High-Level Power Modeling, Estimation, and Optimization

Enrico Macii
Politecnico di Torino

Torino, ITALY 10129

Abstract— Silicon area, performance, and testability have
been, so far, the major design constraints to be met dur-
ing the development of digital VLSI systems. In recent
years, however, things have changed; increasingly, power
has been given weight comparable to the other design pa-
rameters. This is primarily due to the remarkable success
of personal computing devices and wireless communication
systems, which demand high-speed computations with low
power consumption. In addition, there exists a strong pres-
sure for manufacturers of high-end products to keep power
under control, due to the increased costs of packaging and
cooling this type of devices. Finally, the need of ensuring
high circuit reliability has turned out to be more stringent.
The availability of tools for the automatic design of low-
power VLSI systems has thus become necessary. More
specifically, following a natural trend, the interests of the
researchers have lately shifted to the investigation of power
modeling, estimation, synthesis, and optimization tech-
niques that account for power dissipation during the early
stages of the design flow.

This paper surveys representative contributions to this area
that have appeared in the recent literature.

I. INTRODUCTION

In order to shorten the overall time-to-market of new
products, today’s electronic systems are designed from
specifications given at a very high level of abstraction. This
novel design paradigm is made possible by the recent avail-
ability of EDA tools that can take, as input, the description
of a system expressed in a Hardware Description Language
(HDL) like VHDL or Verilog, and that can automatically
produce the corresponding gate-level implementation with
very limited human intervention. From there, well estab-
lished technology can be exploited to generate transistor-
level netlists and layout masks.

Figure 1 summarizes the flow of operations that are re-
quired to go from a system-level specification to an archi-
tecture made of a processor, a memory, a few RTL macro-
cells, and some glue and steering logic (in the form of a
gate or switch-level netlist). Depending on the applica-
tion, different constraints (e.g., performance, area, power,
testability) must be satisfied during the various phases of
the flow.

Figure 1 goes here.

When the target is a low-power application, the search
for the optimal solution must include, at each level of ab-
straction, a “design improvement loop”. In such a loop, a
power analyzer/estimator (shown in grey in Figure 1) ranks

Massoud Pedram
Univ. of Southern California

Los Angeles, CA 90089

Fabio Somenzi
Univ. of Colorado
Boulder, CO 80309

the various design, synthesis and optimization options, and
thus helps in selecting the one that is potentially more effec-
tive from the power stand-point. Obviously, collecting the
feed-back on the impact of the different choices on a level-
by-level basis, instead of just at the very end of the flow
(i.e., at the gate-level), enables a shorter development time.
On the other hand, this paradigm requires the availability
of power estimators, as well as synthesis and optimization
tools, that provide accurate and reliable results at various
levels of abstraction.

In this paper, we review some of the techniques for high-
level power modeling, estimation, and optimization that
have appeared recently in the literature. In particular,
we focus on the software, behavioral, and register-transfer
(RT) levels, since these are the areas where most of the re-
search efforts have been concentrated in the last few years.
On the other hand, we do not discuss traditional logic-
level (and below) techniques, since this subject is out of
the scope of this paper (the interested readed may refer to
[1], [2], [3], [4] for excellent surveys on this topic).

II. MODELING AND ESTIMATION

It has been pointed out in the introduction that the avail-
ability of level-by-level power analysis and estimation tools
that are able to provide fast and accurate results are key for
increasing the effectiveness of automatic design frameworks
organized as shown in Figure 1. We start this section,
with a concise description of techniques for software-level
estimation (Section TI-A). We then move to the behav-
ioral level (Section TI-B), where we discuss existing power
estimation approaches that rely on information-theoretic
(Section II-B.1), complexity-based (Section II-B.2), and
synthesis-based (Section TI-B.3) models. Finally, we focus
our attention to designs described at the RT-level (Sec-
tion II-C). This is the area where most of the research
activity on power modeling and estimation has been con-
centrated in recent times; we cover two of the most in-
vestigated classes of methods, namely, those relying on
regression-based models (Section II-C.1) and on sampling-
based models (Section TI-C.2).

As mentioned in the introduction, power estimation tech-
niques working below the RT level have reached a solid
degree of maturity, since they have been studied for quite
a long time now; therefore, we do not treat them in this

paper.
A. Software-Level Power Estimation

The first task in the estimation of power consumption of
a digital system is to identify the typical application pro-
grams that will be executed on the system. A non-trivial

application program consumes millions of machine cycles,
making it nearly impossible to perform power estimation
using the complete program at, say, the RT-level. Most of
the reported results are based on power macro-modeling, an
estimation approach which is extensively used for behav-
ioral and RT-level estimation (see Sections II-B and II-C).

In [5], the power cost of a CPU module is characterized
by estimating the average capacitance that would switch
when the given CPU module is activated. In [6], the switch-
ing activities on (address, instruction, and data) buses are
used to estimate the power consumption of the micro-
processor. In [7], based on actual current measurements
of some processors, Tiwari et al. present the following
instruction-level power model:

Energy, = Z(BCiNi) + Z(SCi,jNiJ) + Z OCk

i i k

where FEnergy, is the total energy dissipation of the pro-
gram which is divided into three parts. The first part is
the summation of the base energy cost of each instruction
(BC5 is the base energy cost and Nj; is the number of times
instruction i is executed). The second part accounts for the
circuit state (SC; ; is the energy cost when instruction 7 is
followed by j during the program execution). Finally, the
third part accounts for energy contribution OC), of other
instruction effects such as stalls and cache misses during
the program execution.

In [8], Hsieh et al. present a new approach, called profile-
driven program synthesis, to perform RT-level power esti-
mation for high performance CPUs. Instead of using a
macro-modeling equation to model the energy dissipation
of a microprocessor, the authors use a synthesized program
to exercise the microprocessor in such a way that the re-
sulting instruction trace behaves (in terms of performance
and power dissipation) much the same as the original trace.
The new instruction trace is however much shorter than the
original one, and can hence be simulated on a RT-level de-
scription of the target microprocessor to provide the power
dissipation results quickly.

Specifically, this approach consists of the following steps:

1. Perform architectural simulation of the target micro-
processor under the instruction trace of typical appli-
cation programs.

2. Extract a characteristic profile, including parameters
such as the instruction mix, instruction/data cache
miss rates, branch prediction miss rate, pipeline stalls,
etc. for the microprocessor.

3. Use mixed integer linear programming and heuristic
rules to gradually transform a generic program tem-
plate into a fully functional program.

4. Perform RT-level simulation of the target micropro-
cessor under the instruction trace of the new synthe-
sized program .

Notice that the performance of the architectural simulator
in gate-vectors/second is roughly 3 to 4 orders of magnitude
higher than that of a RT-level simulator.

This approach has been applied to the Intel Pentium pro-
cessor (which is a super-scalar pipelined CPU with 8KB

2-way set-associative data, instruction and data caches,
branch prediction and dual instruction pipeline) demon-
strating 3 to 5 orders of magnitude reduction in the RT-
level simulation time with negligible estimation error.

B. Behavioral-Level Power Estimation

Conversely from some of the RT-level methods that
will be discussed in Section II-C, estimation techniques at
the behavioral-level cannot rely on information about the
gate-level structure of the design components, and hence,
must resort to abstract notions of physical capacitance and
switching activity to predict power dissipation in the de-
sign.

B.1 Information-Theoretic Models

Information theoretic approaches for high-level power es-
timation [9], [10] depend on information theoretic measures
of activity (for example, entropy) to obtain quick power es-
timates.

Entropy characterizes the randomness or uncertainty of
a sequence of applied vectors and thus is intuitively related
to switching activity, that is, if the signal switching is high,
it 1s likely that the bit sequence 1s random, resulting in high
entropy. Suppose the sequence contains ¢ distinct vectors
and let p; denote the occurrence probability of any vector
v 1n the sequence. Obviously, 22:1 p; = 1. The entropy of
the sequence is given by:

t
h=="Y pilogp;
i=1

where logz denotes the base 2 logarithm of z. The en-
tropy achieves its maximum value of log¢ when p; = 1/t.
For an n-bit vector, ¢ < 2”. This makes the computation
of the exact entropy very expensive. Assuming that the
individual bits in the vector are independent, then we can
write:

n

h=—= (gilogg: + (1 —g;)log(l — g;))

i=1

where ¢; denotes the signal probability of bit 7 in the vector
sequence. Note that this equation is only an upperbound
on the exact entropy, since the bits may be dependent. This
upperbound expression is, however, the one that is used for
power estimation purposes. Furthermore, in [9] it has been
shown that, under the temporal independence assumption,
the average switching activity of a bit is upper-bounded by
one half of its entropy.

The power dissipation in the circuit can be approximated
as:

Power = 0.5V2fctotEa'Ug

where Cto is the total capacitance of the logic module (in-
cluding gate and interconnect capacitances) and Eqy 4 is the
average activity of each line in the circuit which is, in turn,
approximated by one half of its average entropy, hayg. The
average line entropy is computed by abstracting informa-
tion obtained from a gate-level implementation. In [10], it

i1s assumed that the word-level entropy per logic level re-
duces quadratically from circuit inputs to circuit outputs,
whereas in [9] it is assumed that the bit-level entropy from
one logic level to next decreases in an exponential manner.
Based on these assumptions, two different computational
models are obtained.

In [9], Marculescu et al. derive a closed-form expression
for the average line entropy for the case of a linear gate
distribution, i.e., when the number of nodes scales linearly
between the number of circuit inputs, n, and circuit out-
puts, m. The expression for hqyg4 is given by:

2nhzn m hout (1 - %)(1 - %)
e \ - T
(n+m)n - n hin In -

havg =

where h;, and hgy denote the average bit-level entropies
of circuit inputs and outputs, respectively. h;, is extracted
from the given input sequence, whereas h,y,; 1s calculated
from a quick functional simulation of the circuit under the
given input sequence or by empirical entropy propagation
techniques for pre-characterized library modules. In [10],
Nemani and Najm propose the following expression for

havg:
2

3(n+m)

where H;, and H,y: denote the average sectional (word-
level) entropies of circuit inputs and outputs, respectively.
The sectional entropy measures H;, and H,,: may be ob-
tained by monitoring the input and output signal values
during a high-level simulation of the circuit. In practice,
however, they are approximated as the summation of indi-
vidual bit-level entropies, h;, and hgye.

