
Abstract--This paper presents a solution to the problem of per-
formance-driven buffered routing tree generation for VLSI cir-
cuits. Using a novel bottom-up construction algorithm and a local
neighborhood search strategy, our polynomial time algorithm
finds the optimum solution in an exponential-size solution sub-
space. The final output is a buffered rectilinear Steiner routing
tree that connects the driver of a net to its sink nodes. The two
variants of the problem, i.e., maximizing the required time at the
driver subject to a maximum total area constraint and minimizing
the total area subject to a minimum required time at the driver
constraint, are handled by propagating three-dimensional solution
curves during the construction phase. Experimental results dem-
onstrate the effectiveness of our algorithm compared to other tech-
niques.

I. INTRODUCTION

The consideration of the effects of interconnect delay and
area has become a crucial factor in the design of ultra-dense,
high speed integrated circuits. In an industry where higher
performance design brings substantial advantage over the
competition, more and more time and resources are being spent
on making faster chips through careful optimization of many
design aspects, especially interconnect planning and
optimization. In particular, the problem of constructing a
buffered routing tree has emerged as a critical design problem.

The first part of this paper presents a new algorithm
FANROUT that simultaneously solves the fanout optimization
and routing tree construction problems. Both of these design
tasks are difficult optimization problems and have considerable
impact on the circuit delay and area. Fanout optimization is
effective because it boosts the transmitted signal via the
insertion of sized buffers whereas performance-driven routing
generation is effective because it generates interconnect
structures that deliver the signal to critical sinks faster. In
conventional design flows, these two tasks are often performed
in a sequential manner, i.e., a solution made by one
optimization step becomes the input to the other. By solving the
unified problem, i.e., generating a buffered routing tree for a set
of sinks and a driver, the intrinsic interactions between the
design steps are captured and higher quality results are
produced by a systematic search in a much larger solution

space. This type of solution technique is referred to as a
unification-based approach in [Pe98].

Similar to many other dynamic-programming based
algorithms, FANROUT is only optimal with respect to a given
order on its input objects (in this case the net sinks). This
shortcoming is addressed in this paper by introducing a new
technique called local order-perturbation which is used to
enhance FANROUT. The resulting algorithm, MERLIN, is less
sensitive to the input sink order with the cost of having a
reasonably more complex computation.

The core optimization engine of MERLIN, called
BUBBLE_CONSTRUCT, optimally solves the simultaneous
routing and buffer insertion problem for a local neighborhood
around an initial sink order. It recognizes the similar sub-
solutions among the members of the neighborhood in order to
maintain the polynomial complexity of the algorithm. Although
a complete buffered routing structure is not generated for every
member of the neighborhood, the sink order that results in the
best buffered routing structure is automatically chosen from
among the members of the neighborhood. The outer
optimization part of MERLIN (see Fig. 1) is an iterative
technique based on a local neighborhood search strategy
[Ya92].

Both FANROUT and BUBBLE_CONSTRUCT generate
and propagate three-dimensional required time, load, and total
area solution curves in a bottom-up fashion. In the three-
dimensional solution curves, the load and the required time
dimensions ensure the validity of the dynamic-programming
principle [Be57] for solving the problem whereas the total area
allows the user to solve the problem for either one of the
following two variants: I) minimizing the required time subject
to an area constraint or II) minimizing the area subject to a
required time constraint.

The technique presented in this paper1offers the following
advantages compared to prior methods:
• full integration of fanout optimization and routing tree gen-

eration using a dynamic-programming method,
• employment of a novel local order-perturbation technique
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that enables the optimization engine to find (in polynomial
time) the best buffered routing tree structure in an exponen-
tial-size sink order neighborhood of the initial order,

• propagation of three-dimensional solution curves that
allows the algorithm to trade-off required time with total
area and vice versa,

• definition and use of Cα-Tree and *P-Tree structures that
expand the power of the optimization algorithms, resulting
in highly optimized solutions,

• employment of the local neighborhood search strategy
along with the core optimization algorithm to find the best
solution in the neighborhood of the input sink. The resulting
method is less sensitive to the initial order.

The remainder of the paper is organized as follows. In
section II, prior work is given. Section III presents the problem
formulation. Sections IV and V introduce FANROUT and the
local order-perturbation technique. In section VI, MERLIN and
its constituting elements are presented and discussed. Finally,
sections VII and VIII give the experimental results and the
concluding remarks, respectively.

II. PRIOR WORK

A. Fanout Optimization

Fanout optimization, an operation performed in the logic
domain, addresses the problem of distributing an electrical
signal to a set of sinks with known loads and required times so
as to maximize the required time at the signal driver (root of the
net). Interconnect delays are either ignored or loosely modeled
in this operation because the sink locations are not known at
this stage. The general form of this problem is NP-hard [To90];
however, its restriction to some special families of topologies is
known to have polynomial complexity.

Among many fanout optimization techniques - e.g., [Go76],
[BCD89], [SS90], and [VP93] - the one proposed by [To90] has
been proven to be very effective. That algorithm introduces a
special class of tree topologies, called LT-Tree, for which the
fanout problem is solved optimally with respect to a given
order of sinks using dynamic programming. An LT-Tree of
type-I is a tree that permits at most one internal node among the
immediate children of its internal nodes and also does not allow
any left sibling for the internal nodes (see Fig. 2).

Touati proposed a dynamic-programming based algorithm

for the fanout optimization problem where the buffer structure
is restricted to the LT-Tree topology and sinks with larger
required times are placed farther from the root of the tree. The
algorithm first sorts the sinks in their non-decreasing required
time order and then, starting from the least critical sink, it
enumerates all the left-most grouping of the sinks to be driven
by a buffer. Finally for each grouping, it enumerates all
possible ways of adding either zero or one buffer to drive the
leftmost subset of the sinks. Touati gives sufficient conditions
for the LT-Tree construction algorithm LTTREE to be optimal.
For more details, see [To90].

Lemma 1: LT-Tree construction algorithm shows O(n2) com-
plexity where n is the number of sink nodes [To90].

B. Routing Tree Construction

Performance-driven interconnect design, an operation
performed in the physical domain, addresses the problem of
connecting a signal driver to a set of sinks with known loads,
required times and locations so as to maximize the required
time at the driver. [CHKM96] gives a comprehensive review of
the algorithms for solving this problem.

The inherent complexity of the problem has forced the
researchers to focus on heuristic solutions and/or impose
constraints on the structure of resulting interconnect. Among
the recent works in this area, the algorithm presented by Lillis
et al. in [LCLH96] has been shown to be quite effective. The
authors proposed the Permutation-Constrained Routing Tree or
P-Tree structure and solved the above problem with respect to
the P-Tree structure; see Fig. 3 for an example. This approach
consists of two major phases: I) heuristically finding a proper
order for the sinks and II) generating the routing structure based
on the order. The second phase of the algorithm is referred to as
PTREE throughout this paper. Given an order for the sink
nodes, PTREE finds the optimal embedding of the net into the

Hanan grid2 using a dynamic-programming approach. In
PTREE, the intermediate routing solutions are stored in the
form of two dimensional, non-dominated solution curves of

total area versus required time for every Hanan point3.
Lemma 2: For a given order on the sinks and with the restric-

tion that the Steiner points lie on the Hanan points, PTREE
computes the set of all rectilinear Steiner trees with non-domi-
nated required time and total capacitance [LCLH96].

Lemma 3: If the individual capacitive values of wires and
gate inputs are polynomially bounded integers or can be
mapped to such with sufficient precision, then PTREE has
O(n5q) pseudo-polynomial complexity (see [GJ79]), where n is

Fig. 2. An LT-Tree Type-I for a net with 9 sinks.
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the number of sink nodes and q is the maximum number of dis-
tinct load values [LCLH96].

Corollory 1: If the PTREE function is called with α sinks
and uses k candidate locations instead of Hanan points, its
complexity is O(kα3q).

C. Other Related Works

Lukas van Ginneken in [Gi90] proposed an algorithm to
insert buffers on appropriate internal nodes of a given routing
tree in order to maximize the required time at the driver. The
application of van Ginneken’s method after constructing the
routing tree is usually more effective than applying fanout
optimization followed by routing tree generation [SLP98].

The first attempts to combine fanout optimization and
routing generation were presented in [OC96a] and [LCL96]. In
[OC96a], the authors proposed a combination of A-Tree
routing generation [CLZ93] and van Ginneken’s buffer
insertion [Gi90] methods. They later extended the work in
[OC96b] to include wire sizing as well. Their algorithm takes
the placement information of the source and the sinks in
addition to the signal required times and heuristically generates
a buffered routing structure that maximizes the required time at
the source of the net. In these works, the subtrees are combined
using a weighted addition function with a user-specified
parameter to heuristically decide which two subtrees are to be
merged. The algorithms in [OC96a] and [OC96b] have no
guarantee of optimality. In [LCL96], Lillis et al. introduced a
new version of PTREE which systematically solves the
integrated problem of buffering and routing. That algorithm,
called B_PTREE in the rest of this paper, uses a dynamic-
programming formulation and generates three dimensional
solution curves. Similar to PTREE, B_PTREE is optimal only
with respect to a given sink order.

III. PROBLEM FORMULATION

Given a net with n+1 pins, the problem is to drive the set of
sink pins, S={s1 , s2 , … , sn}, by the driver of the net s via a
buffered routing structure that satisfies a combination of the
maximum required time at the root and the minimum total area
constraints. The area constraint can be stated in the form of
total buffer area or total capacitance; the total capacitance is
considered as a metric indicating the total buffer and
interconnect area. More specifically, the problem may be stated
in two ways: I) maximize the required time subject to an area
constraint and II) minimize the area subject to a required time
constraint.

The following information is provided as input:
1. The position of the source s=(sx,sy) where sx and sy are the

horizontal and vertical coordinates of s.
2. The properties of each sink node si=(si

x,si
y,si

l,si
r) for 1≤i≤n

where si
x and si

y are the horizontal and vertical coordinates,
si

l is the capacitive load, and si
r is the signal required time

of node si.

3. A library of buffers B={b1 , b2 , … , bm} containing m
buffers with different strengths.

4. A set of k candidate locations for placing the buffers
P={ p1 , p2 , … , pk }.

5. A linear ordering of the sinks Π=( s1 , s2 , … , sn ).
There are many candidates for P; it can be the set of Hanan

points [Ha66] (similar to what [LCLH96] has proposed) or a set
of reserved buffer locations (identified after performing the
initial placement step). Our experiments, in agreement with a
conclusion made in [LCLH96], demonstrate that neither one of
the above choices would significantly alter the final results as
long the following two conditions are satisfied: I) k is large
enough with respect to n and II) the candidate locations are
distributed within the bounding box of the net with higher
concentration in regions with a high density of sink pins.

IV. ORDER-DEPENDENT HIERARCHICAL BUFFERED ROUTING
TREE CONSTRUCTION

This section presents FANROUT, an algorithm for solving
the problem of simultaneous fanout optimization and routing
generation. The resulting buffered routing tree contains a
logical hierarchy that captures the hierarchical sink groups used
during the construction. The hierarchy tree has a certain
structure, which is formally defined below.

A. Cα-Trees

A desired property for a hierarchical algorithm is
independence from any specific class of hierarchy graph
structures. However, in many cases the complexity is so high
that there is no choice but to restrict the solution space to a
family of hierarchies. In this case, the problem is to identify and
construct a set of structures that are consistent with the nature
of the problem, both of which require a reasonable effort.

In this sub-section, a new class of structures, referred to as
Cα-Trees (read as si-alpha trees), used to capture the hierarchy
in the buffered routing construction algorithm is introduced.

Definition 1: A tree is a degree-restricted alphabetic buffer
chain tree (Cα-Tree) for a given order of sinks Π=(s1,s2,…,sn)

if and only if:
• every internal node has at most one internal node among its

immediate children,
• there is a depth-first traversal that visits the sinks in the

(s1,s2,…,sn) order,
• the maximum branching factor is α.

Fig. 4. A valid C4-Tree for (s1,s2,…,s9).
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Fig. 4 illustrates an example for C4-Trees. In this figure the
maximum branching factor is four and every internal node
(shown by white circles) is connected to at most one other
internal node while preserving the given order.

Lemma 4: In a Cα-Tree, the internal nodes construct a
unique path (chain).

Proof: This is an immediate conclusion from Definition 1.
� 

In this application, every internal node is a buffer, and in the
resulting buffer chain, a more critical sink (considering both
timing and physical information) tends to be connected closer
(in terms of the number of intermediate stages) to the root.

Parameter α represents the maximum number of fanouts for
every buffer or branching point. Our experience shows that
even when no restriction is imposed on the maximum number
of fanouts for each buffer, the maximum fanout count in the
optimal buffer tree solution is usually bounded by a small
number. That value is generally dependent on the
characteristics of the cells (sink nodes) and the buffer library
and not the problem size (number of sinks). Note that
eliminating the parameter α from the definition does not cause
the main structure and properties of Cα-Trees to breakdown.
The only disadvantage is the longer (still polynomial) runtime
needed for optimally constructing such a structure.

Although there are a large number of Cα-Trees for every
sink order, the optimal Cα-Tree can be found in polynomial
time using dynamic programming. Briefly, the optimal Cα-Tree
for an ordered set of sinks is generated by starting from small
L’s and combining every L neighboring sinks, until L=n. At
every step, the best solutions for the sub-groups with length l
(<L) are available - due to the bottom-up flow of the method -
and are used to generate the solution for the length L sub-
problem, see Fig. 5. Note that the final Cα-Tree structure
satisfies the given sink order. This algorithm will be referred to
as CαTREE in the rest of this paper.

Lemma 5: LT-Tree Type-I [To90] is a special case of Cα-
Tree where and no internal node has a left sibling.

Proof: The proof directly follows the definitions of LT-
Tree Type-I and Cα-Tree. �

Note Cα-Trees can be relaxed with respect to the first
property given in Definition 1, i.e., each internal node may
have more than one internal node (but bounded by a certain
parameter) among its immediate children. Although the optimal
structure can still be achieved using dynamic programming, the
complexity of the corresponding optimal construction
algorithm is significantly higher.

B. FANROUT

FANROUT incorporates the Cα-Tree and P-Tree
construction techniques into a unified framework such that the
resulting routing structure is both Cα-Tree, in terms of the
overall topology, and a P-Tree, in terms of the detailed physical

structure. FANROUT requires an ordering of the sinks and
guarantees the optimality of the solution with respect to that
ordering only. In the following paragraphs, the details of
FANROUT are given.

FANROUT (see Fig. 6) is called with a set of parameters: s,
P, B, and Π as defined in section III. It operates on three
dimensional solution curves Γ(L, R, p) (see Fig. 6), each
associated with a candidate buffer location p and a sub-group of
sinks identified by variables L and R. L is the length of the sub-
group and R indicates the position of the rightmost sink of the
sub-group in Π . For example, if Π=(s1, s2, ..., s9), Γ(3, 7, pi)

stores all the buffered routing structures that connect pi to {s5,

s6, s7}.
In FANROUT, only non-inferior solutions - as defined below

- are stored in the solution curves.
Definition 2: Suppose σ1 and σ2 are two different buffered

routing structures that connect a candidate location to set of
sinks. σ2 is said to be inferior to σ1, iff load(σ1)≤load(σ2), req-

Time(σ2)≤reqTime(σ1), and area(σ1)≤area(σ2).

