68] [ViOm79)].

4 Low Power Module Binding
4.1 Power dissipation of a functional unit

We assume that the dynamic power dissipation in a func-
tional unit when it executes op, after op; isgiven by asim-
ple equation as follows:

Py =05-a-V2-f- stU(opl,opg) (3)

where V' is the supply voltage, f is the clock frequency,

and the proportionality constant o (which represents the
physical capacitance of the functiona unit) is calculated
for each functional unit using circuit or gate level simula-
tion [Deng94][BuNa93] and curve fitting. Obvioudly this
proportionality constant depends on the module type, in-
put data width, technology and logic style used and in-
ternal module structure. Equation ( 3) is the basis of
all macro-modeling techniques for power estimation and
has been used in the works of [PoCh91][LaRa94][SvLi94]
[MeRa94]. Power estimation accuracies of 10-15% have
been reported for this model in [LaRa94] [ChPe95b).

4.2 A functionally pipelined data path

Data path is assumed to be functionally pipelined. If the
operationsthat share the same functional unit belongto dif-
ferent pipeline initiations, then the joint pdf’s of any two
random variables belonging to different pipeline initiations
will account for both spatial and temporal dependencies.

Definition 4.1 In Fig. 1, suppose we have a sequence of
operations [a?i=! — d?=! — RZ1 o B2 e (for
i = 1,2,...) that share the same functional unit. The time
span of this sequence is defined as 7'C', which is egual to
5 time steps. The alignment interval of this sequence, AT
is defined as the number of time steps required to allow the

entriesinthe AT
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Figure 3: Three whole chains of 9 time steps composed of 3 op-
timal sub-chains. When we consider FU sharing within one time
frame only, then the sharing solution within one frame (say frame
# 1) will be replicated across all frames.

execution of this sequence periodically. Inthisexample, A1
is 6, which is equal to two (time) frames. We use time frame
to refer to a sequence of ¢-steps of length L where L isthe
latency of the pipeline.

Lemma4.1 Consider a data flow graph which executes
with latency L for the functional pipeline. Suppose there
are k operations, opy, - .., opy that share some functional
unit consecutively, and that the time span (in number of time
steps) of the sequence of operationsis T'C'. To sustain this
sequence of operations on the FU in question periodically
across many frames in the pipeline, the alignment interval
AT for this set of k& operations must be an integer multiple
of L which is larger than or equal to T'C'. Proof follows
fromdefinition of AT

In the past, most of the work on functionally pipelined
data path has focused on the treatment of only a frame of
length L. For the problem of sharing a FU among many op-
erationswhich are scheduled in different c-steps, one should
however consider a sharing chain longer than L as two op-
erations which share aFU may belong to different c-stepsin
different time frames (cf. Fig. 3). One can easily show that
this kind of sharing resultsin little reduction in power con-
sumption, but creates large sharing chains and thus leads to
large controller complexity and multiplexor cost which tend
to offset power reduction due to sharing the FU across mul-
tiple frames. For this reason, we have decided to consider
FU sharing only for operationsin the same time frame.

4.3 The optimization problem

The problem is to find the power optimal way of binding
operationsto a set of compatible modules. Each binding so-
[ution correspondsto a permutation of the column entries of
the AT'. The solution also specifies multiple chains of oper-
ations where each chain denotes all operationsthat are con-
secutively executed on a functional unit. The total switch-
ing activity of the chain consists of the sum of switching
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Figure 5: Extended allocation table (EAT)

activities between two consecutive entries, plus the switch-
ing from the last entry of the row in the current frame to the
first entry of the samerow in the next frame of length L (see
Fig. 4). Thetota binding cost is the sum of the costs of all
chains. Because each operation is executed on exactly one
modul e, these chains must be node digjoint.

Definition 4.2 A basic allocation table consists of m rows
corresponding to m compatible modules and 1. columns
corresponding to L c-steps. An extended allocation table
(EAT) isobtained by concatenating the first column of the
basic allocation table after its rightmost column thus ob-
taining a new table with L. + 1 columns where the first and
thelast columns areidentical (cf. Fig. 5).

The optimization problem is then equivalent to finding
the optimal way to permute the elements in each column
(except the first and the last column in the EAT) for the
rows corresponding to the set of compatible modules and
minimizing the switching cost in all rows.