If the circuit structure is given, the total module capac-
itance 1s calculated by traversing the circuit netlist and
summing up the gate loadings. Wire capacitances are esti-
mated using statistical wire load models. Otherwise, Ciy
is estimated by quick mapping (for example, mapping to
3-input universal gates) or by information theoretic models
that relate the gate complexity of a design to the difference
of its input and output entropies. One such model proposed
by Cheng and Agrawal in [11], for example, estimates Cyot
as:

havg = (Hzn + Hout)

m
_ n
Ctot — zQ hout

This estimate tends to be too pessimistic when n is large;
hence, in [12], Ferrandi et al. present a new total capaci-
tance estimate based on the number N of nodes (i.e., 2-to-1
multiplexors) in the OBDD representation of the logic cir-
cuit as follows:

m
Ctot = szNhout + 6

The coefficients of the model are obtained empirically by
doing linear regression analysis on the total capacitance
values for a large number of synthesized circuits.

Entropic models for the controller circuitry are proposed
by Tyagi in [13], where three entropic lower bounds on
the average Hamming distance (bit changes) with state

set S and with T states, are provided. The tightest
lower bound derived in this paper for a sparse FSM (i.e.,
t < 2237472/ /logT, where t is the total number of tran-
sitions with nonzero steady-state probability) is the follow-
ing:

Z pijH(si,85) > h(pi ;)—1.521og T—2.1640.5 log(log T')
5;,5;€8

where p; ; is the steady-state transition probability from s;
to sj, H(s;,s;) is the Hamming distance between the two
states, and h(p; ;) is the entropy of the probability distri-
bution p; ;. Notice that the lower bound is valid regardless
of the state encoding used.

B.2 Complexity-Based Models

These models relate the circuit power dissipation to some
notion of circuit complerity. Example parameters that in-
fluence the circuit complexity include the number and the
type of arithmetic and/or Boolean operations in the behav-
ioral description, the number of states and /or transitions in
a controller description, and the number of cubes (literals)
in a minimum sum-of-products (factored-form) expression
of a Boolean function.

Most of the proposed complexity-based models rely on
the assumption that the complexity of a circuit can be esti-
mated by the number of “equivalent gates”. This informa-
tion may be generated on-the-fly using analytical predictor
functions, or retrieved from a pre-characterized high-level
design library. An example of this technique is the chip
estimation system [14], which uses the following expression
for the average power dissipation of a logic module:

Power = fN(Energyy,,. + 0.5V2Cload) Egate

where f is the clock frequency, N is the gate equivalent
count for the component, Energy,,, 1s the average inter-
nal consumption for an equivalent gate (it includes para-
sitic capacitance contributions as well as short-circuit cur-
rents) per logic transition, Cl,qq is the average capacitive
load for an equivalent gate (it includes fanout load capac-
itances and interconnect capacitances), and Eyq is the
average output activity for an equivalent gate per cycle.
Cioad 18 estimated statistically based on the average fanout
count in the circuit and custom wire load models. FEgyqze
is dependent on the functionality of the module. The data
is pre-calculated and stored in the library and is indepen-
dent of the implementation style (static vs. dynamic logic,
clocking strategy), library-specific parameters (gate inertia,
glitch generation and propagation), and the circuit context
in which the module i1s instantiated. This is an example
of an implementation-independent and data-independent
power estimation model.

In [15], Nemani and Najm present a high-level estimation
model for predicting the area of an optimized single-output
Boolean function. The model is based on the assumption
that the area complexity of a Boolean function f is related
to the distribution of the sizes of the on-set and off-set of

the function. For example, using the “linear measure”, the
area complexity of the on-set of f is written as:

N

Cu(f) = cipi

i=1

where the set of integers {ci,ca, -+, ey} consists of the
distinct sizes of the essential prime implicants of the on-set
and weight p; is the probability of the set of all minterms in
the on-set of f which are covered by essential primes of size
¢;, but not by essential primes of any larger size. The area
complexity of the off-set of f Co(f) is similarly calculated.
Hence, the area complexity of function f 1s estimated as:

Ci(f) +C0(f).

e = 2

The authors next derive a family of regression curves
(which happen to have exponential form) relating the ac-
tual area A(f) of random logic functions optimized by the
SIS program (in terms of the number of gates) to the area
complexity measure C(f) for different output probabilities
of function f. These regression equations are subsequently
used for total capacitance estimation and hence high-level
power estimation. The work is extended in [16] to area
estimation of multiple-output Boolean functions.

A similar technique would rely on predicting the quality
of results produced by EDA flows and tools. The predictor
function is obtained by performing regression analysis on a
large number of circuits synthesized by the tools and relat-
ing circuit-specific parameters and/or design constraints to
post-synthesis power dissipation results. For example, one
may be able to produce the power estimate for an unop-
timized Boolean network by extracting certain structural
properties of the underlying directed acyclic graph, aver-
age complexity of each node, and user-specified constraints
and plugging these values in the predictor function.

Complexity-based power prediction models for controller
circuitry have been proposed by Landman and Rabaey in
[17]. These techniques provide quick estimation of the
power dissipation in a control circuit based on the knowl-
edge of its target implementation style (that is, pre-charged
pseudo-NMOS or dynamic PLA), the number of inputs,
outputs, states, and so on. The estimates will have a
higher degree of accuracy by introducing empirical parame-
ters that are determined by curve fitting and least squared
fit error analysis on real data. For example, the power
model for an FSM implemented in standard cells is given

by:
Power = 05V?f(N;CrEr + NoCoFo) Ny

where Ny and Ng denote the number of external input plus
state lines and external output plus state lines for the FSM,
Cr and Co are regression coefficients which are empirically
derived from low-level simulation of previously designed
standard cell controllers, E; and Eo denote the switching
activities on the external input plus state lines and external
output plus state lines, and finally N denotes the number

of minterms in an optimized cover of the FSM. Dependence
on Ny indicates that this model requires a partial (perhaps
symbolic) implementation of the FSM.

B.3 Synthesis-Based Models

One approach for behavioral-level power prediction is
to assume some RT-level template and produce estimates
based on that assumption. This approach requires the
development of a quick synthesis capability which makes
some behavioral choices (mimicking a full synthesis pro-
gram). Important behavioral choices include type of 1/0,
memory organization, pipelining issues, synchronization
scheme, bus architecture, and controller design. This is
a difficult problem, especially in the presence of tight tim-
ing constraints. Fortunately, designers or the environment
often provide hints on what choices should be made. After
the RT-level structure is obtained, the power is estimated
by using any of the RT-level techniques that will be de-
scribed in Section II-C.

Relevant data statistics such as the number of oper-
ations of a given type, bus and memory accesses, and
I/O operations, are captured by static profiling based on
stochastic analysis of the behavioral description and data
streams [18], [19], or dynamic profiling based on direct sim-
ulation of the behavior under a typical input stream [20],
[21]. Instruction-level or behavioral simulators are easily
adapted to produce this information.

C. RT-Level Power Estimation

Most RT-level power estimation techniques wuse
regression-based, switched capacitance models for circuit
modules. Such techniques, which are commonly known as
power macro-modeling, are reviewed next.

C.1 Regression-Based Models

A typical RT-level power estimation flow consists of the

following steps:

1. Characterize every component in the high-level design
library by simulating it under pseudo-random data
and fitting a multi-variable regression curve (i.e., the
power macro-model equation) to the power dissipation
results using a least mean square error fit [22].

2. Extract the variable values for the macro-model equa-
tion from either static analysis of the circuit structure
and functionality, or by performing a behavioral sim-
ulation of the circuit. In the latter case, a power co-
simulator linked with a standard RT-level simulator
can be used to collect input data statistics for various
RT-level modules in the design.

3. Evaluate the power macro-model equations for high-
level design components which are found in the library
by plugging the parameter values in the corresponding
macro-model equations.

4. Estimate the power dissipation for random logic or
interface circuitry by simulating the gate-level descrip-
tion of these components [25], [26], or by performing
probabilistic power estimation [27], [28], [29], [30], [31].
The low level simulation can be significantly sped up

by the application of statistical sampling techniques

[32], [33], [34], [35] or automata-based compaction

techniques [36], [37], [38].
The macro-model for the components may be parameter-
ized in terms of the input bit width, the internal organiza-
tion/architecture of the component, and the supply voltage
level. Notice that there are cases where the construction
of the macro-model of step (1) can be done analytically
using the information about the structure of the gate-level
description of the modules, without resorting to simulation
as proposed by Benini et al. in [23]. On the other hand, if
the low-level netlist of the library components is not known
(which may be the case for soft macros), step (1) can be
replaced by data collection from past designs of the com-
ponent followed by appropriate process technology scaling
[24]. In addition, the macro-model equation in step (2) may
be replaced by a table-look up with necessary interpolation
equations.

In the following paragraphs, we review various power
macro-model equations which exhibit different levels of ac-
curacy versus computation/information usage tradeoff.

The simplest power macro-model, known as the power
factor approzimation technique [39], is a constant type
model which uses an experimentally determined weighting
factor to model the average power consumed by a given
module per input change. For example, the power dissi-
pation of an n x n bit integer multiplier can be written
as:

Power = 0.5V n%C faeriv

where V is the supply voltage level, C' is the capacitive re-
gression coefficient, and fy.4i, 18 the activation frequency of
the module (this should not be confused with the average,
bit-level switching activity of multiplier inputs).