As shown in Fig. 6, FANROUT consists of three main
sections: Initialization, Construction, and Extraction. The
Initialization section deals with creating and initializing
solution curves corresponding to sub-problems consisting of
only one sink, i.e., L=1. FANROUT is a dynamic-programming
based technique and at each step it generates new curves by

Fig. 5. Optimal Cα-Tree construction.
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algorithm FANROUT( s, P, B, Π=(s1 , s2, ... , sn) )

INITIALIZATION
1. for r = n downto 1
2. foreach p∈ P
3. set Γ( 1, r, p ) = {The set of all non-inferior paths extended

from p to sr and driven with or without a buffer}

CONSTRUCTION
4. for L = 2 to n
5. for R = n downto L
6. for l = max(1, L-α+1) to L
7. for r = R downto R-l+1
8. foreach p∈ P
9. foreach γ ∈Γ ( l , r , p )
10. set ∆ = PTREE(P, {sR-L+1 , ... , sr-l , γ , sr+1 , ... , sR})
11. foreach δ ∈∆
12. set p′  = Location of the root of δ
13. foreach b ∈ B
14. set δ′ = A buffered routing structure created by

driving δ by b located at p′
15. set < c, t, a > to the input capacitance, the input

required time and the area of δ′, respectively
16. if < c, t, a > is a non-inferior solution in Γ(L , R , p′)
17. insert < c, t, a > in Γ(L , R , p′)

EXTRACTION
18. find the solution ρ in Γ( n , n , s ) which best satisfies the constraints
19. retrieve the buffered routing tree structure ℜ of ρ by following the

pointers stored during the generation of the solution curves
20. return ℜ

Fig. 6: Pseudo-code for FANROUT.

Fig. 6. A three-dimensional solution curve.
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combining and manipulating already available curves for
smaller sub-problems. In the Construction section, this bottom-
up step is repeated until the solution curve for the main problem
is found. Finally in the Extraction section, from among the
solutions of the final Γ, the solution with the best trade-off
between required-time and total area is chosen. At the end, the
corresponding structure is generated by tracing back the
pointers of the constituting sub-problems. The following is a
detailed description of the algorithm.

1) Initialization: Before performing any operation, a set of
solution curves are initialized in lines 1 through 3. In this part
of FANROUT, sub-groups of length 1 are considered and the
corresponding solution curves for every candidate buffer
location and sink sub-group are initialized. These initial
solutions consist of the minimum Manhattan distance paths
from the candidate location p to the sink sr . At the root of these
paths, both options of inserting and not inserting a buffer are
examined.

2) Construction: FANROUT starts by working on the groups
consisting of only one sink, i.e., L=1, and proceeds until L=n.
At each step, it constructs buffered routing structures that
connect L neighboring sinks within Π. Line 4 enumerates all the
possible values for L, and line 5 detects every legal sub-group
Ω of Π that contains L sinks.

Every sub-group of sinks can potentially constitute an
internal node in the final Cα-Tree structure; therefore,
according to Definition 1, it can contain at most one other
internal node (smaller sub-group) as its immediate child.
During the process of grouping a set of L sinks, the algorithm
considers cases in which a subset of sinks (call it ω) are already
grouped; see Fig. 7 and lines 6 and 7 in the pseudo-code. That
way, the Cα-Tree structure which captures the hierarchy of
design is generated and maintained. In this context, the
hierarchy implies that during the generation of a buffered
routing structure, all the sinks are not processed at once;
instead, a subset of sinks are combined together at any time in
agreement with the Cα-Tree structure. Later, each combination
is treated as one node in the next level of the hierarchy.

In line 6, the term max(1,L-α-1) ensures that Ω does not
drive more than α other internal and sink nodes, following the
third property of a Cα-Tree in Definition 1. In line 7, the term R
to R-l ′+1 ensures that ω remains within Ω .

After line 7, it is known which sub-group ω is to be
combined with which sink node(s) to generate the new sub-
group Ω. However, there are many solutions associated with
each ω. In fact, for every buffer candidate location p and sub-
group ω there is a solution curve that is used by the merge
operation; see Fig. 8. Line 8 enumerates all the candidate
points, and line 9 retrieves the non-inferior solutions γ from a

solution curve of p which corresponds to ω.

In line 10, PTREE is called on the root of γ 4 and the
remaining sinks in Ω in order to combine them by routing
structures whose roots can be located at any candidate location.
PTREE returns a collection of solution curves and stores them
in ∆. Then, for every buffered routing structure in ∆, all the
buffers in the library are used to drive its root, and the non-
inferior combinations are stored in the corresponding solution
curves; see lines 11 through 17. Along with every solution, a set
of pointers is stored to be used during the extraction phase. The
operations performed in lines 11 through 17 can be performed
internally by a modified PTREE with no change in its worst
case complexity. Hence, the complexity of those steps is not
considered during the complexity analysis of FANROUT.

3) Extraction: The above bottom-up construction process
continues until the solution curve for the whole problem, i.e.,
L=n, is generated. At that point, the solutions are stored in Γ(n,
n, s) because they are rooted at s and are connected to all sinks.
From among all the non-inferior solutions of Γ(n, n, s), the one
which best satisfies the input constraints is chosen. The
buffered routing structure corresponding to that solution is
retrieved in lines 18 and 19 by following the stored pointers.
Finally, in line 20 the best buffered routing structure is returned.

C. Quality and Complexity Analysis

FANROUT is an optimal polynomial algorithm based on a
set of assumptions as explained previously and in the following
lemmas and theorems.

Theorem 1: The solution space of FANROUT is the product
of those of PTREE and CαTREE.

Proof: Analysis of the pseudo-code shows any P-Tree
structure whose buffers directly drive at most one other buffer
is considered by FANROUT. Also, any Cα-Tree whose buffers’
output nets are implemented using PTREE is considered by
FANROUT. �

Lemma 6: The following statements are true for any routing
structure ℜ that connects a source to a set of sinks:
I) By decreasing the load of any sink, the capacitance

observed at the root of ℜ does not increase.
II) By increasing the required time of any sink, the required

time at the root of ℜ does not decrease.

Fig. 7. An illustration for the grouping steps.
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Proof: The above two statements are proven using simple
circuit and graph theory rules. �

Lemma 7: PTREE is monotone with respect to the load and
the required time of the sinks.

Proof: This lemma is proven by induction and Lemma 6.�
Lemma 8: The use of the prune operation by FANROUT

does not result in the loss of any non-inferior solution.
Proof: Assume that σ2 is inferior with respect to σ1. By

induction, if σ2 is the whole net and its input is directly

connected to the net driver, the required time does not decrease
and the load does not increase by replacing σ2 with σ1. If σ2 is
a solution to a sub-problem, its input is driven by another
internal node, called g. Due to the monotonic behavior of
PTREE (c.f. Lemma 7), at g the required time and the input
load of the implementation, including σ2, is guaranteed to be no
better than those of the implementation containing σ1. A similar
argument is then valid for g and the rest of the internal nodes
down to the leaf nodes. �

Theorem 2: FANROUT is an optimal algorithm.
Proof: An examination of the dynamic-programming

structure of FANROUT shows that if no pruning is performed
on the solution curves, all the possible solutions will be
considered. Therefore, to prove the optimality of the algorithm
it is enough to prove that for an optimal solution, replacing a
non-inferior solution with an inferior solution cannot improve
the whole implementation; this, however, was proven in
Lemma 8. �

Lemma 9: Depending on what metric is used for measuring
the area, the number of solutions in a solution curve is bounded
either polynomially or pseudo-polynomially.

Proof: The load of any solution is the input capacitance of
the driving buffer. However, the number of distinct input
capacitances of the buffers is bounded by the total number of
available buffers in the library m.

In every solution the maximum number of inserted buffers is
bounded by O(n). Therefore, the number of distinct buffer areas
is also bounded by O(n) since the area of every buffer is smaller
than a constant number, and the smallest non-zero difference
between the area of every two solutions is always greater than a
constant number. Both these limits are determined by the
library and do not depend on the size of the problem.

If the total buffer area is the metric used for measuring the
area, the number of non-inferior solutions in a solution curve is
bounded by O(mn). The reason is that the prune operation
keeps at most one solution per each distinct area and input load
values.

The bound becomes pseudo-polynomial when the total
capacitance is the metric used for measuring the area. In that
case we assume that the number of distinct capacitive loads
(called q) is polynomially bounded and is larger than the
number of inserted buffers. As a result the number of non-
inferior solutions is pseudo-polynomially bounded by O(mq).�

For the sake of simplicity, in the following theorem it is
assumed that the total buffer area is used as the metric to
measure the area cost of a solution.

Theorem 3: FANROUT has O(kmn3) memory complexity,
where k, m, and n are numbers of candidate locations, buffers,

and sinks, respectively.
Proof: There are k candidate locations, and for each

combination of L and R (a total of n(n+1)/2 combinations),
there is a solution curve. Each solution curve stores O(mn)
solutions, and as a result, the claim is proven. �

Theorem 4: FANROUT has O(mqk2α5n3) runtime
complexity, where k, m, and n are the numbers of candidate
locations, buffers, and sinks, respectively. Also, α is the
maximum branching factor in Cα-Tree, and q is a polynomially
bounded number of distinct capacitive loads.

Proof: In Fig. 6, the number of iterations performed in

lines 4 through 7 is O(α2n2). Lines 8 and 9 introduce O(k) and
O(mn) complexity, respectively. Calling PTREE in line 10 costs

O(kα3q), because the number of sinks provided to PTREE is
always less than α ; see Corollory 1. The complexity of
FANROUT is determined by considering all of the above
factors. �

V. LOCAL ORDER-PERTURBATION

This section presents a new technique that can enhance any
order-dependent dynamic-programming based algorithm - such
as PTREE, CαTREE, and FANROUT - to generate optimal
solutions with respect to a neighborhood of solutions.

Definition 3: An order Π on n sinks is a one-to-one function
defined as Π:{1, 2, … , n}→ {1, 2, … , n}, and j=Π(i) is called
the position of si in Π. Also, Π-1 is the inverse function of Π,

and i=Π-1(j) gives the sink’s index of the jth element in Π.
Example 1: Π= { (1→4) , (2→6) , (3→1) , (4→5) , (5→3) ,

(6→2) , (7→8) , (8→7) , (9→9)}, or equivalently,
(s3,s6,s5,s1,s4,s2,s8,s7,s9) is an order on {s1,s2,…,s9}. Also,

Π(3)=1 means s3 is the first element in Π, and Π-1(2)=6 means
that s6 is the second element in Π .

Although an algorithm that constructs an optimal structure
for any given order is a useful tool, determining a “good” sink
order remains as the main challenge. In the problem of buffered
routing generation, required times, input loads, and physical
locations of sink nodes should all be considered in generating a
suitable order. Incorporating those independent and sometimes
opposing parameters into the construction of an order is not an
easy task. Due to the exponentially large number of possible
orders, designers are forced to use heuristic approaches to
combine the effects of those parameters in an ad-hoc manner. In
general, the limitation imposed by working with one order at a
time is very restrictive and undesirable.

The local order-perturbation method is a technique that
works in a neighborhood of sink orders. No matter how one has
determined an order, the semi-order-independent dynamic-
programming formulation performs a systematic search in the
neighborhood of that order. If the initial order is not a locally
optimal order but close to it, this method chooses the optimal
order automatically. The main advantage of such a technique is
that it maintains an efficiency that is exponentially better than
that of an exhaustive search method while preserving the
optimality. Its superiority originates primarily from its



enhanced dynamic programming nature that enables the
method to take advantage of all similar sub-problems among all
the neighboring orders and thus avoid recomputing any sub-
solution.

By allowing the bottom-up semi-order-independent
algorithm to apply order perturbation operations, the sink order
in the resulting solution can deviate from the initial order. A
simple case is shown in Fig. 9 where the right-side border of a
sub-group ω has been perturbed. Consequently, the order in the
resulting group Ω is (s2,s3,s4,s6,s5,s7) as opposed to the initial

(s2,s3,s4,s5,s6,s7) order; that is, in the new order s5 has been

swapped with s6. In Fig. 9, s5 has been left out from ω; it is
called a bubble. When ω is used in a larger sub-group, it can be
assumed that the bubble has been moved to the other side of the
border of ω in the final structure. That operation causes the
swapping of the position of two neighboring sinks.

Definition 4: For a set of sinks {s1, s2, … , sn}, the neighbor-

hood of Π is defined as:
N(Π)={Π′ ∀ si , Π(i) - Π′(i)  ≤1 }.

In other words, the difference between the position of every si

in Π and Π′ is at most one.
Example 2: Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) is in the neighbor-

hood of Π=(s1,s2,s3,s4,s5,s6,s7,s8,s9), but
Π′′=(s3,s2,s1,s4,s5,s6,s7,s8,s9) is not in the neighborhood of Π.

Definition 5: For n>1, displacing the element i (1≤i≤n-1) of
Π (also referred to as the displacement operation) is defined as
swapping the location of sΠ-1(i) with the location of sΠ-1(i+1) in

Π. The displacement operation on element i always involves
two neighboring elements in Π, i.e., sΠ-1(i) and sΠ-1(i+1). The
two elements are called the elements of the displacement opera-
tion.

Definition 6: Two displacement operations are non-overlap-
ping if and only if they have no element in common. A set of
displacement operations are non-overlapping if and only if
every two operations in the set are non-overlapping.

Example 3: Displacing the 4th element of
Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) results in
Π′′=(s1,s3,s2,s5,s4,s6,s8,s7,s9)

Lemma 10: Every Π′∈ N(Π) can be built from Π using a
series of non-overlapping displacement operations.

Proof: This is a proof by induction. Let us represent a sub-
string of Π that consists of the i left-most elements of Π by
sub_string(Π ,i). For i=0, it is trivial that sub_string(Π′
,0)=sub_string(Π ,0). Suppose for i=κ-1, sub_string(Π′ ,κ-1)
can be obtained from sub_string(Π ,κ-1), using a series of non-

overlapping displacement operations. Let j=Π-1(κ). Since
Π′∈ N(Π), there are three neighborhood cases according to
Definition 4.

• Π(j)=Π′(j): This means that the κth elements in Π and Π′
are the same. Therefore, the statement given in the above
lemma holds for i=κ as well.

• Π(j)=Π′(j)-1: This means that the κ+1th element in Π′ is

the same as the κth element in Π. Let j ′=Π′ -1(κ). In this
case, we will have Π(j ′)=Π′(j ′)+1, otherwise Π(j ′)-Π′
(j ′)>1 (in violation of Definition 4) because the Π′(j ′)-1 and
Π′(j ′) slots have already been taken by sinks other than sj ′ .

Therefore, we have a displacement at the κth element of Π,
and the statement given in the above lemma holds for
i=κ+1 as well.

• Π(j)=Π′(j)+1: This case cannot happen because it implies
sj is the κ-1th element of Π′ which is in conflict with the

above assumption. �

Definition 7: Any arbitrary (n-1)-bit binary number w is
called a non-overlapping displacement code, if and only if, it
contains no two adjacent bits of 1. Also, W is defined as the set
of all non-overlapping displacement codes.

Definition 8: The position of a bit b in a binary number w is
defined as the number of bits on the left-side of b plus one.

Lemma 11: There exists a one-to-one relationship between
the members of W and N(Π).

Proof: First, we prove that for ∀ w∈ W there exists a
corresponding Π′∈ N(Π). For every 1 bit in w, set i to the
position of that bit in w and displace the ith element of Π; call
the resulting order Π′. Before the first displacement operation
the inequality given in Definition 4 holds. Also, if the
inequality between the initial order and the resulting order after
j displacement operations is valid, it still holds after the j+1th
displacement operation. That is because every displacement
operation changes the location of the two swapped elements by
±1 and keeps the location of the other elements unchanged. In
addition, since w is non-overlapping code, no element is
displaced more than once. Consequently, using induction we
conclude that Π′∈ N(Π).