Definition 4.3 The requirement that the (i, 1)th entry of
the EAT be equal to the (i, L + 1)th entry of the table
for i = 1,...,m will be referred as the inter-frame bind-
ing constraint. This condition is imposed to gauranttee the
cyclic nature of the execution on the functionally pipelined
datapath without having to incur a large cost in terms of
controller complexity and size of the MUX’s.

5 Network Flow Formulation

In Section 4.2, we described optimization of the total
switching activity usingthe EAT'. Inthefollowing, we cast
the optimization problem as a Max-Cost Multi-Commodity
Flow problem. Condition that makes the original problem
hard isthat we must meet the inter-framebinding constraint.
Without this constraint, asimple Max-Cost Flow would give
the optimal solution [ChPe954d].

Suppose there are m rows and n. columns (n = L + 1)
inthe EAT. During scheduling and allocation of a func-
tionally pipelined data path, we use the minimum possible
number of modules and hence the feasible scheduling re-
sults in an allocation table which contains at least one full
column. Supposethiscolumnisat c-stepi inthe basic AT,
we can rotate columns of this table until the full column oc-
cupies the first position in the table. Then we construct the
E AT from the new AT by augmenting it with arightmost
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Figure 6: Rotating the basic AT and obtaining the new EAT

column which contains the entries of the first columnin the
new AT in the next frame of length L. Fig. 6 shows an ex-
ample of rotating abasic AT and obtaining the new EAT
wherefirst and last columns are full. If thefirst and the last
columnsin the EAT have empty entries, then the flow on
the network which will be constructed from this EAT will
no longer represent al of the feasible permutations. Thisis
the reason for the £ AT construction given above.

Let Ng=(V,E, $1,---,8m, t1,--,tm,C, K). Thereis
avertex v € V for each nonempty entry in the EAT (with
m rowsandn columns). We will refer to V' asinternal node
set of Ng. We add a column of vertices s;, i = 1,...,m
in front of the vertices corresponding to the operations in
the first column of the EAT'. We aso add a column of ver-
ticest;, i = 1,...,m after the vertices corresponding to the
operations in the last column of the EAT. Thereisan arc
connecting s; to the vertex corresponding to the (i, 1)¢h en-
try of the E AT and an arc connecting vertex corresponding
tothe (i, n)th entry of the EAT tovertext;,,Vi=1...m.
The vertices are then levelized (with s; vertices at layer 0
and t; vertices at layer L + 2). There are arcs from al of
the vertices in layer i to al of the verticesin layer i + 1,
Vi=1...n— 1. Besides, there are arcs from al of the
vertices at layer i — 1 to al of the vertices at layer 7 + 1
if there exists some empty entry in column 7 of the EAT,
V i =1...n. If there are empty entries in both columns
i — 1 andiinthe EAT, we add arcs from all vertices at
layer i — 2 to verticesat layer i + 1 in Ng, and soon.

The capacity function K is 1 for every aace € E.
The cost of al arcs incident on s; or ¢; is 0. All other
internal arcs have cost C'(u,v) > 0 which is equal to H
— | M x swPY (op,,op,)|, where M is used to scae the
switching activity into an integer and H is a sufficiently
large integer that makes the resulting costs for all of in-
ternal arcs satisfy the triangular inequality. 2 Let 3(v)
be the maximum (minimum) of | M x sw’Y (opy, op,)|
over adl u, v. H is any integer that satisfies H > 203
— ~. Thisis needed to ensure that the network flow al-
gorithm covers all of the verticesin Ng. Fig. 7 shows
the network constructed from the new EAT shown in
Fig. 6. The demand function D is defined as follows:
Dl(U) =0, Yo €V & Vi= 1,...,m.,; DZ(S]) =

-1 ifi=j 41 ifi=g .

0 otherwise Pilti) = 0 otherwise - TS
function captures the inter-frame binding constraint.

Definition 5.1 [Leng90] Min-Cost Multi-Commodity Flow:

e Instances. A directed graph G=(V,E), edge capacity
K(e) € R, and edge costs C(e) € R for e € FE,
demands D;(v) € R for all verticesv € V and for m
commoditiesi =1, ..., m.

2That is, C(i,j) > 0,V (i,4) and C(i,)+C(j, k) > C(i, k), ¥
internal arcs (¢, 7),(j, k) and (3, k) (if the arcs exist).