The weakness of this technique is that it does not ac-
count for the data dependency of the power dissipation.
For example, if one of the inputs to the multiplier is always
1, we would expect the power dissipation to be less than
when both inputs are changing randomly. In contrast, the
stochastic power analysis technique proposed by Landman
and Rabaey in [40] is based on an activity-sensitive macro-
model, called the dual bit type model, which maintains that
switching activities of high order bits depend on the tem-
poral correlation of data, whereas lower order bits behave
randomly. The module is thus completely characterized
by its capacitance models in the sign and white noise bit
regions. The macro-model equation form is then given by:

Power = 0.5V f(n,Cy Fy + n Z CoyEry)
ry=t+

where C, and F, represent the capacitance coefficient and
the mean activity of the unsigned bits of the input se-
quence, while Cyy and F;, denote the capacitance coef-
ficient and the transition probability for the sign change
xy in the input stream. n, and ng represent the number
of unsigned and sign bits in the input patterns, respec-
tively. Note that Fy, Fyy, and the boundary between sign
and noise bits are determined based on the applied signal

statistics collected from simulation runs. Expanding this
direction, one can use a bitwise data model as follows:

n
Power = 0.5V2f Z CiF;

i=1
where n is the number of inputs for the module in question,
C; is the (regression) capacitance for input pin i, and E; is
the switching activity for the i-th pin of the module. This
equation can produce more accurate results by including,
for example, spatio-temporal correlation coefficients among
the circuit inputs. This will, however, significantly increase
the number of variables in the macro-model equation, and
thus the equation evaluation overhead.

Accuracy may be improved (especially, for components
with deep logic nesting, such as multipliers) by power
macro-modeling with respect to both the average input and
output activities (the input-output data model), that is:

Power = 0.5V2f(C[E[+ CoEo)

where C7 and Co represent the capacitance coefficients for
the mean activities of the input and output bits, respec-
tively. The dual bit type model or the bitwise data model
may be combined with the input-output data model to
create a more accurate, but more expensive, macro-model
form. Recently, in [41], the authors presented a 3D-table,
power macro-modeling technique which captures the de-
pendence of power dissipation in a combinational logic cir-
cuit on the average input signal probability, the average
switching activity of the input lines, and the average (zero-
delay) switching activity of the output lines. The latter
parameter is obtained from a fast functional simulation of
the circuit. The paper also presents an automatic macro-
model construction procedure based on random sampling
principles. Note that the equation form and variables used
for every module are the same (although the regression co-
efficients are different).

A parametric power model is described by Liu and Svens-
son in [42], where the power dissipation of the various com-
ponents of a typical processor architecture, including on-
chip memory, busses, local and global interconnect lines,
H-tree clock net, off-chip drivers, random logic, and data
path, are expressed as a function of a set of parameters re-
lated to the implementation style and internal architecture
of these components. For example, consider a typical on-
chip memory (a storage array of 6-transistor memory cells)
which consists of four parts: The memory cells, the row de-
coder, the column selection, the read/write circuits. The
power model for a cell array of 2" =% rows and 2* columns
in turn consists of expressions for: (1) the power consumed
by 2¥ memory cells on a row during one pre-charge or one
evaluation; (2) the power consumed by the row decoder;
(3) the power needed for driving the selected row; (4) the
power consumed by the column select part; and (5) the
power dissipated in the sense amplifier and the readout in-
verter. For instance, the memory cell power (expression 1
in above) is given by:

POwermemcell = 05Vszzng2k(Cmt + 2n_kctr)

where Viying 1s the voltage swing on the bit/% line
(which may be different for read versus write), Cipy gives
the wiring-related row capacitance per memory cell, and
=k, gives the total drain capacitances on the bit/%
line. Notice that during the read time, every memory cell
on the selected row drives exactly bit or bit.

A salient feature of the above macro-model techniques
is that they only provide information about average power
consumption over a relatively large number of clock cy-
cles. The above techniques, which are suitable for esti-
mating the average-power dissipation, are referred to as
cumulative power macro-models. In some applications,
however, estimation of average power only is not suffi-
cient. Examples are circuit reliability analysis (maximum
current limits, heat dissipation and temperature gradient
calculation, latch-up conditions), noise analysis (resistive
voltage drop and inductive bounce on power and ground
lines), and design optimization (power/ground net topol-
ogy design, number and placement of decoupling capaci-
tors, buffer insertion, etc.). In these cases, cycle-accurate
(pattern-accurate) power estimates are required.

Mehta et al. propose a clustering approach for pattern-
accurate power estimation in [43]. This approach relies on
the assumption that closely related input transitions have
similar power dissipation. Hence, each input pattern is first
mapped into a cluster, and then a table look-up is per-
formed to obtain the corresponding power estimates from
pre-calculated and stored power characterization data for
the cluster. The weakness of this approach is that, for effi-
ciency reasons, the number of clusters has to be relatively
small, which would introduce errors into the estimation re-
sult. In addition, the assumption that closely related pat-
terns (e.g., patterns with short Hamming distance) result
in similar power distribution may be quite inaccurate, espe-
cially when the mode-changing bits are involved, i.e., when
a bit change may cause a dramatic change in the module
behavior.

Addressing these problems, Wu et al. describe in [44] an
automatic procedure for cycle-accurate macro-model gen-
eration based on statistical sampling for the training set
design and regression analysis combined with appropriate
statistical tests (i.e., the F'* test) for macro-model variable
selection and coefficient calculation. The test identifies the
most (least) power-critical variable to add to (delete from)
the set of selected variables. The statistical framework en-
ables prediction of the power value and the confidence level
for the predicted power value. This work is extended by
Qiu et al. in [45] to capture “important” first-order tempo-
ral correlations and spatial correlations of up to order three
at the circuit inputs. Note that here the equation form and
variables used for each module are unique to that module
type. Experimental results show that power macro-models
with a relatively small number of input variables (i.e., 8)
predict the module power with a typical error of 5-10% for
the average power and 10-20% for the cycle power.

C.2 Sampling-Based Models

RT-level power evaluation can be implemented in the
form of a power co-simulator for standard RT-level simu-
lators. The co-simulator is responsible for collecting input
statistics from the output of the behavioral simulator and
producing the power value at the end. If the co-simulator
is invoked by the RT-level simulator every simulation cy-
cle to collect activity information in the circuit, it is called
census macro-modeling.

Evaluating the macro-model equation at each cycle dur-
ing the simulation is actually a census survey. The over-
head of data collection and macro-model evaluation can be
high. To reduce the run time overhead, Hsieh et al. use
simple random sampling to select a sample and calculate
the macro-model equation for the vector pairs in the sample
only [46]. The sample size is determined before simulation.
The sampler macro-modeling randomly selects n cycles and
marks those cycles. When the behavioral simulator reaches
the marked cycle, the macro-modeling invokes the behav-
ioral simulator for the current input vectors and previous
input vectors for each module. The input statistics is only
collected in these marked cycles. Instead of selecting only
one sample of large size, we can select several samples of at
least 30 units (to insure normality of sample distribution)
before the simulation. Then the average value of sample
means is the estimate of population mean. In this manner,
the overhead of collecting input statistics at every cycle
which is required by census macro-modelingis substantially
reduced. Experimental results show that sampler macro-
modeling results in an average efficiency improvement of
50X over the census macro-modeling with and average er-
ror of 1%.

The macro-model equation is developed by using a train-
ing set of input vectors. The training set satisfies certain as-
sumptions such as being pseudo-random data, speech data,
etc. Hence, the macro-model may become biased, mean-
ing that it produces very good results for the class of data
which behave similarly to the training set; otherwise, it
produces poor results. One way to reduce the gap between
the power macro-model equation and the gate-level power
estimation is to use a regression estimator as follows [46].
It can be shown that the plot of the gate-level power value
versus a well-designed macro-model equation estimate for
many functional units reveals an approximately linear re-
lationship. Hence, the macro-model equation can be used
as a predictor for the gate-level power value. In other
words, the sample variance of the ratio of gate-level power
to macro-model equation power tends to be much smaller
than that of the gate-level power by itself. It is thus more
efficient to estimate the mean value of this ratio and then
use a linear regression equation to calculate the mean value
of the circuit-level power. The adaptive macro-modeling
thus invokes a gate-level simulator on a small number of cy-
cles to improve the macro-model equation estimation accu-
racy. In this manner, the “bias” of the static macro-models
1s reduced or even eliminated. Experimental results show
that the census macro-modeling incurs large error (an av-
erage of 30% for the benchmark circuits) compared to gate

level simulation. The adaptive macro-modeling however
exhibits an average error of only 5% which demonstrates
the superiority of the adaptive macro-modeling technique.

III. SYNTHESIS AND OPTIMIZATION

Power constraints must be taken into account during var-
1ous phases of the design flow. In this section, we first focus
on software optimization techniques (Section ITI-A), fol-
lowed by system-level power management strategies (Sec-
tion ITI-B). In Section ITI-C, we illustrate transformations
that are applicable to behavioral descriptions and which
improve the potential savings achievable during the subse-
quent high-level synthesis phase. Algorithms for low-power
operation scheduling and resource allocation (which are at
the core of high-level synthesis tools) are discussed in Sec-
tions III-D and III-E, respectively, while a procedure for
multiple supply voltage scheduling is presented in Section
ITI-F. The output of the high-level synthesis phase is an
RT-level description consisting of a (possibly partitioned)
control unit and some computing (i.e., data-path) units,
on which the bus encoding schemes summarized in Section
ITI-G can be applied to reduce the overall power budget. A
methodology to be used for translating the specification of
the system’s controller (as generated by the high-level syn-
thesis phase) into a gate-level netlist, are briefly outlined
in Section III-H. Finally, we go over a few RT and gate-
level logic shut-down techniques (Section ITI-T), as well as
re-timing transformations (Section ITI-J) that can be ex-
ploited to further reduce the total power requirements. We
would like to point out that not all the various design,
synthesis, and optimization steps indicated in the flow of
Figure 1 will be discussed in detail in the sequel, but only
those for which innovative, as well as sufficiently reliable
solutions have been proposed in recent years. For example,
we do not deal with techniques for low-power hardware-
software partitioning, since only a few, preliminary con-
tributions have appeared in the literature [47], [48], [49].
Also, as announced in the introduction, we do not consider
traditional logic and transistor-level techniques.