Now, we prove that for ∀Π ′∈ N(Π) there exists a
corresponding w∈ W. According to Lemma 10, Π′ can be
generated from Π using a unique set of non-overlapping
displacements. Those displacement operations can be coded in
a non-overlapping displacement code which belongs to W. �

Example 4: Fig. 10 illustrates the equivalence of W and N(Π)
for a simple example.

Theorem 5: For n>1, the number of distinct orders in the
neighborhood of a given order Π is equal to:

Fig. 9. Construction with order perturbation.
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Proof: According to Lemma 11 there is a one-to-one
relationship between N(Π) and W. Therefore, these two sets
have equal cardinality, and we can equivalently prove the above
equation for W. So, we have to find out how many binary
numbers in the form of w=w1w2…wn-1 exist that have no two
adjacent 1s. The population of such numbers is equal to the off-
set size of the following Boolean equation:

f=w1w2+w2w3+…+wn-3wn-2+wn-2wn-1

Fig. 11 is the binary decision diagram (BDD) representation
of the above equation. By induction, it can be verified that this
structure is valid for n>0. In this figure, the number under each
BDD node gives the number of distinct paths that exist from
that node to the root.

Due to the symmetric structure of the equation and the
corresponding BDD, the number of paths from a node to the
root follows the Fibonacci number series. In the Fibonacci
number series, the k+1th number is the sum of the k-1th and kth
numbers in the series. As shown in Fig. 11, the number of
distinct paths from the leaf node zero to the root is
2×Fib(n)+Fib(n-1). Note that the factor of 2 appearing in the
equation represents the fact that during the decomposition a
zero sub-space has been reached while the decomposition is not
yet over with respect to the last variable. By a few simple
manipulations we get the final result:

2×Fib(n)+Fib(n-1)=(Fib(n)+Fib(n-1))+Fib(n)
=Fib(n+1)+Fib(n)=Fib(n+2)

There is a direct closed-form for calculating the n+2th number
in a Fibonacci series. According to the formula given in [MCS],
we derive the equation given in the theorem. �

Note the formula that returns the nth Fibonacci number
involves square root of 5 (an irrational number), yet it always
returns an integer for all (integer) values of n [MCS].

Theorem 5 proves that the size of N(Π) is an exponential
function of the number of sinks. Consequently, finding the best
order in that sub-space of orders is a task of exponential
complexity if a simple enumeration-based technique is used.
However, all the common sub-solutions of different orders can
be shared in a dynamic-programming based algorithm that
utilizes the aforementioned idea of local order-perturbation.
This in turn allows us to investigate the whole neighborhood in
polynomial time.

Fig. 12 presents a set of abstract grouping structures {χ0, χ1,

χ2, χ3} by which one can cover a whole neighborhood of
orders. χ0 has no bubble on its sides, and χ1, χ2, and χ3 have

bubbles on the right-side, left-side, and both sides, respectively.
For instance, the grouping ω of Fig. 9 is a χ1-type structure. A
full neighborhood is covered, if at each level of dynamic
programming and for each sub-group of sinks, all the grouping
structures are generated from all the grouping structures of their
internal sub-groups; Fig. 13 shows an example.

Example 5: The example in Fig. 13 illustrates the use of χ3
structure to generate a χ1-type solution for Ω. In this case, the
resulting order is (s3,s2,s4,s5,s7,s6,s9). This new sub-solution
will be used to generate larger sub-solutions that contain it.

The local order-perturbation technique can be extended to
structures with more than one bubble on each side. Those
structures in turn result in covering larger neighborhoods.
However in that case, the number of grouping structures grows
exponentially and, consequently, results in a significant slow-
down of the corresponding construction algorithm.

VI. SEMI ORDER-INDEPENDENT HIERARCHICAL BUFFERED
ROUTING TREE CONSTRUCTION

In this section, the local order-perturbation theory is applied
to FANROUT and B_PTREE (sub-sections A. and B.), and the
resulting algorithm, MERLIN, is presented in sub-section C.

A. BUBBLE_CONSTRUCT

The technique presented in the following generates
hierarchical buffered routing trees in a neighborhood of orders.
The resulting hierarchies are consistent with the Cα-Tree
structure, and in addition, the routing inside each layer of the
Cα-Tree hierarchy is a P-Tree. Some parts of the
BUBBLE_CONSTRUCT code (Fig. 14) are similar to the code
of FANROUT and are not discussed again. It is assumed that
the reader is familiar with the algorithm presented in section
IV.

BUBBLE_CONSTRUCT operates on three dimensional
solution curves Γ, each associated with a distinct set of values
for l, r, p, and e. The first three variables are the same as the
ones defined for FANROUT. The variable e encodes the
grouping structure used to generate the solution curve.

1) Initialization: In this section, a set of solution curves are
initialized. Here, sub-groups of length 1 are considered, and the
corresponding solution curves for every candidate buffer
location, sink, and grouping structure are initialized. Note that

Fig. 11. BDD of f.
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for sub-groups with length 1, all four grouping structures ( χ0 ,

χ1 , χ2 , and χ3 ) are the same; however, for the sake of

simplicity in the rest of the pseudo-code, separate (although
similar) solution curves are generated for each case. A similar
situation occurs for χ1 and χ2 where L=2.

2) Construction: The main difference between this algorithm
and FANROUT is in the grouping phase, i.e., lines 3 through 13
in Fig. 14. BUBBLE_CONSTRUCT starts from L=1 and goes
up to L=n. For each new sub-group of sinks, all possible
grouping structures (coded by numbers 0 to 3) are enumerated
in line 4. For the case of χ0 (E=0), the length of the sub-group

is equal to L, but for the other cases the actual length of the sub-
group is larger by one or two units in order to capture the effect
of inserting one or two bubbles on the sides. This new length is

calculated and stored in L′ (refer to line 5 and Fig. 15). In line 6,
all the possible sub-strings of length L′ are considered from the
right to the left of Π. In fact, the variable R points to the right-
most element of the sub-strings of L′ elements.

Lines 8 through 11, similar to lines 3 through 6, investigate
all possible sub-group lengths with different grouping
structures and positions which fit inside the sub-group being
constructed. Fig. 17 illustrates an example where a sub-group
of 5 sinks, Ω, is being generated using a combination of an
already generated sub-group of 3 sinks, ω, and two other sinks,
i.e., s2 and s4.

It can be seen that in some cases Ω and ω are not compatible.
As an example, consider the situation shown in Fig. 18 where
the difference between the values of r and R causes the
grouping structure of ω to not fit in the grouping structure of Ω.
Those cases are detected and skipped in line 13 of the pseudo-
code. Note that sets G and g - calculated in lines 7 and 12 -
represent the sets of sinks included in Ω and ω, respectively
(also refer to Fig. 16).

In line 16, REORDER updates G by replacing all the sinks
that belong to g with a pseudo-sink that represents the root of γ
(a solution to ω). The resulting order is called G′.

In line 17, an enhanced version of B_PTREE (called
*PTREE) is called to generate a new set of solutions for all
candidate locations. Every solution created by *PTREE shows
the combination of ω with the rest of sink nodes of Ω. The
details of *PTREE are presented in the following sub-section.

3) Extraction: In this section, a solution from Γ(n, n, s, 0)
that best satisfies the input constraints is selected and
reconstructed by tracing back the stored pointers.

The quality and complexity of BUBBLE_CONSTRUCT is
further discussed in sub-section D.

B. *PTREE

*PTREE is a solution to the problem of non-hierarchical
buffered routing tree construction. As mentioned earlier,
*PTREE is called by BUBBLE_CONSTRUCT within each
level of the Cα-Tree hierarchy. Consequently, *PTREE is
responsible for conducting the order-perturbation task within
each level of the hierarchy, otherwise
BUBBLE_CONSTRUCT would not be optimal with respect to

Fig. 14. The pseudo-code for BUBBLE_CONSTRUCT.

algorithm BUBBLE_CONSTRUCT( s, P, B, Π=(s1 , s2, ... , sn) )

INITIALIZATION
1. for e = 0 to 3
2. // similar to the lines 1 through 3 in Fig. 6 except that

// Γ( 1 , r , p ) should be replaced with Γ( 1 , r , p , e )
CONSTRUCTION

3. for L = 1 to n
4. for E = 0 to 3
5. set L′ = L + STRETCH(L, E) // see Fig. 15
6. for R = n downto L′
7. set G = SINK_SUBSET( Π , R , L , E ) // see Fig. 16
8. for l = max( 1 , L-α+1 ) to L-1
9. for e = 0 to 3
10. set l′ = l + STRETCH(l, e) // see Fig. 15
11. for r = R downto R-l′+1
12. set g = SINK_SUBSET( Π , r , l , e ) // see Fig. 16
13. if g-G ≠ φcontinue
14. foreach p ∈ P
15. foreach γ ∈ Γ ( l , r , p, e )
16. set G′ = REORDER( G , g , γ )
17. set ∆ = *PTREE( P , B , G′ )
18. // similar to the lines 11 through 17 in Fig. 6 except that

// Γ( L , R , p′ ) should be replaced with Γ( L , R , p′, E )
EXTRACTION

19. // similar to the lines 18 through 20 in Fig. 6 except that
// Γ( n , n , s ) should be replaced with Γ( n , n , s, 0 )

Fig. 15. The pseudo-code for STRETCH.

algorithm STRETCH( L, E )
1. set g=0
2. if L=2 and E>0 set g=1
3. else if L>2 and E=1 set g=1
4. else if L>2 and E=2 set g=1
5. else if L>2 and E=3 set g=2
6. return g

Fig. 16. The pseudo-code for SINK_SUBSET.

algorithm SINK_SUBSET( Π=(s1 , s2, ... , sn), R, L, E )
1. if L=1 set G = { sR }
2. else if L=2
3. switch E
4. case 0 : set G = { sR-1 , sR }
5. case 1, 2, 3 : set G = { sR-2 , sR }
6. else
7. L′=STRETCH( L, E )
8. switch E
9. case 0 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR-1 , sR }
10. case 1 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR }
11. case 2 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR-1 , sR }
12. case 3 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR }
13. return G

Fig. 17. A legal grouping scenario for BUBBLE_CONSTRUCT.
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the complete neighborhood of orders.
The algorithm is an enhanced version of B_PTREE [LCL96]

with two main differences: I) it uses the local order-
perturbation technique, and as a result, it is optimal with respect
to a neighborhood of orders and II) as an input it takes a set of
candidate buffer locations, and therefore, the locations of
buffers and Steiner points are not restricted to Hanan points.

At every step of dynamic programming in *PTREE, a sub-
group of sinks Ω is solved using the existing solutions to two
smaller sub-groups (ω1 and ω2) which partition Ω into two

segments. Fig. 20 illustrates a legal grouping situation in which
ω1 and ω2 properly partition Ω

For the design of *PTREE, three issues have been
considered:
• ω1 and ω2 do not share any sinks,

• ω1 and ω2 cover all (and only) the sinks of Ω,

• All the possible combinations of grouping structures and
sizes must be considered for ω1 and ω2.

The pseudo-code of *PTREE is given in Fig. 19. In lines 2
through 5, all combinations of size L, grouping structure E, and
position R are constructed for Ω . Then, ω1 is constructed in

lines 7 through 10. As shown in the code, the rightmost element
of ω1 is always the rightmost element of Ω . Some

combinations of Ω and ω1 may not be legal, which means Ω
does not contain at least one element of ω1 . Although those

cases could be avoided during the construction of ω1, for the

sake of presentation, they are explicitly pruned by the condition
in line 12. In that line, any ω1 incompatible with Ω is detected
and disregarded.

.In lines 13 through 22, ω2 is generated by considering Ω
and ω1. The size, grouping structure, and position of ω2 are

determined so that ω2 contains all the sink nodes of Ω that are

not included in ω1 . If ω1 has a bubble on its left side, i.e.,
grouping structures χ2, χ3, that bubble is the rightmost element

of ω2; see line 19. Similarly, if Ω has a bubble on its left-side,
ω2 should have a grouping structure with a bubble on its left,

and so on. For more details refer to the pseudo-code in Fig. 19.
Again, some illegal cases may occur but are pruned in line 24.

After line 24, ω1 and ω2 are known and their solution curves

are combined the same way that B_PTREE combines the
solution curves. Interested readers may refer to [LCL96] for the
details of B_PTREE.

C. MERLIN

This sub-section presents MERLIN, a local neighborhood
search algorithm, which employs BUBBLE_CONSTRUCT to
find a local optimum sink order and the optimum buffered
routing tree corresponding to that order.

Generally, an optimization problem has a set of solutions and
a cost function that assigns a value to every solution. The goal
is to find an optimal solution, i.e., one that has the minimum (or
maximum) cost. The local neighborhood search, as a member
of iterative solution methods, is a widely-used, general
approach for solving optimization problems.

To obtain a local search (LS) algorithm for solving an
optimization problem, one superimposes a neighborhood
structure on the solutions, i.e., for each solution a set of
neighboring solutions is specified. This LS algorithm starts
from some initial solution, which may be constructed by some
other algorithm or generated randomly, and from then on keeps
moving to a better neighboring solution, until finally it
terminates at a locally optimal solution. This method has been
applied both in the context of continuous and discrete
optimizations [Ya92]. In general, simulated annealing is a
special case of local neighborhood search that allows uphill
moves. Fig. 21 illustrates the behavior of a local neighborhood

Fig. 19. The pseudo-code for *PTREE.

algorithm *PTREE(P, B, Π=(s1 , s2, ... , sn))

INITIALIZATION
1. // the same as the one in BUBBLE_CONSTRUCT, see Fig. 14

CONSTRUCTION
2. for L = 2 to n
3. for E = 0 to 3
4. set L′ = L + STRETCH(L, E); // see Fig. 15
5. for R = n downto L′
6. set G = SINK_SUBSET( Π, R, L, E ); // see Fig. 16
7. for l1 = 1 to L-1
8. for e1 = 0 to 3
9. set l1′ = l1 + STRETCH(l1, e1); // see Fig. 15
10. set r1 = R
11. set g1 = SINK_SUBSET( Π, r1, l1, e1 ); // see Fig. 16
12. if g1-G ≠ φcontinue;
13. set l2 = L - l1
14. switch e1
15. case 0, 1 : set r2 = r1-l1′
16. switch E
17. case 0, 1 : set e2 = 0
18. case 2, 3 : set e2 = 2
19. case 2, 3 : set r2 = r1-l1′+2
20. switch E
21. case 0, 1 : set e2 = 1
22. case 2, 3 : set e2 = 3
23. set g2 = SINK_SUBSET( Π, r2, l2, e2 ); // see Fig. 16
24. if g2-G ≠ φor g2-g2 ≠ φcontinue;
25. // combine Γ( l1, r1, p, e1 ) and Γ( l2, r2, p, e2 ) in

// the same way PTREE combines the solution curves

Fig. 20. A legal grouping scenario for *PTREE.

s3 s4s2 s5 s6 s7 s8 s9s1

Ωω2 ω1
L=6
E=3
R=8

l1=3
e1=3
r1=8

l2=3
e2=3
r2=5

Fig. 21. Local neighborhood search in MERLIN.
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search.