Figure 7: Network Ny construct from the new EAT shown in
Fig. 6. Dark edges represent edges from level i to i+ 1 whilelight
edges represent edges from level itoj > i+ 1

e Configurations: All sequences of edge labeling
fi E= Ry i=1,...,m

e Solutions: All sequences of edge labeling that satisfy
the following constraints:
1. Capacity Constraints. For all e € E,
ST file) < K(e) _
2. Flow-Conservation Constraints: Definethe net
flow of commodity i into vertex v to be
fl(v) = Ze: —v fz(e) - Ze: —w fz(e)

Then,foralli=1,...,mandv € V, we have

fi(v) = D;(v)
o Minimize: C()= 3", 5(Cle) x =7, file))

In [Stok91], a multi-commodity flow formulation of the
register alocation problem in a cyclic data flow graph is
proposed. We however proposed a multi-commodity flow
formulation of the module allocation and binding in afunc-
tionally pipelined data flow graph. In addition to this, our
network structure is quite different from that of [Stok91]
due to empty entries that we have in the E AT which leads
to cross-over edges (arcs that connect non-adjacent layers
in the network). In [Stok91], the network has a node for
each register at each time step and uses a dummy node for
every time step boundary even when no variable has to be
stored there. We could not minimize the total switching ac-
tivity by simply replacing the cost on each arc in their net-
work by the actual switching activity. Thereasonisthat the
switching activity to and from the dummy nodes could not
be defined and thereis no way to make the resulting network
flow represent the total switching activity. In our network,
we do not have any dummy nodes and each arc hasits own
(possibly) distinct cost. Eliminating the dummy nodes how-
ever createsthe situation that someinternal node may not be
covered in the max-cost multi-commodity flow. We there-
fore enforce the triangular inequality on the costs of all arcs
(and thisis always doable) to ensure that the max-cost flow
coversal of theinternal vertices. This enforcement has no
impact on the optimality of our solution as will be proved
in Theorem 5.1.

Definition 5.2 In the max-cost multi-commodity-flow prob-
lem, we maximize the total cost of flow C'( f) in the network
while satisfying constraints 1 and 2 of definition 5.1.

The extraverticess; and ¢;,1 =1, ... ,m, will serve as
the sources and sinks of commodity 7, respectively. We ship

[[ Module [ o 17
add16 1891
multl6 400.64

Mux16: 2to 1 3.96
Mux16: 4to1 | 11.16

Table 1: Different o's obtained from simulation

from s; one unit of ¢ and sink one unit of 7 at sink ¢;. To en-
sure that the flow paths are node-digjoint, we apply a node
splitting technique on Ng. After applying the node split-
ting on theinternal node set of Ny, weobtain Nj,=(V', E',
51,82,y 8ms b1, b, .., tm, C, K). Wewill referto V' as
the internal node set of Ny,

The flow with value m on the new network Ny, givesm
node digjoint paths; each path starting from source s; and
ending at sink ¢;, for al 7. We conduct the max-cost m-
commodity flow on N, which minimizes the total switch-
ing activity while satisfying the inter-frame binding con-
straint. The network formul ation providesthe exact solution
to the original problem as shown by the following theorem.

Theorem 5.1 A max-cost multi-commodity flow of value m
on N}, gives the minimum total power consumption for the
m compatible modules in the circuit while satisfying the
inter-frame binding constraint of Definition 4.3.

Although our network is constructed differently from
[Stok91], a similar method for solving the remaining step
can be used after the multi-commaodity network flow prob-
lem is trandated into a LP. Since we are considering a
functionally pipelined data path where the latencies of most
pipeline designs are quite small, exhaustive search on the
E AT can dso give the optimal solution while meeting the
inter-frame binding constraint in a very short time.

6 Experimental Results

In Table 1, we show values of « parameter for 16-bit adder,
multiplier,2to 1 Muz and4to 1 Muz. Thisisall the data
we need since our benchmark circuits have adatapath width
of 16-bitsand alatency of lessthan 4. Table 2 gives Py,
the total power dissipation in each circuit after scheduling,
alocation and binding. Values of « in equation ( 3) arein
unitrs of pF’, while values of sw’Y (op;, op-) are obtained
from the binding solution as detailed in Section 4. Table
3 gives P/, ., which is Pyotq; + Paruars; Again a for the
Muzis rea(ﬁrom Table 1 while switching activity for Mux
is calculated from the binding solution.