A. Software Optimization

The software domain offers a large variety of opportu-
nities for optimizing the power dissipation of a processor-
based digital system. Software design for low power has
thus become an active area of research in the last few years.
In this section we summarize a few promising approaches.
Specifically, we discuss techniques targeting power mini-
mization through: (a) Instruction scheduling and code gen-
eration; (b) Minimization of memory access costs.

The methods developed to properly select and order the
instructions of a program to reduce the instruction bus ac-
tivity are based on the simple observation that a given high-
level operation (e.g., a C statement) can be compiled into
different machine instruction sequences. Since the same ob-
servation is at the basis of code optimization for speed and
size, the most straight-forward way to proceed is to mod-
ify the objective function used by existing code optimizers
to obtain low power versions of a given software program.

More specifically, the basic power cost of each instruction
(determined a priori through a characterization process)
must be considered during code optimization.

Though this approach has proved to be effective, more
substantial power savings can be obtained by resorting to
optimizations specifically addressing power minimization
[7]. Cold scheduling is an instruction scheduling procedure
proposed by Su el al. in [6] that attempts to reduce the
number of instruction bus transitions occurring when the
processor experiences a state change due to the execution
of instructions of different types. In essence, the algorithm
acts as a list scheduler that determines the priority of ex-
ecution of the instructions according to their power cost.
The method, though innovative, has shown to work well
only on processors with specific RISC architectures. A
more articulated methodology for code generation and op-
timization, whose practical applicability has been demon-
strated in the case of a DSP processor, has been proposed
by Lee et al. in [50]. In this solution, techniques such as
instruction packing, minimization of circuit state effects,
and operand swapping are exploited [51].

Regarding the reduction of the costs of memory accesses,
the most effective and straight-forward way of obtaining it
is through the minimization of the number of read/write
operations required by an algorithm. Consider, as an ex-
ample, the fragment of source code taken from [52] and
shown on the left-hand side of Figure 2. If we assume the
size of array b to be too large to fit in the registers of the
CPU, a total of 2n read/write accesses to the memory are
needed for the intermediate array b during the execution of
the program. By transforming the code as indicated on the
right-hand side of Figure 2, the required element of array
b can be kept into a register of the processor; therefore,
only register accesses are necessary to store and load the
intermediate data.

Figure 2 goes here.

Since minimization of the number of memory accesses is
one of the main objectives pursued by compilers that op-
timize programs for speed, existing techniques developed
in the context of high-performance code generation can be
easily adapted to reduce the power requirements of the soft-
ware component of processor-based digital systems. How-
ever, further improvements in the power budget can be
achieved by applying techniques (discussed next) that ex-
plicitly target the minimization of the switching activity
on the address bus, and that best exploit the hierarchy in
the memory system.

The work by Panda and Dutt [53], [54] focuses on the
reduction of the power dissipated by off-chip drivers and
memory decoding logic by reducing the number of address
bus transitions. The goal is reached through a memory
mapping scheme that allows to properly place in the main

memory large arrays of data for which the access patterns
can be extracted from the program source code at compi-
lation time.

Additional contributions to the problem of finding data
allocations that minimize the power in the memory-
processor interface are available in the literature [52], [55].
These techniques have the same objective as some of the
bus encoding strategies discussed in Section III-G. There-
fore, in order to be effective, power minimization strategies
should leverage their combination.

The basic assumption behind the exploitation of the
memory hierarchy to reduce power is that, usually, the
higher levels of the hierarchy can be accessed at a low power
cost, but they have limited storage capacity. (For example,
cache vs. RAM access.) Power can then be reduced by or-
ganizing the data in such a way that the higher levels of
the hierarchy are optimally utilized. Relevant work on this
subject has been published in recent years by Catthoor
et al. [52], [56], [67]. Their emphasis is on systems for
DSP and video applications, where the power dissipated at
the memory interface usually dominates, and the type of
data to be manipulated is usually much simpler to predict.
They present a formalized methodology for the choice of
the proper memory hierarchy to be adopted in the design
of data-intensive systems.

B. System-Level Power Management

The activity of several components in a computing sys-
tem 1s event-driven; for example, the activity of display
servers, communication interfaces, and user interface func-
tions is triggered by external events and it is often inter-
leaved with long periods of quiescence. An intuitive way of
reducing the average power dissipated by the whole system
consists of shutting down the resources during their periods
of inactivity. In other words, one can adopt a system-level
power management policy that dictates how and when the
various components should be shut down.

In [58], Srivastava et al. review conventional power man-
agement approaches, such as those already in use in current
portable computers, and propose some innovative schemes.

An event-driven computing device can be thought of as
a finite state system that can be in two states: Active and
Idle. When the device is idle, it 1s desirable to shut it down
by lowering its power supply or by turning off its clock; in
this way its power dissipation can be drastically reduced.
If we call T4 and 77 the average time spent by the device
in the Active and in the Idle states, respectively, we have
that the maximum power improvement achievable through
shut-down is given by: 1+ Ty/Ta. Improvement figures
closer to the upper bound, are, however, rarely obtained
by existing shut-down strategies (called static). In fact,
normally a device is put in its power-down mode only T’
time units after it has entered the Idle state (see Figure 3).
This 1s because it is assumed that there is a high chance
for the system to be idle for a much longer time if it has

been in the Idle state for at least 7" time units.

Figure 3 goes here.

Obviously, this simple policy 1s not efficient for three
reasons: First, the assumption that, if the system is idle
for more than 7' time units, it will be so for much longer
may not be true in many cases. Second, even if the above
assumption is valid in the majority of the cases, whenever
the system enters the Idle state, it stays powered for at least
T time units, wasting a considerable amount of power in
that period. Third, speed and power degradations due to
shut downs performed at inappropriate times are not taken
into account; in fact, it should be kept in mind that the
transition from power-down to fully functional mode has
an overhead: It takes some time, Tg, to bring the system
up to speed, and it may also take more power than the
average, steady-state power.

To overcome the limitations of the static shut-down pol-
icy discussed above, Srivastava et al. have proposed a pre-
dictive power management strategy, whose main feature
exploits the past history of the active and idle intervals to
predict the length of an idle interval as soon as the sys-
tem enters the Idle state. In practice, two approaches are
suggested: One is based on obtaining a regression equation
that predicts the value of Tt based on a quadratic func-
tion of the previous values of both Ty and 7T7. The other
is based on the simple observation that if the 74 imme-
diately preceding a 77 is shorter than the minimum value
of Ty ever experienced, it is highly probable that the next
T7 will be longer than the minimum time for which it is
convenient to shut down the system.

Obviously, the power management mechanism is con-
strained by two factors: 1) The time overhead needed to
restart the system; 2) The power overhead paid in restart-
ing the system. The higher these two factors, the more
conservative the shut-down strategy must be.

An experimental investigation performed on a SUN
Sparc station running an X server has shown power im-
provements achievable through the predictive shut-down
policies to be as high as 38X, with a very limited decrease
in performance (around 3%).

In [59], Hwang and Wu have introduced a more complex
predictive shut-down strategy that performs better than
the methods of Srivastava et al.. The use of a technique
for correcting possible idle period mis-predictions, along
with a pre-wake-up mechanism, account for the higher ef-
ficiency and the decreased delay penalty provided by the
new approach.

It is important to point out that the applicability of
power optimization techniques based on resource shut-
down is not limited to system-level descriptions. We will
show later in the paper how the concept of power manage-
ment can be successfully exploited during high-level syn-

thesis and RTL optimization.

C. Behavioral Transformations

Given a control-data-flow graph (CDFG) describing the
behavior of the hardware part of the system being designed,
some transformations can be applied to it in order to im-
prove the potential power savings achievable in the subse-
quent phases of high-level synthesis and RTL optimization.
To be applicable in practice, such transformations must
only modify the computational structure of the selected al-
gorithm, while they must preserve its original input/output
behavior and, to some extent, its latency.

According to Chandrakasan et al. [18], there are two dis-
tinct ways of optimizing power using behavioral transfor-
mations. The first one consists of enabling the reduction of
the supply voltage through application of speed-up trans-
formations, such as re-timing, pipelining, algebraic manip-
ulations, and loop restructuring. Since these transforma-
tions have been extensively used in the context of perfor-
mance optimization, we do not discuss them here. Instead,
we focus on the second behavioral-level optimization ap-
proach. Here the target is the minimization of the effective
capacitance through transformations that increase the uti-
lization of the system resources; this is because fewer and
smaller computing elements usually provide better power
performance of the design being developed. As an example,
we 1llustrate how a reduction of the total number of oper-
ations in the CDFG or the substitution of some operations
with more convenient ones can yield more power-efficient
descriptions.

The easiest way to reduce the total switched capacitance
consists of reducing the number of operations in the CDFG.
Unfortunately, reducing the number of operations may ad-
versely affect system performance. In the following, we
present two examples, taken from [18], which illustrate the
contradictory effects that this transformation may have on
the design under optimization.

Figure 4 shows two possible implementations of a system
which evaluates a second-order polynomial. The one on
the left is the most straight-forward, it requires a total of
2 adders and 2 multipliers, and it has a critical path of
length 3. The realization on the right, on the other hand,
is obtained through simple algebraic transformations. It
only consists of 2 adders and 1 multiplier, and it still has
a critical path of length 3. Obviously, in this case, the
transformed structure is advantageous.

Figure 4 goes here.