Definition 9: A function N:F→2F, which associates a subset
N(x) with each x∈ F, is a neighborhood function over F iff

∀ x∈ F, x∈ N(x) and ∀ x∈ F, x∈ N(y)⇒y∈ N(x).
BUBBLE_CONSTRUCT induces a well-defined

neighborhood function in which it finds the best solution. The
same definition is also used by MERLIN.

Lemma 12: The properties required by Definition 9 are con-
sistent with those of neighborhood introduced in Definition 4.

Proof: In Theorem 5, we proved that the size of the
neighborhood, N(Π), is always greater than 1, independent of
the choice of Π. Also, for every Π′∈ N(Π) there is a unique
non-overlapping displacement code, w, that transforms Π to Π′.
To prove that Π∈ N(Π′)also, we need to prove that there is a
non-overlapping displacement code, w ′, that transforms Π′ to
Π. It can be shown that w ′=w is, in fact, the solution. �

There exist at least two sink orders , i.e., Π and Π′, in
common between the neighborhood of two consecutive
iterations of MERLIN’s local search (see Fig. 22). In fact, this
overlap, OVERLAP(N(Π),N(Π′)), is often relatively large.
Intuitively, when the corresponding non-overlapping
displacement code has more 1s, OVERLAP(N(Π),N(Π′)) is
smaller. Obviously, it is a waste to consider the overlapping
sub-space twice. This can be prevented by keeping solution
curves of the very last iteration. For similar sub-problems
simply copy the corresponding solution curve between the two
iterations. However, this speed-up is achieved at the cost of
doubling memory usage.

D. Quality and Complexity Analysis

Theorem 6 : *PTREE executes in O(kα3q) where k is the
total number of buffer candidate points, α is the number of
sinks, and q is a polynomially bounded number of distinct
capacitive loads.

Proof: In Fig. 19, lines 2, 5, and 7 each introduce O(α)
complexity. Note that in the pseudo-code, n is the number of
sinks that is referred to as α in this theorem. The merge
operation (line 25), which is the same as in B_PTREE, has a
O(kq) complexity [LCL96]. �

Lemma 13: Orders generated by BUBBLE_CONSTRUCT
are in the neighborhood of the initial order.

Proof: This is a proof by induction. The pseudo-code
directly forces the grouping structures to cover each other like
nested shells. Starting from the innermost shell, we analyze the
effect of grouping structures. Case i=1: after the bubble-out
step (see Fig. 9), for the innermost grouping structure, the order
of all the sinks remains unchanged except for the two which are
on the border of the bubbled sub-group. Consequently, the

inequality relation in Definition 4 remains valid, and the
resulting order is within the neighborhood of the initial order.
Case i=n: suppose that after the bubble-out step for the n-1
innermost grouping structures, the inequality of Definition 4
still holds. The order for the sinks on the border of the nth
grouping structure must still be unchanged because no overlap
is allowed between the borders of two grouping structures.
Therefore, even after the bubble-out step for the nth grouping
structure, the resulting order is within the neighborhood of the
initial order. �

Lemma 14: Any Π′∈ N(Π), is considered by
BUBBLE_CONSTRUCT.

Proof: BUBBLE_CONSTRUCT implicitly tries all the
possible valid combinations of grouping structures on Π.
Therefore, it is enough to prove that ∀Π ′∈ N(Π) there exists a
combination of grouping structures that result in that order.
Suppose that w is the non-overlapping displacement code of
Π′∈ N(Π), as given in Definition 7. Starting from the left-most
1-bit in w (j is the position of that bit in w) extend a χ1-type

sub-group from the left-most sink to the j+1th sink. After the
bubble-out step the resulting order is similar to Π′ for the j left-
most sinks and similar to Π for the rest of the sinks. Repeat this
operation for the next bit 1 in w in order from left to right.
There are no two neighboring 1s in w; therefore at each step the
left portion of the resulting order resembles Π′ and the other
portion is like Π . At the last step when there is no 1 left in w,
we cover the initial order from left to right with a χ0-type sub-

group. The resulting order, after the bubble-out step for all the
sub-groups, is Π′, and since it has a valid grouping structure it
is considered by the pseudo-code of Fig. 14. � 

The example in Fig. 23 illustrates the proof of Lemma 14.
Lemma 15: Any identical sub-problem among the members

of N(Π) is shared and processed only once.
Proof: Any sub-problem is uniquely identified by l, e, and

r values. ∀ p∈ P, Γ(l,e,r,p) is generated only once, no matter in
which compatible and larger grouping structure it will be used
later. Note that according to Lemma 13 and Lemma 14,
BUBBLE_CONSTRUCT covers the whole space of N(Π). �

Theorem 7: The solution space of BUBBLE_CONSTRUCT
is the product of the spaces of *P-Tree and Cα-Tree for the
neighborhood of the initial given order.

Proof: ∀Π ′∈ N(Π), all the corresponding Cα-Trees with
the boundary of their sub-groups on the displaced sinks’
locations are visited and for every one of them all the *P-Tree
structures are considered by *PTREE. However, there are some
Cα-Trees that correspond to Π′ whose displacements are not at

Fig. 22. The pseudo-code for MERLIN.

algorithm MERLIN( s , P, B, Π=(s1 , s2 , … , sn) )
1. set Π′ = Π
2. do {
3. set Π = Π′
4. set ℜ = BUBBLE_CONSTRUCT( s , P , B , Π )
5. set Π′ = SINK_ORDER( ℜ )
6. } while ( Π != Π′ )
7. return ℜ

Fig. 23. An illustration for the proof of Lemma 14.
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the boundary of the sub-groups. *PTREE considers all the
necessary displacements inside one layer of those Cα-Tree. �

Lemma 16: BUBBLE_CONSTRUCT is monotone with
respect to required time, load, and area.

Proof: By considering that *PTREE is monotone with
respect to the required time, load, and area, we can conclude
that in a Cα-Tree, decreasing the load of either an internal or a
sink node results in the decrease of load in its immediate parent.
A similar argument is valid for required time and total area. �

Lemma 17: In BUBBLE_CONSTRUCT, the pruning opera-
tion does not eliminate any non-inferior solution.

Proof: The proof follows Lemma 16 and Definition 2. �

Theorem 8: Subject to restrictions imposed by the *P-Tree
and Cα-Tree structures, BUBBLE_CONSTRUCT finds all the
non-inferior solutions with respect to required time and total
area in the neighborhood of a given order.

Proof: If no pruning is performed all the space is explicitly
constructed (see Theorem 7). Lemma 17 states that the prune
operation drops the sub-solutions that are only used in inferior
solutions. Therefore, all the non-inferior solutions remain in the
final curves of BUBBLE_CONSTRUCT. �

For the sake of simplicity, in the following it is assumed the
total buffer area is the metric used to measure solution area.

Theorem 9: BUBBLE_CONSTRUCT has O(kmn3) memory
complexity where k, m, and n are numbers of candidate
locations, buffers, and sinks, respectively.

Proof: The proof is the same as for Theorem 3. The only
difference is that the number of solution curves is four times
higher in BUBBLE_CONSTRUCT than in FANROUT, since
for every grouping structure a solution curve is stored. �

Theorem 10: BUBBLE_CONSTRUCT has O(mqk2α 5n3)
runtime complexity where k, m, and n are the number of
candidate locations, buffers, and sinks, respectively. Also, α is
the maximum branching factor in Cα -Trees, and q is
polynomially bounded number of distinct capacitive loads.

Proof: The proof is similar to that of Theorem 4. �

Corollory 2: Assuming that m, q, and α are parameters
independent from the size of the problem n and are determined
by the library and technology, the effectual worst-case
complexity of BUBBLE_CONSTRUCT is O(k2n3).

Theorem 11: The cost associated with orders produced by
iterations of MERLIN (but the last one) is strictly decreasing.

Proof: BUBBLE-CONSTRUCT always returns the best
order in the neighborhood; thus if a different order is returned,
it must correspond to a lower cost. In the last iteration, the cost
of the given order is the best in the neighborhood, and that is
how the iteration is terminated. �

VII. EXPERIMENTAL RESULTS

In this section, three experimental setups have been tested
and compared on a set of benchmark circuits.
• Setup-I: For every net, fanout optimization using LTTREE

is followed by a routing tree construction phase using
PTREE. In LTTREE, the net sinks are sorted with respect to
their required times. However, in PTREE the net sinks are

sorted by a solution to the TSP (Traveling Salesman Prob-
lem) using the method suggested in [LCLH96].

• Setup-II: Routing tree generation using PTREE is followed
by buffer insertion using the van Ginneken’s method
[Gi90]. The sink order for PTREE is again the TSP order.

• Setup-III: Finally, hierarchical buffered routing generation
is performed using MERLIN and an initial TSP order.

All the experiments have been implemented and executed in
SIS [SSLM92] and on a dual-processor Ultra-2 Sun Sparc
workstation with 256MB memory. In these experiments, an
industrial standard cell library (0.35µm CMOS process)
consisting of 34 buffers has been used. Gate and wire delays are
calculated using a 4-parameter delay equation and the Elmore
delay model [El48], respectively.

A. Comparison on Individual Nets

Table 1 reports the results of running the above three
experimental setups on 18 individual nets randomly selected
from a set of benchmark circuits. For every extracted net, the
sink locations are determined randomly in a bounding box. The
size of the box has been determined such that the delay of a
wire segment whose length is half the perimeter of the box is
approximately equal to the delay of an average gate driving that
wire. In addition, the load and required time sink data have
been selected randomly from a nominal range.

In Table 1, the reported area and delay values are the total
buffer area and the maximum delay at the root of the net in the
resulting buffered routing structures. Also, the runtimes have
been reported in seconds for every net and setup. Note, the data
of Setup-I has been reported in absolute values; however, for
the other two setups the results have been scaled with respect to
their corresponding data in Setup-I.

For each net, the last column in Table 1 reports the number
of iterations performed during the execution of MERLIN. For
about 28% of the cases reported in the table, MERLIN
converges in one iteration. That indicates that the initial sink
order is a local minimum in its neighborhood. This effect can
be used as a metric to measure the effectiveness of the
heuristics used to generate the initial order. The experiments
indicate that the TSP heuristic tends to perform better with
respect to this metric compared to a few other heuristics.
Hence, the TSP order has been used in all experimental setups.

B. Comparison on Circuits

Table 2 reports the post-layout total area and delay values for
a set of benchmark circuits. In these experiments the above
three setups have been plugged into a full design flow that
extends from the logic synthesis all the way down to the
detailed routing. The resulting design flows have been named
Flow-I, Flow-II, and Flow-III, respectively. Again, the data for
Flow-I is the absolute to which the rest are scaled.

VIII. CONCLUSIONS

In this paper, the problem of distributing a signal among a set
of sinks with different placement, load, and required time
values has been addressed. The proposed technique generates a



set of non-inferior buffered routing structures that provide
different trade-offs between the required-time at the root and
the total buffer area. The introduced solution consists of an
iterative optimization block that uses a local neighborhood
search strategy and an optimization engine based on dynamic
programming that generates all the non-inferior structures in
the neighborhood of a given sink order. This optimization
engine generates and propagates 3-dimensional solution curves
and employs a novel local order-perturbation method to cover
an exponentially sized solution space in polynomial time. The
experimental results show significant delay improvement with
little area penalty compared to the conventional buffer and
routing tree generation techniques.
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Ratios normalized w.r.t. Setup I

Taken
from

circuit

Net
name

Num of
sinks

Setup-I:
LTTREE + PTREE

Setup-II:
PTREE + Buffer Insertion

Setup-III:
MERLIN

Area
*1000 λ2

Delay
(ns)

Runtime
(s)

Area Delay Runtime Area Delay Runtime Loops

C432 net1 16 58 38.54 22 0.33 0.87 0.36 0.28 0.39 25.09 2
net2 16 83 35.49 41 0.27 0.71 1.66 0.69 0.48 5.24 1
net3 10 51 32.19 44 1.31 0.88 4.27 0.56 0.70 15.27 7

C1355 net4 9 35 26.69 16 0.64 0.88 1.88 0.82 0.57 3.00 4
net5 9 16 23.42 15 0.80 0.95 0.86 3.80 0.47 2.33 5
net6 13 29 25.42 14 0.33 0.95 3.43 0.56 0.30 78.00 6

C3540 net7 12 58 41.03 29 0.50 0.88 1.79 1.44 0.55 23.59 12
net8 35 93 47.05 99 0.17 0.83 4.42 0.17 0.49 7.92 1
net9 73 214 60.73 229 1.55 0.69 1.83 0.12 0.42 1.98 1

C5315 net10 49 70 40.29 302 0.64 0.78 2.34 0.36 0.33 6.09 2
net11 21 80 38.20 111 1.12 0.66 1.02 0.40 0.26 4.32 4
net12 50 128 58.79 829 0.65 0.53 0.64 0.20 0.27 13.20 9

C6288 net13 16 58 44.65 52 0.83 0.73 1.12 2.11 0.49 9.33 5
net14 20 58 45.67 28 0.67 0.91 1.71 1.00 0.73 3.54 1
net15 60 90 90.29 197 0.25 0.74 1.42 0.29 0.55 16.20 4

C7552 net16 12 54 32.20 26 1.35 0.90 3.00 1.18 0.54 12.38 2
net17 16 58 31.35 54 0.94 0.86 1.11 1.56 0.39 9.72 5
net18 23 54 38.38 43 0.35 0.91 2.16 0.29 0.39 5.70 1

Average: 0.71 0.81 1.95 0.88 0.46 13.49

Table 1: Total buffer area, delay, and runtime for a number of individual nets.
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Ratios normalized w.r.t. Flow I

Circuits

Flow-I:
LTTREE + PTREE

Flow-II:
PTREE + Buffer Insertion

Flow-III:
MERLIN

Area*1000 λ2 Delay (ns) Runtime (s) Area Delay Runtime Area Delay Runtime
C1355 3630 8.18 1276 0.97 0.97 0.99 0.93 0.72 2.23
C1908 7768 14.47 2560 1.03 1.10 0.95 1.02 0.80 2.55
C2670 9428 12.40 1699 0.99 0.99 1.09 1.06 0.96 2.05
C3540 15762 22.17 5436 1.21 1.57 0.79 1.27 0.88 0.98
C432 3574 10.13 1382 1.16 1.06 0.79 1.57 1.00 1.17
C6288 28497 52.94 13547 0.96 1.03 0.88 1.00 0.90 1.00
C7552 35189 19.80 9250 0.78 1.06 0.95 0.85 0.74 1.36
Alu4 8191 15.69 2842 1.22 0.99 0.86 1.02 0.96 1.62
B9 1210 2.81 271 0.98 1.25 0.82 1.36 0.99 4.18
Dalu 10344 18.59 3465 0.73 0.88 0.66 0.88 0.67 1.74
Desa 32388 27.00 19427 1.12 1.12 0.75 1.19 0.82 0.83
Duke2 5499 9.00 2554 1.15 0.91 0.74 1.04 0.83 0.80
K2 22823 26.66 5831 0.85 0.75 1.73 0.93 0.63 2.56
Rot 8315 7.80 1572 0.91 1.02 0.83 1.00 0.81 3.40
T481 8917 10.12 5239 1.22 1.01 0.78 0.92 1.08 1.26

Average: 1.02 1.05 0.91 1.07 0.85 1.85

Table 2: Post-layout area, delay, and runtime for a set of benchmark circuits.