We performed feasible scheduling and our new method
on various other benchmarks including an example taken
from [PaPa38], AR Filter, Elliptical Wave Filter[ GeEI92],
2nd order Adaptive Transversal Filter [Hayk91], Robotic
Arm Controller, Differential Equation Solver [Cawo91],
and Discrete Cosine Transform. Power dissipation results
are given in Tables 2 and 3. Latency used in each bench-
mark is shown in the 2nd column of the tables. In our ex-
periment, we also generate all possible minimal-area bind-
ings from the same basic AT for each DFG using feasible
scheduling algorithm [PaPa88]. From these tables, we can
see that the ratios of P;,;,; for minimum-power binding to
maximum-power and average-power bindings are 56.88%
and 70.64%, respectively. Even after including the power



Circuit | L. | max.pw | avg.pw | minpw | =% ZLTIZ
% %

Ex#1 3 2.09e4 173ed | 1.24e4 59.21 | 7157
ARF 3 1.06e6 7.76e5 | 5.04e5 47.60 | 65.01
EWF 3 | 53265 4.00e5 | 3.03e5 56.86 | 75.64
ATF2 2 | 3.10e5 2.61e5 | 1.7565 56.55 | 67.13
Robo 2 1.21e6 1.07e6 | 553e5 4549 | 51.40
DIfE 2 | 3.16e5 2.68e5 | 2.04e5 64.68 | 76.31
FDCT 3 1.01e6 8.22e5 | 6.2365 61.15 | 75.77
Avg. - - - - 56.88 | 70.64

Table 2: Piota; (power dissipations (uW) in FU's), where L is
the latency of the functional pipeline

Circuit L. | maxpw | avgpw | minpw | 2% %
% %

Ex#1 3 | 2.65¢4 2.29ed T 1.79e4 67.79 | 78.49
ARF 3 1.07e6 7.87¢5 | 5.15e5 4812 | 65.49
EWF 3 | 54765 4.15e5 | 3.17e5 58.04 | 76.52
ATF2 2 | 3.14e5 2.65e5 | 1.79¢5 57.08 | 67.61
Robo 2 1.22e6 1.08e6 | 5.65€5 46.05 | 51,97
DifE 2 | 3195 2.71e5 | 20765 | 64.96 | 76,53
FDCT 3 | 1.03e6 8.34e5 | 6.35¢5 | 6161 | 76.13
Average - - - - 58.97 | 72.07

Table 3: P}, (power dissipations (uW) in FU's + Mux's)

dissipation due to Muz's (which our algorithm does not
directly attempt to minimize), we obtained power saving ra-
tios of 58.97% and 72.07%, respectively.

7 Discussion

The main ideais to permute the compatibl e operations dur-
ing the module binding step so as to minimize the switching
activity at theinputs of the functional unitsin afunctionally
pipelined design. This permutation takes place over atime
frame of L c-steps, and therefore, the number of multiplex-
ors doesn’t vary by much; and in any case, the power dissi-
pationin Mux’sis significantly lower than that in functional
units as seen by the relative magnitude of « parametersin
Table 1. Hence, we can safely assume that Py, will vary
minimally as a function of the binding solutions and when
it does, it causes little change iN Pyytq;- Thisisalso seenin

Tables 2 and 3, where fotal isonly 1.072 on average.

The number of reglsters (obtained by performing reg-
ister allocation on a functionally pipelined data path by a
program such as REAL [KuAl87]) will also not change as
the life time of data values in the data flow graph will not
change after the permutation (see Section 4.3). The cir-
cuit speed will not change as we only permute compeatible
operations in the same c-step (same column in the EAT)
and the number of c-stepsis not altered. The only impact
of this permutation is to vary the interconnect structure of
the design in some undetermined fashion (for worse or for
better).

Extensions to handle multicycle operations, conditional
branches and register binding can be found in [ChPe95h].

8 Conclusion

This paper presented a new method to cal culate the switch-
ing activity of modules in a functionally pipelined data
path with conditional branches based on the assumption

that alarge number of primary input data vectors are given.
The power consumption model for afunctionally pipelined
data path was presented and its properties were explored.
The power optimization problem was then formulated as a
multi-commaodity flow problem and solved optimally with-
out increasing the area or delay of the data path or the con-
troller complexity compared to the pipelined data path de-
sign before using our new method. Both techniques cover
a general class of applications and are practical for larger
problem sizes with complicated control flow. Experimental
results demonstrate that the above methods can reduce the
power consumption substantially.
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