Consider now two different implementations, depicted in
Figure 5 and taken from [18], of a system which evaluates a
third-order polynomial. The straight-forward implementa-
tion on the left requires a total of 3 adders and 4 multipliers,
and it has a critical path of length 4. Algebraic transforma-

tions yield the implementation on the right, which contains
only 3 adders and 2 multipliers, but which has a critical
path of length 5. In this case, a decrease in the number
of operations corresponds to a decrease in speed, which, in
turn, causes a reduction in the potential power optimiza-
tion achievable through supply voltage down-scaling.

Figure 5 goes here.

It 1s well known that there exist operations whose cor-
responding hardware implementations require less energy
per computation than others. For example, multiplica-
tions usually require more energy than additions. There-
fore, strength reduction transformations are used to sub-
stite multipliers with adders/subtractors, whenever possi-
ble. Unfortunately, this technique has a serious draw-back:
It usually produces an increase in the original critical path
length. The conversion of multiplications with constants
into the combination of shift and add operations is another
powerful transformation belonging to this category. Its ap-
plicability is mainly found in DSP circuits, where constant
multiplications are quite common.

As an example of the usefulness of this transformation,
in Table I we report the capacitance statistics, taken from
[18], for a TAP FIR filter before and after application of the
conversion of multiplications with constants into shift-add
operations.

Table I goes here.

The capacitance switched by the control units is reduced
by approximately a factor of eight; reductions are also
achieved for the registers, the clock distribution network
and the interconnect network, mainly due to the reduced
area of the final implementation. On the contrary, a small
capacitance penalty is paid for the control logic.

The impact of various transformations on the character-
istics of the design, depending on the specific situations in
which they are applied, is such that a fully automatic pro-
cedure that drives the optimization process does not seem
to be of practical interest. On the contrary, tools that help
the designer in selecting the most useful transformations
by quickly proposing the possible alternatives are highly
desirable.

D. Operation Scheduling

The goal of a scheduling algorithm is to associate each
primitive operation appearing in the CDFG with the time
interval (also called control step) in which the operation is
to be executed so as to satisfy some design constraints.

Several attempts have been made to modify traditional
scheduling algorithms to take into account power consump-
tion. For example, in [60], Musoll and Cortadella have
proposed to include in the cost function that drives the
scheduling procedure a measure of the switching activity
occurring at the inputs of the functional units. By selecting
from the CDFG the nodes for which no change of values in
the input operands occurs between consecutive operations
of the same functional unit, and by placing such nodes as
close as possible in the scheduling, a substantial minimiza-
tion of the total switched capacitance can be achieved. In
[61], the same authors have also proposed a set of CDFG
transformations that may help in minimizing the activity
at the inputs of a functional unit. In particular, the use of
loop interchange, operand reordering, and operand sharing
has been suggested.

Clearly, the CDFG transformations mentioned above
best perform in the cases where common input operands
can be identified. Unfortunately, these situations are not
encountered very frequently in real designs. However, it
is still possible to target a switching activity reduction
at the inputs of the functional units by resorting to the
power-consctous loop folding technique presented by Kim
and Choi in [62]. Such technique, derived from a well-
known transformation traditionally applied for throughput
optimization and resource minimization, enables the detec-
tion of common input operands that are hidden inside the
loops of the CDFG. The method has proven to have signif-
icant power-reducing effects on several applications taken
from the DSP domain (e.g., filters).

A substantially different approach to the problem of de-
termining a low-power scheduling of the CDFG has been
introduced by Monteiro et al. in [63]. This work is based
on the idea of enabling, at a lower level of abstraction, a
power management strategy similar to those discussed in
Section III-B for system-level design descriptions.

The proposed scheduling algorithm attempts to assign
the operations involved in determining and controlling the
flow of the data within the system to the earliest possible
time intervals. This allows one to establish which computa-
tional units are strictly required for a specific computation.
The unused resources can be disabled during the system
execution. They are identified by detecting mutually ex-
clusive operations in the CDFG and by scheduling them
for execution in time frames occurring after the decision
on which unit must be activated has been made. In this
way, all mutually exclusive units, but one, are guaranteed
to be shut down during the current computation. In addi-
tion, if mutually exclusive operations are scheduled in the
same time interval, 1t may be possible to share the corre-
sponding resource, thus possibly achieving further power
savings.

A scheduling that enables dynamic power management
can be computed as follows. The multiplexors in the CDFG
are considered individually, one at a time, starting with the
ones which are closer to the bottom of the graph. Clearly,
this is an arbitrary choice, and it is made in view of the
fact that applying power management to such multiplexors

10

may enable the shut-down of a larger number of units. The
set of nodes Ny, Ny, and N¢ of the CDFG which belong
to the transitive fanin of the 0, 1 and control inputs of the
currently selected multiplexor are identified. Nodes which
are simultaneously in Ny and Ny are obviously not suitable
for power management, since the corresponding operation
1s needed no matter what the value of the multiplexor con-
trol input will be; therefore, they can be removed from
the sets they belong to. The as-soon-as-possible (ASAP)
scheduling algorithm is then run on the remaining nodes
of Ny and Ny, assuming that such nodes are assigned to
time intervals which follow the one assigned to the last
node in N¢. Similarly, the nodes in N are scheduled us-
ing the as-late-as-possible (ALAP) strategy, assuming that
they are all associated with control steps preceding the one
of the first node in either Ny or Ny. If there exists at least
one node in Ny, N1 and N¢g for which the time interval
assigned by the ASAP algorithm is greater than the one
assigned by the ALAP procedure, such node can not be
scheduled under the required assumptions. Therefore, the
multiplexor under consideration is not power manageable.
On the other hand, if no conflict happens on the values of
the time intervals assigned by the ASAP/ALAP schedul-
ing procedures, all the nodes in the three sets are assigned
the newly computed ASAP and ALAP control steps. The
process just outlined is iterated over all the multiplexors.
Upon completion (i.e., after having selected the multiplexor
nodes for which the power management is possible), new
precedence edges are created in the CDFG between the last
node belonging to set N¢ and the top nodes belonging to
sets Ny and Nj for each of the selected multiplexors. (A
precedence edge entering a node controls the activation of
such node.) The control step assignment phase is finally
completed using an existing scheduling algorithm.

FE. Resource Allocation

Once the scheduling is complete, a resource allocation
procedure must be run to assign registers and functional
units to variables and operations in the scheduled CDFG,
respectively, and to specify the interconnection of the var-
ious resources in terms of buses and multiplexors.

There are three classes of resources to be considered,
namely registers, functional units, and interconnections.
Traditionally, the allocation has been carried out sepa-
rately, one class of resources at a time (serial allocation).
Usually, the power consumed by a resource mainly depends
on the input switching activity induced by the data being
stored or processed. Since, in reality, the patterns flowing
through a circuit may have specific probability distribu-
tions, the way registers and functional units are allocated
in the CDFG may heavily impact the switching activities
at the interfaces of the resources. Graph-based algorithms
for register allocation for non-pipelined designs [64] and
module allocation for functionally pipelined designs [19]
proposed by Chang and Pedram, rely on an accurate com-
putation of the probability density functions at the inputs
of the various resources, given the probability distributions
for the system primary inputs.

Unfortunately, in some cases, serial allocation may result
in sub-optimal solutions, 1.e., designs using more intercon-
nections than required. It may then be convenient to per-
form the three operations concurrently (simultaneous allo-
cation). The technique of [65], proposed by Raghunathan
and Jha and described next, considers data-dominated de-
signs, and targets a combined minimization of the total
circuit capacitance and the switching activities at the in-
puts of the registers and the functional modules.

The first objective is reached by limiting the total num-
ber of resources in the final design implementation and by
keeping under control the required amount of steering logic
and interconnect. The minimization of the input switching
activities, on the other hand, is obtained through exploita-
tion of the correlations that may exist between the data
words traveling and being stored within the circuit.

The allocation procedure is based on the concept of
compatibility graph (CG) [66]. The CG is an undirected
weighted graph which has as many nodes as there are vari-
ables and operations in the CDFG. Edges in the CG con-
nect pairs of compatible nodes, that is, nodes that can
be mapped onto the same resources (registers, in the case
of variables, and functional modules, in the case of opera-
tions). Edge weights reflect the potential savings that could
be achieved in the architectural implementation of the sys-
tem 1f the pairs of variables or operations connected by the
edges were assigned to the same hardware resources. Let
us indicate such edge weights as W, (capacitance weights).
When power consumption is the target of the optimiza-
tion, the switching activities at the inputs of the various re-
sources must be taken into account while building the CG.
To do that, another set of edge weights, the W’s (switching
activity weights), is determined through high-level simula-
tion of the CDFG. The W;’s represent the average number
of bits that switch between pairs of compatible variables or
operations, and they are used in conjunction with the W.’s
to form the global edge weights, W’s, of the compatibility
graph:

W =W, (1-W;)

Notice that (1 — W) is used instead of Wy, since the target
is the minimization of the switching activity.

After the construction of the compatibility graph is ter-
minated, the allocation algorithm iteratively merges pairs
of compatible nodes, starting with the ones having higher
global weights. Obviously, this merging operation corre-
sponds to the mapping of the two variables or operations
connected by the edges to the same resources.

The allocation and binding algorithm summarized above
does not guarantee the minimum number of registers and
functional modules in the final architecture; however, the
result is usually very close to the optimum, as shown by a
number of experiments, and power savings are between 5%
and 33%.

To further reduce the overall power budget, power man-
agement of the available hardware resources can be enabled
through a careful design of the control circuitry. In fact,
not all the resources of a system are simultaneously active
at all times. In particular, a component is idle when none

11

of the variables or operations mapped to it are active. The
inputs to idle registers and modules do not affect the be-
havior of the overall system. Therefore, it may be possible
to specify some don’t care conditions in the controller; this
information may then be exploited to decrease the overall
switching activity within the design.

Other low-power allocation strategies have been pro-
posed in the recent literature. Some can be found in [67],
[60], [61], [68], [69].