Abstract--This paper presents a solution to the problem of per-
formance-driven buffered routing tree generation for VLSI cir-
cuits. Using a novel bottom-up construction algorithm and a local
neighborhood search strategy, our polynomial time algorithm
finds the optimum solution in an exponential-size solution sub-
space. The final output is a buffered rectilinear Steiner routing
tree that connects the driver of a net to its sink nodes. The two
variants of the problem, i.e., maximizing the required time at the
driver subject to a maximum total area constraint and minimizing
the total area subject to a minimum required time at the driver
constraint, are handled by propagating three-dimensional solution
curves during the construction phase. Experimental results dem-
onstrate the effectiveness of our algorithm compared to other tech-
niques.

I. INTRODUCTION

The consideration of the effects of interconnect delay and
area has become a crucial factor in the design of ultra-dense,
high speed integrated circuits. In an industry where higher
performance design brings substantial advantage over the
competition, more and more time and resources are being spent
on making faster chips through careful optimization of many
design aspects, especially interconnect planning and
optimization. In particular, the problem of constructing a
buffered routing tree has emerged as a critical design problem.

The first part of this paper presents a new algorithm
FANROUT that simultaneously solves the fanout optimization
and routing tree construction problems. Both of these design
tasks are difficult optimization problems and have considerable
impact on the circuit delay and area. Fanout optimization is
effective because it boosts the transmitted signal via the
insertion of sized buffers whereas performance-driven routing
generation is effective because it generates interconnect
structures that deliver the signal to critical sinks faster. In
conventional design flows, these two tasks are often performed
in a sequential manner, i.e., a solution made by one
optimization step becomes the input to the other. By solving the
unified problem, i.e., generating a buffered routing tree for a set
of sinks and a driver, the intrinsic interactions between the
design steps are captured and higher quality results are
produced by a systematic search in a much larger solution

space. This type of solution technique is referred to as a
unification-based approach in [Pe98].

Similar to many other dynamic-programming based
algorithms, FANROUT is only optimal with respect to a given
order on its input objects (in this case the net sinks). This
shortcoming is addressed in this paper by introducing a new
technique called local order-perturbation which is used to
enhance FANROUT. The resulting algorithm, MERLIN, is less
sensitive to the input sink order with the cost of having a
reasonably more complex computation.

The core optimization engine of MERLIN, called
BUBBLE_CONSTRUCT, optimally solves the simultaneous
routing and buffer insertion problem for a local neighborhood
around an initial sink order. It recognizes the similar sub-
solutions among the members of the neighborhood in order to
maintain the polynomial complexity of the algorithm. Although
a complete buffered routing structure is not generated for every
member of the neighborhood, the sink order that results in the
best buffered routing structure is automatically chosen from
among the members of the neighborhood. The outer
optimization part of MERLIN (see Fig. 1) is an iterative
technique based on a local neighborhood search strategy
[Ya92].

Both FANROUT and BUBBLE_CONSTRUCT generate
and propagate three-dimensional required time, load, and total
area solution curves in a bottom-up fashion. In the three-
dimensional solution curves, the load and the required time
dimensions ensure the validity of the dynamic-programming
principle [Be57] for solving the problem whereas the total area
allows the user to solve the problem for either one of the
following two variants: I) minimizing the required time subject
to an area constraint or II) minimizing the area subject to a
required time constraint.

The technique presented in this paper1offers the following
advantages compared to prior methods:
• full integration of fanout optimization and routing tree gen-

eration using a dynamic-programming method,
• employment of a novel local order-perturbation technique

This research was sponsored in part by the NSF PECASE award number
MIP-9628999.

A. H. Salek is with PMC-Sierra, Inc., Santa Clara, CA 95054 USA.
J. Lou is with Synopsys, Inc., Mountain View, CA 94043 USA.
M. Pedram is with the Department of Electrical Engineering-Systems,

University of Southern California, Los Angeles, CA 90089 USA. 1 The initial versions of the presented techniques have appeared in
[SLP98] and [SLP99].

Fig. 1. Structure of MERLIN.
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that enables the optimization engine to find (in polynomial
time) the best buffered routing tree structure in an exponen-
tial-size sink order neighborhood of the initial order,

• propagation of three-dimensional solution curves that
allows the algorithm to trade-off required time with total
area and vice versa,

• definition and use of Cα-Tree and *P-Tree structures that
expand the power of the optimization algorithms, resulting
in highly optimized solutions,

• employment of the local neighborhood search strategy
along with the core optimization algorithm to find the best
solution in the neighborhood of the input sink. The resulting
method is less sensitive to the initial order.

The remainder of the paper is organized as follows. In
section II, prior work is given. Section III presents the problem
formulation. Sections IV and V introduce FANROUT and the
local order-perturbation technique. In section VI, MERLIN and
its constituting elements are presented and discussed. Finally,
sections VII and VIII give the experimental results and the
concluding remarks, respectively.

II. PRIOR WORK

A. Fanout Optimization

Fanout optimization, an operation performed in the logic
domain, addresses the problem of distributing an electrical
signal to a set of sinks with known loads and required times so
as to maximize the required time at the signal driver (root of the
net). Interconnect delays are either ignored or loosely modeled
in this operation because the sink locations are not known at
this stage. The general form of this problem is NP-hard [To90];
however, its restriction to some special families of topologies is
known to have polynomial complexity.

Among many fanout optimization techniques - e.g., [Go76],
[BCD89], [SS90], and [VP93] - the one proposed by [To90] has
been proven to be very effective. That algorithm introduces a
special class of tree topologies, called LT-Tree, for which the
fanout problem is solved optimally with respect to a given
order of sinks using dynamic programming. An LT-Tree of
type-I is a tree that permits at most one internal node among the
immediate children of its internal nodes and also does not allow
any left sibling for the internal nodes (see Fig. 2).

Touati proposed a dynamic-programming based algorithm

for the fanout optimization problem where the buffer structure
is restricted to the LT-Tree topology and sinks with larger
required times are placed farther from the root of the tree. The
algorithm first sorts the sinks in their non-decreasing required
time order and then, starting from the least critical sink, it
enumerates all the left-most grouping of the sinks to be driven
by a buffer. Finally for each grouping, it enumerates all
possible ways of adding either zero or one buffer to drive the
leftmost subset of the sinks. Touati gives sufficient conditions
for the LT-Tree construction algorithm LTTREE to be optimal.
For more details, see [To90].

Lemma 1: LT-Tree construction algorithm shows O(n2) com-
plexity where n is the number of sink nodes [To90].

B. Routing Tree Construction

Performance-driven interconnect design, an operation
performed in the physical domain, addresses the problem of
connecting a signal driver to a set of sinks with known loads,
required times and locations so as to maximize the required
time at the driver. [CHKM96] gives a comprehensive review of
the algorithms for solving this problem.

The inherent complexity of the problem has forced the
researchers to focus on heuristic solutions and/or impose
constraints on the structure of resulting interconnect. Among
the recent works in this area, the algorithm presented by Lillis
et al. in [LCLH96] has been shown to be quite effective. The
authors proposed the Permutation-Constrained Routing Tree or
P-Tree structure and solved the above problem with respect to
the P-Tree structure; see Fig. 3 for an example. This approach
consists of two major phases: I) heuristically finding a proper
order for the sinks and II) generating the routing structure based
on the order. The second phase of the algorithm is referred to as
PTREE throughout this paper. Given an order for the sink
nodes, PTREE finds the optimal embedding of the net into the

Hanan grid2 using a dynamic-programming approach. In
PTREE, the intermediate routing solutions are stored in the
form of two dimensional, non-dominated solution curves of

total area versus required time for every Hanan point3.
Lemma 2: For a given order on the sinks and with the restric-

tion that the Steiner points lie on the Hanan points, PTREE
computes the set of all rectilinear Steiner trees with non-domi-
nated required time and total capacitance [LCLH96].

Lemma 3: If the individual capacitive values of wires and
gate inputs are polynomially bounded integers or can be
mapped to such with sufficient precision, then PTREE has
O(n5q) pseudo-polynomial complexity (see [GJ79]), where n is

Fig. 2. An LT-Tree Type-I for a net with 9 sinks.
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Fig. 3. An output of PTREE for the “dcba” order.
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the number of sink nodes and q is the maximum number of dis-
tinct load values [LCLH96].

Corollory 1: If the PTREE function is called with α sinks
and uses k candidate locations instead of Hanan points, its
complexity is O(kα3q).

C. Other Related Works

Lukas van Ginneken in [Gi90] proposed an algorithm to
insert buffers on appropriate internal nodes of a given routing
tree in order to maximize the required time at the driver. The
application of van Ginneken’s method after constructing the
routing tree is usually more effective than applying fanout
optimization followed by routing tree generation [SLP98].

The first attempts to combine fanout optimization and
routing generation were presented in [OC96a] and [LCL96]. In
[OC96a], the authors proposed a combination of A-Tree
routing generation [CLZ93] and van Ginneken’s buffer
insertion [Gi90] methods. They later extended the work in
[OC96b] to include wire sizing as well. Their algorithm takes
the placement information of the source and the sinks in
addition to the signal required times and heuristically generates
a buffered routing structure that maximizes the required time at
the source of the net. In these works, the subtrees are combined
using a weighted addition function with a user-specified
parameter to heuristically decide which two subtrees are to be
merged. The algorithms in [OC96a] and [OC96b] have no
guarantee of optimality. In [LCL96], Lillis et al. introduced a
new version of PTREE which systematically solves the
integrated problem of buffering and routing. That algorithm,
called B_PTREE in the rest of this paper, uses a dynamic-
programming formulation and generates three dimensional
solution curves. Similar to PTREE, B_PTREE is optimal only
with respect to a given sink order.

III. PROBLEM FORMULATION

Given a net with n+1 pins, the problem is to drive the set of
sink pins, S={s1 , s2 , … , sn}, by the driver of the net s via a
buffered routing structure that satisfies a combination of the
maximum required time at the root and the minimum total area
constraints. The area constraint can be stated in the form of
total buffer area or total capacitance; the total capacitance is
considered as a metric indicating the total buffer and
interconnect area. More specifically, the problem may be stated
in two ways: I) maximize the required time subject to an area
constraint and II) minimize the area subject to a required time
constraint.

The following information is provided as input:
1. The position of the source s=(sx,sy) where sx and sy are the

horizontal and vertical coordinates of s.
2. The properties of each sink node si=(si

x,si
y,si

l,si
r) for 1≤i≤n

where si
x and si

y are the horizontal and vertical coordinates,
si

l is the capacitive load, and si
r is the signal required time

of node si.

3. A library of buffers B={b1 , b2 , … , bm} containing m
buffers with different strengths.

4. A set of k candidate locations for placing the buffers
P={ p1 , p2 , … , pk }.

5. A linear ordering of the sinks Π=( s1 , s2 , … , sn ).
There are many candidates for P; it can be the set of Hanan

points [Ha66] (similar to what [LCLH96] has proposed) or a set
of reserved buffer locations (identified after performing the
initial placement step). Our experiments, in agreement with a
conclusion made in [LCLH96], demonstrate that neither one of
the above choices would significantly alter the final results as
long the following two conditions are satisfied: I) k is large
enough with respect to n and II) the candidate locations are
distributed within the bounding box of the net with higher
concentration in regions with a high density of sink pins.

IV. ORDER-DEPENDENT HIERARCHICAL BUFFERED ROUTING
TREE CONSTRUCTION

This section presents FANROUT, an algorithm for solving
the problem of simultaneous fanout optimization and routing
generation. The resulting buffered routing tree contains a
logical hierarchy that captures the hierarchical sink groups used
during the construction. The hierarchy tree has a certain
structure, which is formally defined below.

A. Cα-Trees

A desired property for a hierarchical algorithm is
independence from any specific class of hierarchy graph
structures. However, in many cases the complexity is so high
that there is no choice but to restrict the solution space to a
family of hierarchies. In this case, the problem is to identify and
construct a set of structures that are consistent with the nature
of the problem, both of which require a reasonable effort.

In this sub-section, a new class of structures, referred to as
Cα-Trees (read as si-alpha trees), used to capture the hierarchy
in the buffered routing construction algorithm is introduced.

Definition 1: A tree is a degree-restricted alphabetic buffer
chain tree (Cα-Tree) for a given order of sinks Π=(s1,s2,…,sn)

if and only if:
• every internal node has at most one internal node among its

immediate children,
• there is a depth-first traversal that visits the sinks in the

(s1,s2,…,sn) order,
• the maximum branching factor is α.

Fig. 4. A valid C4-Tree for (s1,s2,…,s9).
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Fig. 4 illustrates an example for C4-Trees. In this figure the
maximum branching factor is four and every internal node
(shown by white circles) is connected to at most one other
internal node while preserving the given order.

Lemma 4: In a Cα-Tree, the internal nodes construct a
unique path (chain).

Proof: This is an immediate conclusion from Definition 1.
� 

In this application, every internal node is a buffer, and in the
resulting buffer chain, a more critical sink (considering both
timing and physical information) tends to be connected closer
(in terms of the number of intermediate stages) to the root.

Parameter α represents the maximum number of fanouts for
every buffer or branching point. Our experience shows that
even when no restriction is imposed on the maximum number
of fanouts for each buffer, the maximum fanout count in the
optimal buffer tree solution is usually bounded by a small
number. That value is generally dependent on the
characteristics of the cells (sink nodes) and the buffer library
and not the problem size (number of sinks). Note that
eliminating the parameter α from the definition does not cause
the main structure and properties of Cα-Trees to breakdown.
The only disadvantage is the longer (still polynomial) runtime
needed for optimally constructing such a structure.

Although there are a large number of Cα-Trees for every
sink order, the optimal Cα-Tree can be found in polynomial
time using dynamic programming. Briefly, the optimal Cα-Tree
for an ordered set of sinks is generated by starting from small
L’s and combining every L neighboring sinks, until L=n. At
every step, the best solutions for the sub-groups with length l
(<L) are available - due to the bottom-up flow of the method -
and are used to generate the solution for the length L sub-
problem, see Fig. 5. Note that the final Cα-Tree structure
satisfies the given sink order. This algorithm will be referred to
as CαTREE in the rest of this paper.

Lemma 5: LT-Tree Type-I [To90] is a special case of Cα-
Tree where and no internal node has a left sibling.

Proof: The proof directly follows the definitions of LT-
Tree Type-I and Cα-Tree. �

Note Cα-Trees can be relaxed with respect to the first
property given in Definition 1, i.e., each internal node may
have more than one internal node (but bounded by a certain
parameter) among its immediate children. Although the optimal
structure can still be achieved using dynamic programming, the
complexity of the corresponding optimal construction
algorithm is significantly higher.

B. FANROUT

FANROUT incorporates the Cα-Tree and P-Tree
construction techniques into a unified framework such that the
resulting routing structure is both Cα-Tree, in terms of the
overall topology, and a P-Tree, in terms of the detailed physical

structure. FANROUT requires an ordering of the sinks and
guarantees the optimality of the solution with respect to that
ordering only. In the following paragraphs, the details of
FANROUT are given.

FANROUT (see Fig. 6) is called with a set of parameters: s,
P, B, and Π as defined in section III. It operates on three
dimensional solution curves Γ(L, R, p) (see Fig. 6), each
associated with a candidate buffer location p and a sub-group of
sinks identified by variables L and R. L is the length of the sub-
group and R indicates the position of the rightmost sink of the
sub-group in Π . For example, if Π=(s1, s2, ..., s9), Γ(3, 7, pi)

stores all the buffered routing structures that connect pi to {s5,

s6, s7}.
In FANROUT, only non-inferior solutions - as defined below

- are stored in the solution curves.
Definition 2: Suppose σ1 and σ2 are two different buffered

routing structures that connect a candidate location to set of
sinks. σ2 is said to be inferior to σ1, iff load(σ1)≤load(σ2), req-

Time(σ2)≤reqTime(σ1), and area(σ1)≤area(σ2).