As a concluding remark, we would like to point out that
in the design flow of Figure 1, operation scheduling is as-
sumed to precede resource allocation. This may not always
be the case in existing high-level synthesis tools, where the
order of execution of the two phases may be reversed [70],
[71]; also, it may happen that scheduling and allocation
are performed simultaneously. If the latter 1s the case, the
optimization problem must be formulated in a more global
way, and the various aspects related to low-power design
that we have separately discussed for scheduling and alloca-
tion must be combined. An algorithm that simultaneously
performs low-power operation scheduling, clock selection,
and resource allocation is described in [72].

F. Multiple Supply Voltage Scheduling

Supplying different voltages to different parts of a chip
may reduce the global energy requirements of a design at
a very limited cost in terms of algorithmic and/or archi-
tectural modifications. This is because the modules of the
chip which are part of the critical paths are powered at
the maximum allowed voltage, thus avoiding any delay in-
crease; the power consumed by the modules that are not on
the critical paths, on the other hand, is minimized through
proper voltage scaling.

The presence on the same chip of circuitry powered at
different voltages imposes the use of level shifters at the
boundaries of the various modules. Obviously, the area
and power costs due to such shifters must be considered
while evaluating the quality of the optimized circuit.

An important phase in the design flow of multi-powered
systems is that of assigning the most convenient supply
voltage, selected from a fixed number of values; to each
operation in the CDFG. The problem to be solved is then
that of scheduling the supply voltages so as to minimize the
power dissipation under throughput/resource constraints.

An effective solution has been proposed by Chang and
Pedram in [73]. The technique is based on dynamic pro-
gramming, and it requires the availability of accurate tim-
ing and power models for the macro-modules in the RTL li-
brary. A preliminary characterization procedure must then
be run to determine an energy-delay curve for each module
in the library and for all possible supply voltage assign-
ments. The points on the curve represent various voltage
assignment solutions with different trade-offs between the
performance and the energy consumption of the cell. Each
set of curves is stored in the RTL library, ready to be used
by the cost function which controls the multiple supply
voltage scheduling algorithm, outlined next for the sim-
ple case of CDFGs with tree structure. It consists of two

phases: First, a set of possible power-delay trade-offs at the
the root of the tree is calculated; then, a specific macro-
module is selected for each node in such a way that the
scheduled CDFG meets the required timing constraints.

To compute the set of possible solutions, a power-delay
curve at each node of the tree (proceeding from the inputs
to the output of the CDFG) is computed; such a curve
represents the power-delay trade-offs that can be obtained
by selecting different instances of the macro-modules, and
the necessary level shifters, within the sub-tree rooted at
each specific node. The computation of the power-delay
curves is carried out recursively, until the root of the CDFG
is reached.

Given the power-delay curve at the root node, that is,
the set of trade-offs the user can choose from, a recursive
pre-order traversal of the tree is performed, starting from
the root node, with the purpose of selecting which module
alternative should be used at each node of the CDFG.

Upon completion, all the operations are fully scheduled;
therefore, the CDFG is ready for the resource allocation
step for which the techniques presented in Section ITI-E can
be used. Multi-powered scheduling for high-throughput,
functionally pipelined designs is also addressed in [73].

Alternatives to the multiple supply voltage scheduling
approach discussed above do exist in the literature. The
interested reader may find them in [74], [75], [76].

(. Bus Encoding

It is known that bus capacitances are usually several or-
ders of magnitude higher than those of the internal nodes
of a circuit. Consequently, a considerable amount of power
can be saved by reducing the number of transitions at the
circuit input/output interfaces. This task can be accom-
plished by encoding the information transmitted over the
buses.

The Bus-Invert code of [T7] is a simple, yet effective, low-
power encoding scheme. It works as follows: The Hamming
distance between two successive patterns is computed; if it
is larger than N/2, where N is the bus width, the current
address is transmitted with inverted polarity; otherwise, it
is transmitted as is. Obviously, a redundant bus line, INV,
is needed to signal to the receiving end of the bus which po-
larity is used for the transmission of the incoming pattern.
The method guarantees a maximum of N/2 transitions per
clock cycle, and i1t performs well when the patterns to be
transmitted are randomly distributed in time and no infor-
mation about their correlation is available. For this reason,
it 1s appropriate for data bus encoding.

Concerning address buses, other techniques have also
been explored. Since the addresses generated by proces-
sors in ordinary computing systems are often consecutive,
Su et al. have suggested the adoption of the Gray code
[78] as encoding strategy. This code achieves its asymp-
totic best performance of a single transition per emitted
address when infinite streams of consecutive addresses are
considered [79], and it is optimum only in the class of irre-
dundant codes. If some redundancy is allowed, as for the
Bus-Invert approach, better performance can be achieved

12

by resorting to the T0 code [80], which requires an extra
line, INC, to signal when a pair of consecutive addresses
is written to the bus. When INC' is high, the current bus
value is frozen to avoid unnecessary switchings, and the
new address is computed directly by the receiver. On the
other hand, when two addresses are not consecutive, the
INC line is low, and the bus operates normally. Several
variants of the T0O code are possible, some of which may
incorporate the Bus-Invert principle to exploit distinctive
spectral characteristics of the streams being transmitted
[81].

The high frequency of consecutive patterns in the ad-
dress streams is at the basis of the effectiveness of encoding
mechanisms such as Gray and TO. Clearly, if the percent-
age of in-sequence addresses decreases, their effectiveness
diminishes as well. Two recently proposed solutions tackle
some of the limitations of Gray and T0.

The Working Zone code [82] is based on the observa-
tion that many programs access multiple data arrays. The
accesses to each array are mainly in-sequence, but unfor-
tunately they are often interleaved; then, the sequentiality
on the bus is destroyed. The Working Zone scheme re-
stores sequentiality by storing the reference addresses of
each working zone on the receiver side and by sending only
the highly sequential offsets. Whenever the data access
moves to a new working zone, this information is communi-
cated to the receiver with a special code word. The receiver
changes the default reference address and offset transmis-
sion can resume. Although this scheme is more flexible
than Gray and TO, it still relies on strong assumptions on
the patterns in the stream. If the data access policy is not
array-based, or if the number of working zones is too large,
this encoding scheme looses effectiveness. Moreover, simi-
lar to the case of the T0 code, it requires one extra bus wire
for communicating a working zone change. This require-
ment might not be acceptable because i1t changes standard
bus widths and chip pinouts.

The Beach code [83] relies on the fact that other types
of temporal correlations than arithmetic sequentiality exist
between the patterns that are being transmitted over the
address bus. Since it has been experimentally noted that
time-adjacent addresses normally show remarkably high
block correlations, the idea is that of determining an encod-
ing strategy which depends on the particular stream being
transmitted. Given a typical execution trace of the address
bus to be encoded, some statistical information identifying
possible block correlations is collected. The bus lines are
then grouped into clusters according to their correlations,
that is, lines belonging to the same cluster are highly cor-
related. An encoding function is automatically generated
for each cluster, and each configuration of bits in the orig-
inal cluster is translated into a new bit configuration. The
algorithm which finds the various encoding functions tar-
gets the minimization of the switching activity; thus, the
technology developed for low-power finite state machine
encoding (see Section ITI-H) can be successfully exploited.
The output of the transformation is an encoded stream for
which the average number of bus line transitions between

two successive patterns 1s minimized. Clearly, since the
computation of the encoding functions is strictly depen-
dent on the selected execution trace, the Beach code best
performs on special purpose systems, where a dedicated
processor (e.g., core, DSP, micro-controller) repeatedly ex-
ecutes the same portion of embedded code.

The motivation for adopting a bus encoding scheme is
a reduction of the global power budget; then, the savings
achieved through a bus switching activity reduction must
not be offset by the power dissipated by the encoding and
decoding circuitry at the bus terminals. In addition, bus
latency is usually a critical design constraint. Simultaneous
optimization of power and timing must then be targeted
while synthesizing the logic for bus encoding/decoding [81].

H. Control Logic Synthesis and Optimization

High-level synthesis produces a combined description of
data-path and control logic. The latter 1s normally in the
form of a transition structure, whose most familiar repre-
sentation 1s a FSM or a collection of FSMs. The translation
of such FSMs into a structural description presents oppor-
tunities for reducing power consumption and poses corre-
sponding challenges, especially when the control is complex
and contains a large number of latches. In this section, we
outline how a gate-level netlist, suitable as input to logic-
level optimization techniques, can be synthesized from a
state transition graph (STG).

The synthesis process starts with the extraction of the
STG from the RTL description of the FSM. For controllers
with more than a handful of latches, the explicit represen-
tation of the STG 1is infeasible. Though decomposition of
the controller before synthesis may alleviate the problem,
optimization opportunities may be lost in the process. For
this reason, symbolic techniques based on binary decision
diagrams [84] are often applied to the manipulation of large
graphs. These techniques represent sets by their character-
istic functions, and use BDDs to represent characteristic
functions. To be effective, symbolic algorithms must avoid
explicit enumeration of the elements of the sets (e.g., the
edges of a graph).

Since BDDs are used to represent the transition rela-
tion of the graph, a preliminary encoding of the states is
required. This is often derived heuristically from the be-
havioral description. The graph is then subjected to vari-
ous transformations intended to improve energy efficiency
as well as other metrics. Finally, a detailed structural de-
scription must be produced from the graph.

Given the STG of the circuit controller, the optimization
task consists of modifying and encoding the graph in prepa-
ration for logic synthesis. We review these techniques with
particular emphasis on those algorithms that can be ap-
plied to large circuits. (Those that dissipate non-negligible
amounts of energy.) Among the modifications are decom-
position and restructuring. Decomposition techniques pro-
duce interconnected FSMs from one large FSM, and they
fall broadly into two categories: Those based on the alge-
braic theory of [85], and those based on the identification
in the STG of subroutines or coroutines [86]. A subrou-

13

tine/coroutine corresponds to a fragment of the STG aug-
mented with a wait state. Shut-down techniques can be
applied to the the individual machines because only one
is active at any point in time [87]. Both approaches to
decomposition try to minimize the activity along the lines
connecting the sub-machines, which tend to drive heavier
loads. Decomposition naturally helps tackling the com-
plexity issue; however, no decomposition algorithms are
currently available that are applicable to STGs with mil-
lions of states.

Restructuring of the STG is a generic term that encom-
passes those graph transformations that preserve equiva-
lence of behavior (or compatibility in the presence of don’t
care conditions). The best known of such transformations
is state minimization. Algorithms are available for the
minimization of very large, completely specified FSMs [88].
However, state minimization by itself may have a deleteri-
ous effect on both area and energy efficiency, especially for
large circuits. It is more advantageous to use the knowledge
of the equivalence classes to identify don’t care conditions
and then use such conditions in conjunction with a cost
function that accounts for the desired cost metrics [89].

The problem of encoding a state transition graph for
low power consumption has received considerable atten-
tion. Among the earliest works is [90]. The idea common
to this and other encoding methods (see, for example, [91],
[92], [93], [94]) is to use the transition probability of a given
arc as a (partial) measure of its cost. The problem is thus
translated into the embedding of the state transition graph
into a hypercube of suitable dimension so that arcs of high
cost connect states at low Hamming distance. Standard
search techniques can be applied to this combinatorial op-
timization problem.

When the STG is large, it is normally given in an already
encoded form. The problem is then the one of re-encoding.
The initial encoding may come from a manual design and
therefore it may provide a useful starting point. In general,
however, it is not optimal from the power view-point. The
main difference between algorithms for re-encoding [95] and
those for encoding is in the size of the problems they try to
solve (millions of states vs. thousands). To cope with very
large graphs, BDD-based techniques are used to manipu-
late the graphs and sets of states; and the usual algorithms
must be reformulated so as to avoid any explicit iteration
over states or edges. The computation of the state prob-
abilities can be carried out exactly [96] or by resorting to
approximate techniques [31].

A direct translation of the optimized STG into gates
should produce a structure that is relatively close to a
good final solution. Otherwise, the successive synthesis
algorithms are likely to produce sub-optimal results. The
problem when the transition relation is represented by a
BDD is that the obvious mapping of each BDD node to a
multiplexor results in networks that are large, deep, and
slow. Among the approaches that overcome this problem,
one builds a circuit in which transitions for a given input
vector propagate along a single path, which corresponds
to the selected path in the BDD; several optimizations are

then applied to control the cost of the circuit [97].

Another approach is based on the work of Minato [98].
Zero-suppressed BDDs can represent very large function
covers efficiently. Powerful factorization algorithms exist
that work on these symbolic covers. It is therefore possi-
ble to first flatten the multilevel representation provided
by the transition relation BDD and extract from the two-
level cover a multilevel network. Factoring can be guided
by low-power concerns, but the objective of the symbolic
techniques is to provide a link to existing logic-level opti-
mization tools, not to supplant them.

I. RT and Gate-Level Power Management

Dynamic power management strategies such as those dis-
cussed in Sections III-B and III-E can be extended, with
a finer degree of granularity, to the case of RT and gate-
level descriptions. In fact, digital circuits usually contain
portions that are not performing useful computations at
each clock cycle. Power reductions can then be achieved
by shutting down the circuitry when it is idle. In this sec-
tion, we briefly outline three techniques for automatically
inserting dynamic power management mechanisms into RT
and gate-level designs.

Pre-computation [99], [100] relies on the idea of dupli-
cating part of the logic with the purpose of pre-computing
the circuit output values one clock cycle before they are
required, and then use these values to reduce the total
amount of switching in the circuit during the next clock
cycle. In fact, knowing the output values one clock cycle
in advance allows the original logic to be turned off during
the next time frame, thus eliminating any charging and
discharging of the internal capacitances. Obviously, the
size of the logic that pre-calculates the output values must
be kept under control, since its contribution to the total
power balance may offset the savings achieved by blocking
the switching inside the original circuit. Several variants
to the basic architecture can then be adopted to take care
of this problem; in particular, sometimes it may be con-
venient to resort to partial, rather than global, shut-down,
i.e., to select for power management only a (possibly small)
subset of the circuit inputs.

As an example, consider the left part of Figure 6; the
combinational block, A, implements a N-input, single-
output Boolean function, f, and it has the I/O pins con-
nected to registers Ry and Ry. A possible pre-computation
architecture is depicted on the right-hand side of Figure 6.

Figure 6 goes here.

The key elements of the architecture are the two N-
input, single-output predictor functions, ¢; and gy, whose
behavior is required to satisfy the following constraints:

n=1 = f=1
go=1 = f=0

(1)

14

The consequence is that, if at the present clock cycle either
g1 or go evaluates to 1, the load enable signal LE goes
to 0, and the inputs to block A at the next clock cycle
are forced to retain the current values. Hence, no gate
output transitions inside block A occur, while the correct
output value for the next time frame is provided by the two
registers located on the outputs of g; and gg.

As mentioned earlier, the choice of the predictor func-
tions is a difficult task. Perfect prediction requires g3 = f
and go = f’. However, this solution would not give any
advantage in terms of power consumption over the original
circuit, since it would entail the duplication of block A, and
thus it would cause the same number of switchings as be-
fore, but with an area twice as large as the original network.
Consequently, the objective to be reached is the realization
of two functions for which the probability of their logical
sum (i.e., g1 + go) to be 1 is as high as possible, but for
which the area penalty due to their implementations is very
limited. Also, the delay of the implementation of ¢; and
go should be given some attention, since the prediction cir-
cuitry may be on the critical path and, therefore, it may
impact the performance of the optimized design.

Another approach to RT and gate-level dynamic power
management, known as gated clocks [101], [102], [103], pro-
vides a way to selectively stop the clock, and thus force the
original circuit to make no transition, whenever the com-
putation to be carried out at the next clock cycle is useless.
In other words, the clock signal is disabled in accordance
to the idle conditions of the logic network. For reactive
circuits, the number of clock cycles in which the design is
idle 1n some wait states is usually large. Therefore, avoid-
ing the power waste corresponding to such states may be
significant.

As an example of use of the clock-gating strategy, con-
sider the traditional block diagram of a sequential circuit,
shown on the left-hand side of Figure 7. It consists of a
combinational logic block and an array of state registers
which are fed by the next-state logic and which provide
some feed-back information to the combinational block it-
self through the present-state input signals. The corre-
sponding gated-clock architecture is shown in the right part
of the picture.

Figure 7 goes here.

The circuit is assumed to have a single clock, and the
registers are assumed to be edge-triggered flip-flops. The
combinational block F, is controlled by the primary in-
puts, the present-state inputs, and the primary outputs of
the circuit, and it implements the activation function of
the clock gating mechanism. Its purpose is to selectively
stop the local clock of the circuit anytime no state or out-
put transition takes place. The block named L is a latch,
transparent when the global clock signal CLK is inactive.

Its presence is essential for a correct operation of the sys-
tem, since it takes care of filtering glitches that may occur
at the output of block F,. It should be noted that the logic
for the activation function is on the critical path of the cir-
cuit; therefore, timing violations may occur if the synthesis
of F, is not carried out properly.

The logic for the clock management is automatically syn-
thesized from the Boolean function that represents the idle
conditions of the circuit. It may well be the case that con-
sidering all such conditions results in additional circuitry
that is too large and power consuming. It may then be
necessary to synthesize a simplified function, which dissi-
pates the minimum possible power, and stops the clock
with maximum efficiency.

The use of gated clocks has the draw-back that the logic
implementing the clock gating mechanism is functionally
redundant, and this may create major difficulties in testing
and verification. The design of highly-testable gated clock
circuits is discussed in [104].

Guarded evaluation [105] is the third RT and gate-level
shut-down technique we review in this section. The distinc-
tive feature of this solution is that, unlike pre-computation
and gated-clocks, it does not require to synthesize ad-
ditional logic to implement the shut-down mechanism;
rather, it exploits existing signals in the original circuit.
The approach is based on placing some guard logic, con-
sisting of transparent latches with an enable signal, at
the inputs of each block of the circuit that needs to be
power-managed. When the block must execute some useful
computation in a clock cycle, the enable signal makes the
latches transparent. Otherwise, the latches retain their pre-
vious states, thus blocking any transition within the logic
block.

The use of transparent latches as devices to eliminate
useless node transitions is not new, since it has been pro-
posed by Lemonds and Shetti in [106] for the hand-crafted
optimization of multipliers and other arithmetic circuits.
However, the work by Tiwari et al. on guarded evaluation
provides a systematic approach, described next, to identify
where transparent latches must be placed within the circuit
and by which signals they must be controlled.

Let C' be a combinational logic block (shown on the left-
hand side of Figure 8), X be the set of primary inputs to C,
and z be a signal in C'. Also, let F' be the portion of logic
that drives z, and Y be the set of inputs to F'. Finally, let
D (X) be the observability don’t care set for z (that is, the
set of primary input assignments for which the value of z
does not influence the outputs of). Consider a signal s in
C' which logically implies D, (X), that is, s+ D, (X) = 1.
Then, if s = 1, the value of z is not required to compute
the outputs of C'. If we call t. (V) the earliest time at which
any input to I’ can switch when s = 1, and #;(s) the latest
time at which s settles to 1, we have that signal s can be
used as the guard signal for F' (shown of the right-hand
side of Figure 8) if ¢;(s) < t.(Y). This is because z is not
required to compute the outputs of C' when s = 1, and
thus block F' can be shut down. Notice that the condition
ti(s) < t.(Y) guarantees that the transparent latches in

15

the guard logic are shut down before any of the inputs to
F makes a transition.

Figure 8 goes here.