As shown in Fig. 6, FANROUT consists of three main
sections: Initialization, Construction, and Extraction. The
Initialization section deals with creating and initializing
solution curves corresponding to sub-problems consisting of
only one sink, i.e., L=1. FANROUT is a dynamic-programming
based technique and at each step it generates new curves by

Fig. 5. Optimal Cα-Tree construction.
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algorithm FANROUT( s, P, B, Π=(s1 , s2, ... , sn) )

INITIALIZATION
1. for r = n downto 1
2. foreach p∈ P
3. set Γ( 1, r, p ) = {The set of all non-inferior paths extended

from p to sr and driven with or without a buffer}

CONSTRUCTION
4. for L = 2 to n
5. for R = n downto L
6. for l = max(1, L-α+1) to L
7. for r = R downto R-l+1
8. foreach p∈ P
9. foreach γ ∈Γ ( l , r , p )
10. set ∆ = PTREE(P, {sR-L+1 , ... , sr-l , γ , sr+1 , ... , sR})
11. foreach δ ∈∆
12. set p′  = Location of the root of δ
13. foreach b ∈ B
14. set δ′ = A buffered routing structure created by

driving δ by b located at p′
15. set < c, t, a > to the input capacitance, the input

required time and the area of δ′, respectively
16. if < c, t, a > is a non-inferior solution in Γ(L , R , p′)
17. insert < c, t, a > in Γ(L , R , p′)

EXTRACTION
18. find the solution ρ in Γ( n , n , s ) which best satisfies the constraints
19. retrieve the buffered routing tree structure ℜ of ρ by following the

pointers stored during the generation of the solution curves
20. return ℜ

Fig. 6: Pseudo-code for FANROUT.

Fig. 6. A three-dimensional solution curve.
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combining and manipulating already available curves for
smaller sub-problems. In the Construction section, this bottom-
up step is repeated until the solution curve for the main problem
is found. Finally in the Extraction section, from among the
solutions of the final Γ, the solution with the best trade-off
between required-time and total area is chosen. At the end, the
corresponding structure is generated by tracing back the
pointers of the constituting sub-problems. The following is a
detailed description of the algorithm.

1) Initialization: Before performing any operation, a set of
solution curves are initialized in lines 1 through 3. In this part
of FANROUT, sub-groups of length 1 are considered and the
corresponding solution curves for every candidate buffer
location and sink sub-group are initialized. These initial
solutions consist of the minimum Manhattan distance paths
from the candidate location p to the sink sr . At the root of these
paths, both options of inserting and not inserting a buffer are
examined.

2) Construction: FANROUT starts by working on the groups
consisting of only one sink, i.e., L=1, and proceeds until L=n.
At each step, it constructs buffered routing structures that
connect L neighboring sinks within Π. Line 4 enumerates all the
possible values for L, and line 5 detects every legal sub-group
Ω of Π that contains L sinks.

Every sub-group of sinks can potentially constitute an
internal node in the final Cα-Tree structure; therefore,
according to Definition 1, it can contain at most one other
internal node (smaller sub-group) as its immediate child.
During the process of grouping a set of L sinks, the algorithm
considers cases in which a subset of sinks (call it ω) are already
grouped; see Fig. 7 and lines 6 and 7 in the pseudo-code. That
way, the Cα-Tree structure which captures the hierarchy of
design is generated and maintained. In this context, the
hierarchy implies that during the generation of a buffered
routing structure, all the sinks are not processed at once;
instead, a subset of sinks are combined together at any time in
agreement with the Cα-Tree structure. Later, each combination
is treated as one node in the next level of the hierarchy.

In line 6, the term max(1,L-α-1) ensures that Ω does not
drive more than α other internal and sink nodes, following the
third property of a Cα-Tree in Definition 1. In line 7, the term R
to R-l ′+1 ensures that ω remains within Ω .

After line 7, it is known which sub-group ω is to be
combined with which sink node(s) to generate the new sub-
group Ω. However, there are many solutions associated with
each ω. In fact, for every buffer candidate location p and sub-
group ω there is a solution curve that is used by the merge
operation; see Fig. 8. Line 8 enumerates all the candidate
points, and line 9 retrieves the non-inferior solutions γ from a

solution curve of p which corresponds to ω.

In line 10, PTREE is called on the root of γ 4 and the
remaining sinks in Ω in order to combine them by routing
structures whose roots can be located at any candidate location.
PTREE returns a collection of solution curves and stores them
in ∆. Then, for every buffered routing structure in ∆, all the
buffers in the library are used to drive its root, and the non-
inferior combinations are stored in the corresponding solution
curves; see lines 11 through 17. Along with every solution, a set
of pointers is stored to be used during the extraction phase. The
operations performed in lines 11 through 17 can be performed
internally by a modified PTREE with no change in its worst
case complexity. Hence, the complexity of those steps is not
considered during the complexity analysis of FANROUT.

3) Extraction: The above bottom-up construction process
continues until the solution curve for the whole problem, i.e.,
L=n, is generated. At that point, the solutions are stored in Γ(n,
n, s) because they are rooted at s and are connected to all sinks.
From among all the non-inferior solutions of Γ(n, n, s), the one
which best satisfies the input constraints is chosen. The
buffered routing structure corresponding to that solution is
retrieved in lines 18 and 19 by following the stored pointers.
Finally, in line 20 the best buffered routing structure is returned.

C. Quality and Complexity Analysis

FANROUT is an optimal polynomial algorithm based on a
set of assumptions as explained previously and in the following
lemmas and theorems.

Theorem 1: The solution space of FANROUT is the product
of those of PTREE and CαTREE.

Proof: Analysis of the pseudo-code shows any P-Tree
structure whose buffers directly drive at most one other buffer
is considered by FANROUT. Also, any Cα-Tree whose buffers’
output nets are implemented using PTREE is considered by
FANROUT. �

Lemma 6: The following statements are true for any routing
structure ℜ that connects a source to a set of sinks:
I) By decreasing the load of any sink, the capacitance

observed at the root of ℜ does not increase.
II) By increasing the required time of any sink, the required

time at the root of ℜ does not decrease.

Fig. 7. An illustration for the grouping steps.
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Proof: The above two statements are proven using simple
circuit and graph theory rules. �

Lemma 7: PTREE is monotone with respect to the load and
the required time of the sinks.

Proof: This lemma is proven by induction and Lemma 6.�
Lemma 8: The use of the prune operation by FANROUT

does not result in the loss of any non-inferior solution.
Proof: Assume that σ2 is inferior with respect to σ1. By

induction, if σ2 is the whole net and its input is directly

connected to the net driver, the required time does not decrease
and the load does not increase by replacing σ2 with σ1. If σ2 is
a solution to a sub-problem, its input is driven by another
internal node, called g. Due to the monotonic behavior of
PTREE (c.f. Lemma 7), at g the required time and the input
load of the implementation, including σ2, is guaranteed to be no
better than those of the implementation containing σ1. A similar
argument is then valid for g and the rest of the internal nodes
down to the leaf nodes. �

Theorem 2: FANROUT is an optimal algorithm.
Proof: An examination of the dynamic-programming

structure of FANROUT shows that if no pruning is performed
on the solution curves, all the possible solutions will be
considered. Therefore, to prove the optimality of the algorithm
it is enough to prove that for an optimal solution, replacing a
non-inferior solution with an inferior solution cannot improve
the whole implementation; this, however, was proven in
Lemma 8. �

Lemma 9: Depending on what metric is used for measuring
the area, the number of solutions in a solution curve is bounded
either polynomially or pseudo-polynomially.

Proof: The load of any solution is the input capacitance of
the driving buffer. However, the number of distinct input
capacitances of the buffers is bounded by the total number of
available buffers in the library m.

In every solution the maximum number of inserted buffers is
bounded by O(n). Therefore, the number of distinct buffer areas
is also bounded by O(n) since the area of every buffer is smaller
than a constant number, and the smallest non-zero difference
between the area of every two solutions is always greater than a
constant number. Both these limits are determined by the
library and do not depend on the size of the problem.

If the total buffer area is the metric used for measuring the
area, the number of non-inferior solutions in a solution curve is
bounded by O(mn). The reason is that the prune operation
keeps at most one solution per each distinct area and input load
values.

The bound becomes pseudo-polynomial when the total
capacitance is the metric used for measuring the area. In that
case we assume that the number of distinct capacitive loads
(called q) is polynomially bounded and is larger than the
number of inserted buffers. As a result the number of non-
inferior solutions is pseudo-polynomially bounded by O(mq).�

For the sake of simplicity, in the following theorem it is
assumed that the total buffer area is used as the metric to
measure the area cost of a solution.

Theorem 3: FANROUT has O(kmn3) memory complexity,
where k, m, and n are numbers of candidate locations, buffers,

and sinks, respectively.
Proof: There are k candidate locations, and for each

combination of L and R (a total of n(n+1)/2 combinations),
there is a solution curve. Each solution curve stores O(mn)
solutions, and as a result, the claim is proven. �

Theorem 4: FANROUT has O(mqk2α5n3) runtime
complexity, where k, m, and n are the numbers of candidate
locations, buffers, and sinks, respectively. Also, α is the
maximum branching factor in Cα-Tree, and q is a polynomially
bounded number of distinct capacitive loads.

Proof: In Fig. 6, the number of iterations performed in

lines 4 through 7 is O(α2n2). Lines 8 and 9 introduce O(k) and
O(mn) complexity, respectively. Calling PTREE in line 10 costs

O(kα3q), because the number of sinks provided to PTREE is
always less than α ; see Corollory 1. The complexity of
FANROUT is determined by considering all of the above
factors. �

V. LOCAL ORDER-PERTURBATION

This section presents a new technique that can enhance any
order-dependent dynamic-programming based algorithm - such
as PTREE, CαTREE, and FANROUT - to generate optimal
solutions with respect to a neighborhood of solutions.

Definition 3: An order Π on n sinks is a one-to-one function
defined as Π:{1, 2, … , n}→ {1, 2, … , n}, and j=Π(i) is called
the position of si in Π. Also, Π-1 is the inverse function of Π,

and i=Π-1(j) gives the sink’s index of the jth element in Π.
Example 1: Π= { (1→4) , (2→6) , (3→1) , (4→5) , (5→3) ,

(6→2) , (7→8) , (8→7) , (9→9)}, or equivalently,
(s3,s6,s5,s1,s4,s2,s8,s7,s9) is an order on {s1,s2,…,s9}. Also,

Π(3)=1 means s3 is the first element in Π, and Π-1(2)=6 means
that s6 is the second element in Π .

Although an algorithm that constructs an optimal structure
for any given order is a useful tool, determining a “good” sink
order remains as the main challenge. In the problem of buffered
routing generation, required times, input loads, and physical
locations of sink nodes should all be considered in generating a
suitable order. Incorporating those independent and sometimes
opposing parameters into the construction of an order is not an
easy task. Due to the exponentially large number of possible
orders, designers are forced to use heuristic approaches to
combine the effects of those parameters in an ad-hoc manner. In
general, the limitation imposed by working with one order at a
time is very restrictive and undesirable.

The local order-perturbation method is a technique that
works in a neighborhood of sink orders. No matter how one has
determined an order, the semi-order-independent dynamic-
programming formulation performs a systematic search in the
neighborhood of that order. If the initial order is not a locally
optimal order but close to it, this method chooses the optimal
order automatically. The main advantage of such a technique is
that it maintains an efficiency that is exponentially better than
that of an exhaustive search method while preserving the
optimality. Its superiority originates primarily from its



enhanced dynamic programming nature that enables the
method to take advantage of all similar sub-problems among all
the neighboring orders and thus avoid recomputing any sub-
solution.

By allowing the bottom-up semi-order-independent
algorithm to apply order perturbation operations, the sink order
in the resulting solution can deviate from the initial order. A
simple case is shown in Fig. 9 where the right-side border of a
sub-group ω has been perturbed. Consequently, the order in the
resulting group Ω is (s2,s3,s4,s6,s5,s7) as opposed to the initial

(s2,s3,s4,s5,s6,s7) order; that is, in the new order s5 has been

swapped with s6. In Fig. 9, s5 has been left out from ω; it is
called a bubble. When ω is used in a larger sub-group, it can be
assumed that the bubble has been moved to the other side of the
border of ω in the final structure. That operation causes the
swapping of the position of two neighboring sinks.

Definition 4: For a set of sinks {s1, s2, … , sn}, the neighbor-

hood of Π is defined as:
N(Π)={Π′ ∀ si , Π(i) - Π′(i)  ≤1 }.

In other words, the difference between the position of every si

in Π and Π′ is at most one.
Example 2: Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) is in the neighbor-

hood of Π=(s1,s2,s3,s4,s5,s6,s7,s8,s9), but
Π′′=(s3,s2,s1,s4,s5,s6,s7,s8,s9) is not in the neighborhood of Π.

Definition 5: For n>1, displacing the element i (1≤i≤n-1) of
Π (also referred to as the displacement operation) is defined as
swapping the location of sΠ-1(i) with the location of sΠ-1(i+1) in

Π. The displacement operation on element i always involves
two neighboring elements in Π, i.e., sΠ-1(i) and sΠ-1(i+1). The
two elements are called the elements of the displacement opera-
tion.

Definition 6: Two displacement operations are non-overlap-
ping if and only if they have no element in common. A set of
displacement operations are non-overlapping if and only if
every two operations in the set are non-overlapping.

Example 3: Displacing the 4th element of
Π′=(s1,s3,s2,s4,s5,s6,s8,s7,s9) results in
Π′′=(s1,s3,s2,s5,s4,s6,s8,s7,s9)

Lemma 10: Every Π′∈ N(Π) can be built from Π using a
series of non-overlapping displacement operations.

Proof: This is a proof by induction. Let us represent a sub-
string of Π that consists of the i left-most elements of Π by
sub_string(Π ,i). For i=0, it is trivial that sub_string(Π′
,0)=sub_string(Π ,0). Suppose for i=κ-1, sub_string(Π′ ,κ-1)
can be obtained from sub_string(Π ,κ-1), using a series of non-

overlapping displacement operations. Let j=Π-1(κ). Since
Π′∈ N(Π), there are three neighborhood cases according to
Definition 4.

• Π(j)=Π′(j): This means that the κth elements in Π and Π′
are the same. Therefore, the statement given in the above
lemma holds for i=κ as well.

• Π(j)=Π′(j)-1: This means that the κ+1th element in Π′ is

the same as the κth element in Π. Let j ′=Π′ -1(κ). In this
case, we will have Π(j ′)=Π′(j ′)+1, otherwise Π(j ′)-Π′
(j ′)>1 (in violation of Definition 4) because the Π′(j ′)-1 and
Π′(j ′) slots have already been taken by sinks other than sj ′ .

Therefore, we have a displacement at the κth element of Π,
and the statement given in the above lemma holds for
i=κ+1 as well.

• Π(j)=Π′(j)+1: This case cannot happen because it implies
sj is the κ-1th element of Π′ which is in conflict with the

above assumption. �

Definition 7: Any arbitrary (n-1)-bit binary number w is
called a non-overlapping displacement code, if and only if, it
contains no two adjacent bits of 1. Also, W is defined as the set
of all non-overlapping displacement codes.

Definition 8: The position of a bit b in a binary number w is
defined as the number of bits on the left-side of b plus one.

Lemma 11: There exists a one-to-one relationship between
the members of W and N(Π).

Proof: First, we prove that for ∀ w∈ W there exists a
corresponding Π′∈ N(Π). For every 1 bit in w, set i to the
position of that bit in w and displace the ith element of Π; call
the resulting order Π′. Before the first displacement operation
the inequality given in Definition 4 holds. Also, if the
inequality between the initial order and the resulting order after
j displacement operations is valid, it still holds after the j+1th
displacement operation. That is because every displacement
operation changes the location of the two swapped elements by
±1 and keeps the location of the other elements unchanged. In
addition, since w is non-overlapping code, no element is
displaced more than once. Consequently, using induction we
conclude that Π′∈ N(Π).

Now, we prove that for ∀Π ′∈ N(Π) there exists a
corresponding w∈ W. According to Lemma 10, Π′ can be
generated from Π using a unique set of non-overlapping
displacements. Those displacement operations can be coded in
a non-overlapping displacement code which belongs to W. �

Example 4: Fig. 10 illustrates the equivalence of W and N(Π)
for a simple example.

Theorem 5: For n>1, the number of distinct orders in the
neighborhood of a given order Π is equal to:

Fig. 9. Construction with order perturbation.
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Proof: According to Lemma 11 there is a one-to-one
relationship between N(Π) and W. Therefore, these two sets
have equal cardinality, and we can equivalently prove the above
equation for W. So, we have to find out how many binary
numbers in the form of w=w1w2…wn-1 exist that have no two
adjacent 1s. The population of such numbers is equal to the off-
set size of the following Boolean equation:

f=w1w2+w2w3+…+wn-3wn-2+wn-2wn-1

Fig. 11 is the binary decision diagram (BDD) representation
of the above equation. By induction, it can be verified that this
structure is valid for n>0. In this figure, the number under each
BDD node gives the number of distinct paths that exist from
that node to the root.

Due to the symmetric structure of the equation and the
corresponding BDD, the number of paths from a node to the
root follows the Fibonacci number series. In the Fibonacci
number series, the k+1th number is the sum of the k-1th and kth
numbers in the series. As shown in Fig. 11, the number of
distinct paths from the leaf node zero to the root is
2×Fib(n)+Fib(n-1). Note that the factor of 2 appearing in the
equation represents the fact that during the decomposition a
zero sub-space has been reached while the decomposition is not
yet over with respect to the last variable. By a few simple
manipulations we get the final result:

2×Fib(n)+Fib(n-1)=(Fib(n)+Fib(n-1))+Fib(n)
=Fib(n+1)+Fib(n)=Fib(n+2)

There is a direct closed-form for calculating the n+2th number
in a Fibonacci series. According to the formula given in [MCS],
we derive the equation given in the theorem. �

Note the formula that returns the nth Fibonacci number
involves square root of 5 (an irrational number), yet it always
returns an integer for all (integer) values of n [MCS].

Theorem 5 proves that the size of N(Π) is an exponential
function of the number of sinks. Consequently, finding the best
order in that sub-space of orders is a task of exponential
complexity if a simple enumeration-based technique is used.
However, all the common sub-solutions of different orders can
be shared in a dynamic-programming based algorithm that
utilizes the aforementioned idea of local order-perturbation.
This in turn allows us to investigate the whole neighborhood in
polynomial time.

Fig. 12 presents a set of abstract grouping structures {χ0, χ1,

χ2, χ3} by which one can cover a whole neighborhood of
orders. χ0 has no bubble on its sides, and χ1, χ2, and χ3 have

bubbles on the right-side, left-side, and both sides, respectively.
For instance, the grouping ω of Fig. 9 is a χ1-type structure. A
full neighborhood is covered, if at each level of dynamic
programming and for each sub-group of sinks, all the grouping
structures are generated from all the grouping structures of their
internal sub-groups; Fig. 13 shows an example.

Example 5: The example in Fig. 13 illustrates the use of χ3
structure to generate a χ1-type solution for Ω. In this case, the
resulting order is (s3,s2,s4,s5,s7,s6,s9). This new sub-solution
will be used to generate larger sub-solutions that contain it.

The local order-perturbation technique can be extended to
structures with more than one bubble on each side. Those
structures in turn result in covering larger neighborhoods.
However in that case, the number of grouping structures grows
exponentially and, consequently, results in a significant slow-
down of the corresponding construction algorithm.

VI. SEMI ORDER-INDEPENDENT HIERARCHICAL BUFFERED
ROUTING TREE CONSTRUCTION

In this section, the local order-perturbation theory is applied
to FANROUT and B_PTREE (sub-sections A. and B.), and the
resulting algorithm, MERLIN, is presented in sub-section C.

A. BUBBLE_CONSTRUCT

The technique presented in the following generates
hierarchical buffered routing trees in a neighborhood of orders.
The resulting hierarchies are consistent with the Cα-Tree
structure, and in addition, the routing inside each layer of the
Cα-Tree hierarchy is a P-Tree. Some parts of the
BUBBLE_CONSTRUCT code (Fig. 14) are similar to the code
of FANROUT and are not discussed again. It is assumed that
the reader is familiar with the algorithm presented in section
IV.

BUBBLE_CONSTRUCT operates on three dimensional
solution curves Γ, each associated with a distinct set of values
for l, r, p, and e. The first three variables are the same as the
ones defined for FANROUT. The variable e encodes the
grouping structure used to generate the solution curve.

1) Initialization: In this section, a set of solution curves are
initialized. Here, sub-groups of length 1 are considered, and the
corresponding solution curves for every candidate buffer
location, sink, and grouping structure are initialized. Note that

Fig. 11. BDD of f.
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for sub-groups with length 1, all four grouping structures ( χ0 ,

χ1 , χ2 , and χ3 ) are the same; however, for the sake of

simplicity in the rest of the pseudo-code, separate (although
similar) solution curves are generated for each case. A similar
situation occurs for χ1 and χ2 where L=2.

2) Construction: The main difference between this algorithm
and FANROUT is in the grouping phase, i.e., lines 3 through 13
in Fig. 14. BUBBLE_CONSTRUCT starts from L=1 and goes
up to L=n. For each new sub-group of sinks, all possible
grouping structures (coded by numbers 0 to 3) are enumerated
in line 4. For the case of χ0 (E=0), the length of the sub-group

is equal to L, but for the other cases the actual length of the sub-
group is larger by one or two units in order to capture the effect
of inserting one or two bubbles on the sides. This new length is

calculated and stored in L′ (refer to line 5 and Fig. 15). In line 6,
all the possible sub-strings of length L′ are considered from the
right to the left of Π. In fact, the variable R points to the right-
most element of the sub-strings of L′ elements.

Lines 8 through 11, similar to lines 3 through 6, investigate
all possible sub-group lengths with different grouping
structures and positions which fit inside the sub-group being
constructed. Fig. 17 illustrates an example where a sub-group
of 5 sinks, Ω, is being generated using a combination of an
already generated sub-group of 3 sinks, ω, and two other sinks,
i.e., s2 and s4.

It can be seen that in some cases Ω and ω are not compatible.
As an example, consider the situation shown in Fig. 18 where
the difference between the values of r and R causes the
grouping structure of ω to not fit in the grouping structure of Ω.
Those cases are detected and skipped in line 13 of the pseudo-
code. Note that sets G and g - calculated in lines 7 and 12 -
represent the sets of sinks included in Ω and ω, respectively
(also refer to Fig. 16).

In line 16, REORDER updates G by replacing all the sinks
that belong to g with a pseudo-sink that represents the root of γ
(a solution to ω). The resulting order is called G′.

In line 17, an enhanced version of B_PTREE (called
*PTREE) is called to generate a new set of solutions for all
candidate locations. Every solution created by *PTREE shows
the combination of ω with the rest of sink nodes of Ω. The
details of *PTREE are presented in the following sub-section.

3) Extraction: In this section, a solution from Γ(n, n, s, 0)
that best satisfies the input constraints is selected and
reconstructed by tracing back the stored pointers.

The quality and complexity of BUBBLE_CONSTRUCT is
further discussed in sub-section D.

B. *PTREE

*PTREE is a solution to the problem of non-hierarchical
buffered routing tree construction. As mentioned earlier,
*PTREE is called by BUBBLE_CONSTRUCT within each
level of the Cα-Tree hierarchy. Consequently, *PTREE is
responsible for conducting the order-perturbation task within
each level of the hierarchy, otherwise
BUBBLE_CONSTRUCT would not be optimal with respect to

Fig. 14. The pseudo-code for BUBBLE_CONSTRUCT.

algorithm BUBBLE_CONSTRUCT( s, P, B, Π=(s1 , s2, ... , sn) )

INITIALIZATION
1. for e = 0 to 3
2. // similar to the lines 1 through 3 in Fig. 6 except that

// Γ( 1 , r , p ) should be replaced with Γ( 1 , r , p , e )
CONSTRUCTION

3. for L = 1 to n
4. for E = 0 to 3
5. set L′ = L + STRETCH(L, E) // see Fig. 15
6. for R = n downto L′
7. set G = SINK_SUBSET( Π , R , L , E ) // see Fig. 16
8. for l = max( 1 , L-α+1 ) to L-1
9. for e = 0 to 3
10. set l′ = l + STRETCH(l, e) // see Fig. 15
11. for r = R downto R-l′+1
12. set g = SINK_SUBSET( Π , r , l , e ) // see Fig. 16
13. if g-G ≠ φcontinue
14. foreach p ∈ P
15. foreach γ ∈ Γ ( l , r , p, e )
16. set G′ = REORDER( G , g , γ )
17. set ∆ = *PTREE( P , B , G′ )
18. // similar to the lines 11 through 17 in Fig. 6 except that

// Γ( L , R , p′ ) should be replaced with Γ( L , R , p′, E )
EXTRACTION

19. // similar to the lines 18 through 20 in Fig. 6 except that
// Γ( n , n , s ) should be replaced with Γ( n , n , s, 0 )

Fig. 15. The pseudo-code for STRETCH.

algorithm STRETCH( L, E )
1. set g=0
2. if L=2 and E>0 set g=1
3. else if L>2 and E=1 set g=1
4. else if L>2 and E=2 set g=1
5. else if L>2 and E=3 set g=2
6. return g

Fig. 16. The pseudo-code for SINK_SUBSET.

algorithm SINK_SUBSET( Π=(s1 , s2, ... , sn), R, L, E )
1. if L=1 set G = { sR }
2. else if L=2
3. switch E
4. case 0 : set G = { sR-1 , sR }
5. case 1, 2, 3 : set G = { sR-2 , sR }
6. else
7. L′=STRETCH( L, E )
8. switch E
9. case 0 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR-1 , sR }
10. case 1 : set G = { sR-L′+1 , sR-L′+2 , sR-L′+3 , ... , sR-2 , sR }
11. case 2 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR-1 , sR }
12. case 3 : set G = { sR-L′+1 , sR-L′+3 , ... , sR-2 , sR }
13. return G

Fig. 17. A legal grouping scenario for BUBBLE_CONSTRUCT.
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the complete neighborhood of orders.
The algorithm is an enhanced version of B_PTREE [LCL96]

with two main differences: I) it uses the local order-
perturbation technique, and as a result, it is optimal with respect
to a neighborhood of orders and II) as an input it takes a set of
candidate buffer locations, and therefore, the locations of
buffers and Steiner points are not restricted to Hanan points.

At every step of dynamic programming in *PTREE, a sub-
group of sinks Ω is solved using the existing solutions to two
smaller sub-groups (ω1 and ω2) which partition Ω into two

segments. Fig. 20 illustrates a legal grouping situation in which
ω1 and ω2 properly partition Ω

For the design of *PTREE, three issues have been
considered:
• ω1 and ω2 do not share any sinks,

• ω1 and ω2 cover all (and only) the sinks of Ω,

• All the possible combinations of grouping structures and
sizes must be considered for ω1 and ω2.

The pseudo-code of *PTREE is given in Fig. 19. In lines 2
through 5, all combinations of size L, grouping structure E, and
position R are constructed for Ω . Then, ω1 is constructed in

lines 7 through 10. As shown in the code, the rightmost element
of ω1 is always the rightmost element of Ω . Some

combinations of Ω and ω1 may not be legal, which means Ω
does not contain at least one element of ω1 . Although those

cases could be avoided during the construction of ω1, for the

sake of presentation, they are explicitly pruned by the condition
in line 12. In that line, any ω1 incompatible with Ω is detected
and disregarded.

.In lines 13 through 22, ω2 is generated by considering Ω
and ω1. The size, grouping structure, and position of ω2 are

determined so that ω2 contains all the sink nodes of Ω that are

not included in ω1 . If ω1 has a bubble on its left side, i.e.,
grouping structures χ2, χ3, that bubble is the rightmost element

of ω2; see line 19. Similarly, if Ω has a bubble on its left-side,
ω2 should have a grouping structure with a bubble on its left,

and so on. For more details refer to the pseudo-code in Fig. 19.
Again, some illegal cases may occur but are pruned in line 24.

After line 24, ω1 and ω2 are known and their solution curves

are combined the same way that B_PTREE combines the
solution curves. Interested readers may refer to [LCL96] for the
details of B_PTREE.

C. MERLIN

This sub-section presents MERLIN, a local neighborhood
search algorithm, which employs BUBBLE_CONSTRUCT to
find a local optimum sink order and the optimum buffered
routing tree corresponding to that order.

Generally, an optimization problem has a set of solutions and
a cost function that assigns a value to every solution. The goal
is to find an optimal solution, i.e., one that has the minimum (or
maximum) cost. The local neighborhood search, as a member
of iterative solution methods, is a widely-used, general
approach for solving optimization problems.

To obtain a local search (LS) algorithm for solving an
optimization problem, one superimposes a neighborhood
structure on the solutions, i.e., for each solution a set of
neighboring solutions is specified. This LS algorithm starts
from some initial solution, which may be constructed by some
other algorithm or generated randomly, and from then on keeps
moving to a better neighboring solution, until finally it
terminates at a locally optimal solution. This method has been
applied both in the context of continuous and discrete
optimizations [Ya92]. In general, simulated annealing is a
special case of local neighborhood search that allows uphill
moves. Fig. 21 illustrates the behavior of a local neighborhood

Fig. 19. The pseudo-code for *PTREE.

algorithm *PTREE(P, B, Π=(s1 , s2, ... , sn))

INITIALIZATION
1. // the same as the one in BUBBLE_CONSTRUCT, see Fig. 14

CONSTRUCTION
2. for L = 2 to n
3. for E = 0 to 3
4. set L′ = L + STRETCH(L, E); // see Fig. 15
5. for R = n downto L′
6. set G = SINK_SUBSET( Π, R, L, E ); // see Fig. 16
7. for l1 = 1 to L-1
8. for e1 = 0 to 3
9. set l1′ = l1 + STRETCH(l1, e1); // see Fig. 15
10. set r1 = R
11. set g1 = SINK_SUBSET( Π, r1, l1, e1 ); // see Fig. 16
12. if g1-G ≠ φcontinue;
13. set l2 = L - l1
14. switch e1
15. case 0, 1 : set r2 = r1-l1′
16. switch E
17. case 0, 1 : set e2 = 0
18. case 2, 3 : set e2 = 2
19. case 2, 3 : set r2 = r1-l1′+2
20. switch E
21. case 0, 1 : set e2 = 1
22. case 2, 3 : set e2 = 3
23. set g2 = SINK_SUBSET( Π, r2, l2, e2 ); // see Fig. 16
24. if g2-G ≠ φor g2-g2 ≠ φcontinue;
25. // combine Γ( l1, r1, p, e1 ) and Γ( l2, r2, p, e2 ) in

// the same way PTREE combines the solution curves

Fig. 20. A legal grouping scenario for *PTREE.
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search.

Definition 9: A function N:F→2F, which associates a subset
N(x) with each x∈ F, is a neighborhood function over F iff

∀ x∈ F, x∈ N(x) and ∀ x∈ F, x∈ N(y)⇒y∈ N(x).
BUBBLE_CONSTRUCT induces a well-defined

neighborhood function in which it finds the best solution. The
same definition is also used by MERLIN.

Lemma 12: The properties required by Definition 9 are con-
sistent with those of neighborhood introduced in Definition 4.

Proof: In Theorem 5, we proved that the size of the
neighborhood, N(Π), is always greater than 1, independent of
the choice of Π. Also, for every Π′∈ N(Π) there is a unique
non-overlapping displacement code, w, that transforms Π to Π′.
To prove that Π∈ N(Π′)also, we need to prove that there is a
non-overlapping displacement code, w ′, that transforms Π′ to
Π. It can be shown that w ′=w is, in fact, the solution. �

There exist at least two sink orders , i.e., Π and Π′, in
common between the neighborhood of two consecutive
iterations of MERLIN’s local search (see Fig. 22). In fact, this
overlap, OVERLAP(N(Π),N(Π′)), is often relatively large.
Intuitively, when the corresponding non-overlapping
displacement code has more 1s, OVERLAP(N(Π),N(Π′)) is
smaller. Obviously, it is a waste to consider the overlapping
sub-space twice. This can be prevented by keeping solution
curves of the very last iteration. For similar sub-problems
simply copy the corresponding solution curve between the two
iterations. However, this speed-up is achieved at the cost of
doubling memory usage.

D. Quality and Complexity Analysis

Theorem 6 : *PTREE executes in O(kα3q) where k is the
total number of buffer candidate points, α is the number of
sinks, and q is a polynomially bounded number of distinct
capacitive loads.

Proof: In Fig. 19, lines 2, 5, and 7 each introduce O(α)
complexity. Note that in the pseudo-code, n is the number of
sinks that is referred to as α in this theorem. The merge
operation (line 25), which is the same as in B_PTREE, has a
O(kq) complexity [LCL96]. �

Lemma 13: Orders generated by BUBBLE_CONSTRUCT
are in the neighborhood of the initial order.

Proof: This is a proof by induction. The pseudo-code
directly forces the grouping structures to cover each other like
nested shells. Starting from the innermost shell, we analyze the
effect of grouping structures. Case i=1: after the bubble-out
step (see Fig. 9), for the innermost grouping structure, the order
of all the sinks remains unchanged except for the two which are
on the border of the bubbled sub-group. Consequently, the

inequality relation in Definition 4 remains valid, and the
resulting order is within the neighborhood of the initial order.
Case i=n: suppose that after the bubble-out step for the n-1
innermost grouping structures, the inequality of Definition 4
still holds. The order for the sinks on the border of the nth
grouping structure must still be unchanged because no overlap
is allowed between the borders of two grouping structures.
Therefore, even after the bubble-out step for the nth grouping
structure, the resulting order is within the neighborhood of the
initial order. �

Lemma 14: Any Π′∈ N(Π), is considered by
BUBBLE_CONSTRUCT.

Proof: BUBBLE_CONSTRUCT implicitly tries all the
possible valid combinations of grouping structures on Π.
Therefore, it is enough to prove that ∀Π ′∈ N(Π) there exists a
combination of grouping structures that result in that order.
Suppose that w is the non-overlapping displacement code of
Π′∈ N(Π), as given in Definition 7. Starting from the left-most
1-bit in w (j is the position of that bit in w) extend a χ1-type

sub-group from the left-most sink to the j+1th sink. After the
bubble-out step the resulting order is similar to Π′ for the j left-
most sinks and similar to Π for the rest of the sinks. Repeat this
operation for the next bit 1 in w in order from left to right.
There are no two neighboring 1s in w; therefore at each step the
left portion of the resulting order resembles Π′ and the other
portion is like Π . At the last step when there is no 1 left in w,
we cover the initial order from left to right with a χ0-type sub-

group. The resulting order, after the bubble-out step for all the
sub-groups, is Π′, and since it has a valid grouping structure it
is considered by the pseudo-code of Fig. 14. � 

The example in Fig. 23 illustrates the proof of Lemma 14.
Lemma 15: Any identical sub-problem among the members

of N(Π) is shared and processed only once.
Proof: Any sub-problem is uniquely identified by l, e, and

r values. ∀ p∈ P, Γ(l,e,r,p) is generated only once, no matter in
which compatible and larger grouping structure it will be used
later. Note that according to Lemma 13 and Lemma 14,
BUBBLE_CONSTRUCT covers the whole space of N(Π). �

Theorem 7: The solution space of BUBBLE_CONSTRUCT
is the product of the spaces of *P-Tree and Cα-Tree for the
neighborhood of the initial given order.

Proof: ∀Π ′∈ N(Π), all the corresponding Cα-Trees with
the boundary of their sub-groups on the displaced sinks’
locations are visited and for every one of them all the *P-Tree
structures are considered by *PTREE. However, there are some
Cα-Trees that correspond to Π′ whose displacements are not at

Fig. 22. The pseudo-code for MERLIN.

algorithm MERLIN( s , P, B, Π=(s1 , s2 , … , sn) )
1. set Π′ = Π
2. do {
3. set Π = Π′
4. set ℜ = BUBBLE_CONSTRUCT( s , P , B , Π )
5. set Π′ = SINK_ORDER( ℜ )
6. } while ( Π != Π′ )
7. return ℜ

Fig. 23. An illustration for the proof of Lemma 14.
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the boundary of the sub-groups. *PTREE considers all the
necessary displacements inside one layer of those Cα-Tree. �

Lemma 16: BUBBLE_CONSTRUCT is monotone with
respect to required time, load, and area.

Proof: By considering that *PTREE is monotone with
respect to the required time, load, and area, we can conclude
that in a Cα-Tree, decreasing the load of either an internal or a
sink node results in the decrease of load in its immediate parent.
A similar argument is valid for required time and total area. �

Lemma 17: In BUBBLE_CONSTRUCT, the pruning opera-
tion does not eliminate any non-inferior solution.

Proof: The proof follows Lemma 16 and Definition 2. �

Theorem 8: Subject to restrictions imposed by the *P-Tree
and Cα-Tree structures, BUBBLE_CONSTRUCT finds all the
non-inferior solutions with respect to required time and total
area in the neighborhood of a given order.

Proof: If no pruning is performed all the space is explicitly
constructed (see Theorem 7). Lemma 17 states that the prune
operation drops the sub-solutions that are only used in inferior
solutions. Therefore, all the non-inferior solutions remain in the
final curves of BUBBLE_CONSTRUCT. �

For the sake of simplicity, in the following it is assumed the
total buffer area is the metric used to measure solution area.

Theorem 9: BUBBLE_CONSTRUCT has O(kmn3) memory
complexity where k, m, and n are numbers of candidate
locations, buffers, and sinks, respectively.

Proof: The proof is the same as for Theorem 3. The only
difference is that the number of solution curves is four times
higher in BUBBLE_CONSTRUCT than in FANROUT, since
for every grouping structure a solution curve is stored. �

Theorem 10: BUBBLE_CONSTRUCT has O(mqk2α 5n3)
runtime complexity where k, m, and n are the number of
candidate locations, buffers, and sinks, respectively. Also, α is
the maximum branching factor in Cα -Trees, and q is
polynomially bounded number of distinct capacitive loads.

Proof: The proof is similar to that of Theorem 4. �

Corollory 2: Assuming that m, q, and α are parameters
independent from the size of the problem n and are determined
by the library and technology, the effectual worst-case
complexity of BUBBLE_CONSTRUCT is O(k2n3).

Theorem 11: The cost associated with orders produced by
iterations of MERLIN (but the last one) is strictly decreasing.

Proof: BUBBLE-CONSTRUCT always returns the best
order in the neighborhood; thus if a different order is returned,
it must correspond to a lower cost. In the last iteration, the cost
of the given order is the best in the neighborhood, and that is
how the iteration is terminated. �

VII. EXPERIMENTAL RESULTS

In this section, three experimental setups have been tested
and compared on a set of benchmark circuits.
• Setup-I: For every net, fanout optimization using LTTREE

is followed by a routing tree construction phase using
PTREE. In LTTREE, the net sinks are sorted with respect to
their required times. However, in PTREE the net sinks are

sorted by a solution to the TSP (Traveling Salesman Prob-
lem) using the method suggested in [LCLH96].

• Setup-II: Routing tree generation using PTREE is followed
by buffer insertion using the van Ginneken’s method
[Gi90]. The sink order for PTREE is again the TSP order.

• Setup-III: Finally, hierarchical buffered routing generation
is performed using MERLIN and an initial TSP order.

All the experiments have been implemented and executed in
SIS [SSLM92] and on a dual-processor Ultra-2 Sun Sparc
workstation with 256MB memory. In these experiments, an
industrial standard cell library (0.35µm CMOS process)
consisting of 34 buffers has been used. Gate and wire delays are
calculated using a 4-parameter delay equation and the Elmore
delay model [El48], respectively.

A. Comparison on Individual Nets

Table 1 reports the results of running the above three
experimental setups on 18 individual nets randomly selected
from a set of benchmark circuits. For every extracted net, the
sink locations are determined randomly in a bounding box. The
size of the box has been determined such that the delay of a
wire segment whose length is half the perimeter of the box is
approximately equal to the delay of an average gate driving that
wire. In addition, the load and required time sink data have
been selected randomly from a nominal range.

In Table 1, the reported area and delay values are the total
buffer area and the maximum delay at the root of the net in the
resulting buffered routing structures. Also, the runtimes have
been reported in seconds for every net and setup. Note, the data
of Setup-I has been reported in absolute values; however, for
the other two setups the results have been scaled with respect to
their corresponding data in Setup-I.

For each net, the last column in Table 1 reports the number
of iterations performed during the execution of MERLIN. For
about 28% of the cases reported in the table, MERLIN
converges in one iteration. That indicates that the initial sink
order is a local minimum in its neighborhood. This effect can
be used as a metric to measure the effectiveness of the
heuristics used to generate the initial order. The experiments
indicate that the TSP heuristic tends to perform better with
respect to this metric compared to a few other heuristics.
Hence, the TSP order has been used in all experimental setups.

B. Comparison on Circuits

Table 2 reports the post-layout total area and delay values for
a set of benchmark circuits. In these experiments the above
three setups have been plugged into a full design flow that
extends from the logic synthesis all the way down to the
detailed routing. The resulting design flows have been named
Flow-I, Flow-II, and Flow-III, respectively. Again, the data for
Flow-I is the absolute to which the rest are scaled.

VIII. CONCLUSIONS

In this paper, the problem of distributing a signal among a set
of sinks with different placement, load, and required time
values has been addressed. The proposed technique generates a



set of non-inferior buffered routing structures that provide
different trade-offs between the required-time at the root and
the total buffer area. The introduced solution consists of an
iterative optimization block that uses a local neighborhood
search strategy and an optimization engine based on dynamic
programming that generates all the non-inferior structures in
the neighborhood of a given sink order. This optimization
engine generates and propagates 3-dimensional solution curves
and employs a novel local order-perturbation method to cover
an exponentially sized solution space in polynomial time. The
experimental results show significant delay improvement with
little area penalty compared to the conventional buffer and
routing tree generation techniques.
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Ratios normalized w.r.t. Setup I

Taken
from

circuit

Net
name

Num of
sinks

Setup-I:
LTTREE + PTREE

Setup-II:
PTREE + Buffer Insertion

Setup-III:
MERLIN

Area
*1000 λ2

Delay
(ns)

Runtime
(s)

Area Delay Runtime Area Delay Runtime Loops

C432 net1 16 58 38.54 22 0.33 0.87 0.36 0.28 0.39 25.09 2
net2 16 83 35.49 41 0.27 0.71 1.66 0.69 0.48 5.24 1
net3 10 51 32.19 44 1.31 0.88 4.27 0.56 0.70 15.27 7

C1355 net4 9 35 26.69 16 0.64 0.88 1.88 0.82 0.57 3.00 4
net5 9 16 23.42 15 0.80 0.95 0.86 3.80 0.47 2.33 5
net6 13 29 25.42 14 0.33 0.95 3.43 0.56 0.30 78.00 6

C3540 net7 12 58 41.03 29 0.50 0.88 1.79 1.44 0.55 23.59 12
net8 35 93 47.05 99 0.17 0.83 4.42 0.17 0.49 7.92 1
net9 73 214 60.73 229 1.55 0.69 1.83 0.12 0.42 1.98 1

C5315 net10 49 70 40.29 302 0.64 0.78 2.34 0.36 0.33 6.09 2
net11 21 80 38.20 111 1.12 0.66 1.02 0.40 0.26 4.32 4
net12 50 128 58.79 829 0.65 0.53 0.64 0.20 0.27 13.20 9

C6288 net13 16 58 44.65 52 0.83 0.73 1.12 2.11 0.49 9.33 5
net14 20 58 45.67 28 0.67 0.91 1.71 1.00 0.73 3.54 1
net15 60 90 90.29 197 0.25 0.74 1.42 0.29 0.55 16.20 4

C7552 net16 12 54 32.20 26 1.35 0.90 3.00 1.18 0.54 12.38 2
net17 16 58 31.35 54 0.94 0.86 1.11 1.56 0.39 9.72 5
net18 23 54 38.38 43 0.35 0.91 2.16 0.29 0.39 5.70 1

Average: 0.71 0.81 1.95 0.88 0.46 13.49

Table 1: Total buffer area, delay, and runtime for a number of individual nets.
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Ratios normalized w.r.t. Flow I

Circuits

Flow-I:
LTTREE + PTREE

Flow-II:
PTREE + Buffer Insertion

Flow-III:
MERLIN

Area*1000 λ2 Delay (ns) Runtime (s) Area Delay Runtime Area Delay Runtime
C1355 3630 8.18 1276 0.97 0.97 0.99 0.93 0.72 2.23
C1908 7768 14.47 2560 1.03 1.10 0.95 1.02 0.80 2.55
C2670 9428 12.40 1699 0.99 0.99 1.09 1.06 0.96 2.05
C3540 15762 22.17 5436 1.21 1.57 0.79 1.27 0.88 0.98
C432 3574 10.13 1382 1.16 1.06 0.79 1.57 1.00 1.17
C6288 28497 52.94 13547 0.96 1.03 0.88 1.00 0.90 1.00
C7552 35189 19.80 9250 0.78 1.06 0.95 0.85 0.74 1.36
Alu4 8191 15.69 2842 1.22 0.99 0.86 1.02 0.96 1.62
B9 1210 2.81 271 0.98 1.25 0.82 1.36 0.99 4.18
Dalu 10344 18.59 3465 0.73 0.88 0.66 0.88 0.67 1.74
Desa 32388 27.00 19427 1.12 1.12 0.75 1.19 0.82 0.83
Duke2 5499 9.00 2554 1.15 0.91 0.74 1.04 0.83 0.80
K2 22823 26.66 5831 0.85 0.75 1.73 0.93 0.63 2.56
Rot 8315 7.80 1572 0.91 1.02 0.83 1.00 0.81 3.40
T481 8917 10.12 5239 1.22 1.01 0.78 0.92 1.08 1.26

Average: 1.02 1.05 0.91 1.07 0.85 1.85

Table 2: Post-layout area, delay, and runtime for a set of benchmark circuits.