The technique described above, referred to as pure
guarded evaluation in [105], has the desirable property that,
when applied, no changes in the original combinational cir-
cuitry are needed. On the other hand, if some re-synthesis
and restructuring of the original logic is allowed, a larger
number of logic shut-down opportunities may become avail-
able.

Other RTL power management approaches exist in the
literature. For example, in [107], [108], Raghunathan et
al. propose a technique that reduces switching activ-
ity through re-specification of some of the control signals
in such a way that both the multiplexor networks and
the functional units get conveniently reconfigured. The
strength of the proposed methodology, thought specifically
for control-flow intensive designs, can be augmented by
applying RT-level transformations for glitch minimization
[109]; in fact, in such kind of systems, the power dissipated
by the control and steering circuitry is usually predominant
with respect to the power required by the functional units.

J. RT and Gate-Level Re-Timing

The position of the registers within a design may greatly
impact the area and performance of the circuit implemen-
tation. The transformation that re-positions the registers
of a design without modifying its external behavior is called
re-timing. The technique, initially proposed by Leiserson
and Saxe [110], has found wide applications in the con-
text of area and timing optimization. In [111], Monteiro et
al. have pointed out that register positions can also affect
power dissipation. Consider the simple example of a logic
gate, g, belonging to a synchronous circuit (see Figure 9,
left side), and call Cp the capacitive load driven by the
output node of g. In the case of CMOS technology, the
power dissipated by gate g is proportional to the product
of the switching activity of the output node of the gate,
FEg4, and the output load, C. Now consider the case in
which a register, R, is connected to the output of g. Let
CRr be the input capacitance of the register, and let Er be
the switching activity of the register output (see Figure 9,
right side).

Figure 9 goes here.

The total power dissipated by the new circuit is pro-
portional to E,Cr 4+ ErCyr. Since the output of the reg-

ister can make, at most, one transition per clock cycle,
we have that Fp < FE,. In fact, at the output of gate
g some spurious transitions (i.e., glitches) may occur, but
they are filtered by the register; hence, they do not propa-
gate to the output of R. Consequently, it may happen that
EyCr+ ErCr < Ey,C1 if both E, and Cf, are sufficiently
high. If this is the case, the presence of the register at
the output of the gate has beneficial effects to the power
behavior of the circuit.

Though sometimes it may be advantageous (for instance,
in the case of pipelining, when registers are added to spped
up a design), inserting registers into a design is not always
feasible. On the other hand, when registers are already
present in the circuit, it may be possible to move them
across RTL blocks or logic gates, so as to modify the cir-
cuit’s timing and, in view of the discussion above, also its
power dissipation, without affecting the behavioral charac-
teristics.

The heuristic retiming technique of [111] applies to a syn-
chronous network with pipeline structure. The basic idea
1s to select a set of candidate gates in the circuit such that,
if registers are placed at their outputs, the total switching
activity of the network gets minimized. The selection of
the gates is driven by two factors: The amount of glitching
which occurs at the output of each gate, and the probabil-
ity that such glitching propagates to the gates located in
the transitive fanout.

Registers are initially placed at the primary inputs of the
circuit, and backward re-timing (which consists of moving
one register from all gate inputs to the output) is applied
until all the candidate gates have received a register on
their outputs. Then, registers that belong to paths not
containing any of the candidate gates are re-positioned,
with the objective of minimizing both the delay and the
total number of registers in the circuit. This last re-timing
phase does not affect the registers which have been already
placed at the outputs of the previously selected gates.

IV. CoNcCLUSIONS

The increased degree of automation of industrial design
frameworks has produced a substantial change in the way
digital ICs are developed. The design of modern systems
usually starts from specifications given at a very high level
of abstraction. This is because existing EDA tools are able
to automatically produce low-level design implementations
directly from descriptions of this type.

It is widely recognized that power consumption has be-
come a critical issue in the development of digital systems;
then, electronic designers need tools that allow them to ex-
plicitly control the power budget during the various phases
of the design process. This is because the power savings ob-
tainable through automatic optimization are usually more
significant than those achievable by means of technological
choices (e.g., process and supply-voltage scaling).

In this paper, we have provided a non-exhaustive review
of existing methodologies and tools for high-level power
modeling and estimation, as well as for power-constrained
synthesis and optimization. Such methodologies and tools

16

are younger and, therefore, less developed than those avail-
able at the gate and circuit-level. A wealth of research re-
sults and a few pioneering commercial tools have appeared
nonetheless in the last couple of years. We expect this field
to remain quite active in the foreseeable future. New trends
and techniques will emerge, some approaches described in
this review will consolidate, while others will become obso-
lete; this 1s in view of technological and strategic changes
in the world of microelectronics.

REFERENCES

[1] F.N.Najm, “A Survey of Power Estimation Techniques in VLSI
Circuits,” IEEE Transactions on VLSI Systems, Vol. 2, No. 4,
Pp. 446-455, 1994.

[2] M. Pedram, “Power Minimization in IC Design: Principles and
Applications,” ACM Transactions on Design Automation of
FElectronic Systems, Vol. 1, No. 1, pp. 3-56, 1996.

[3] J. M. Rabaey and M. Pedram Editors Low Power Design
Methodologies, Kluwer Academic Publishers, 1996.

[4] J. Mermet and W. Nebel Editors, Low Power Design in Deep
Submicron Electronics, Kluwer Academic Publishers, 1997.

[6] T. Sato, Y. Ootaguro, M. Nagamatsu, H. Tago, “Evaluation
of Architectural-Level Power Estimation for CMOS RISC Pro-
cessors,” ISLPE-95: IEEFE International Symposium on Low
Power Electronics, pp. 44-45, San Jose, CA, October 1995.

[6] C.-L.Su, C.-Y. Tsui, A. M. Despain, “Low Power Architecture
Design and Compilation Techniques for High-Performance Pro-
cessors,” IEEE CompCon-94, pp. 489-498, February 1994.

[7] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization,”
IEEE Transactions on VLSI Systems, Vol. 2, No. 4, pp. 437-445,
1994.

[8] C-T. Hsieh, M. Pedram, H. Mehta, F. Rastgar, “Profile-Driven
Program Synthesis for Evaluation of System Power Dissipation,”
DAC-34: ACM/IEEE Design Automation Conference, pp. 576~
581, Anaheim, CA, June 1997.

[9] D. Marculescu, R. Marculescu, M. Pedram, “Information The-

oretic Measures for Power Analysis,” IFEEE Transactions on

CAD, Vol. 15, No. 6, pp. 599-610, 1996.

M. Nemani, F. Najm, “Towards a High-Level Power Estima-

tion Capability,” IEEE Transactions on CAD, Vol. 15, No. 6,

pp. 588-598, 1996.

K. T. Cheng, V. D. Agrawal, “An Entropy Measure for the

Complexity of Multi-Output Boolean Functions,” DAC-27:

ACM/IEEE Design Automation Conference, pp. 302-305, Or-

lando, FL, June 1990.

F. Ferrandi, F. Fummi. E. Macii, M. Poncino, D. Sciuto, “Power

Estimation of Behavioral Descriptions,” DATFE-98: IEEE De-

sign Automation and Test in Furope, pp. 762-766, Paris, France,

February 1998.

A. Tyagi, “Entropic Bounds on FSM Switching,” IEFE Trans-

actions on VLSI Systems, Vol. 5, No. 4, pp. 456-464, 1997.

K. Muller-Glaser, K. Kirsch, K. Neusinger, “Estimating FEs-

sential Design Characteristics to Support Project Planning for

ASIC Design Management,” ICCAD-91: IEEE/ACM Inter-

national Conference on Computer Aided Design, pp. 148-151,

Santa Clara, CA, November 1991.

M. Nemani, F. Najm, “High-Level Area Prediction for Power

Estimation,” CICC-97: Custom Integrated Circuits Conference,

pp- 483-486, Santa Clara, CA, May 1997.

M. Nemani, F. Najm, “High-Level Area and Power Estimation

for VLSI Circuits,” ICCAD-97: IEEE/ACM International Con-

ference on Computer Aided Design, pp. 114-119, San Jose, CA,

November 1997.

P. Landman, J. Rabaey, “Activity-Sensitive Architectural Power

Analysis for the Control Path,” ISLPD-95: ACM/IEEE Inter-

national Symposium on Low Power Design, pp. 93-98, Dana

Point, CA, April 1995.

A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, R. W.

Brodersen, “Optimizing Power Using Transformations,” IEEE

Transactions on CAD, Vol. 14, No. 1, pp. 12-31, 1995.

J. M. Chang, M. Pedram, “Module Assignment for Low Power,”

FEuroDAC-96: IEEE FEuropean Design Automation Conference,

pp. 376-381, Geneva, Switzerland, September 1996.

(10]

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

[36]

(37]

(38]

(39]

40]

N. Kumar, S. Katkoori, L. Rader, R. Vemuri, “Profile-Driven
Behavioral Synthesis for Low Power VLSI Systems,” IEEE De-
sign and Test of Computers, Vol. 12, No. 3, pp. 70-84, 1995.

R. San Martin, J. Knight, “Optimizing Power in ASIC Behav-
ioral Synthesis,// IEEE Design and Test of Computers, Vol. 13,
No. 2, pp. 58-70, 1996.

L. Benini, A. Bogliolo, M. Favalli, G. De Micheli, “Regression
Models for Behavioral Power Estimation,” PATMOS-96: In-
ternational Workshop on Power and Timing Modeling, Opti-
mization and Simulation, pp. 179-186, Bologna, Italy, Septem-
ber 1996.

L. Benini, A. Bogliolo, G. De Micheli, “Characterization-Free
Behavioral Power Modeling,” DATE-98: IEEE Design Automa-
tion and Test in FEurope, pp. 767-773, Paris, France, Febru-
ary 1998.

L. Benini, A. Bogliolo, G. De Micheli, “Adaptive Least Mean
Square Behavioral Power Modeling,” EDTC-97: IEEE FEuro-
pean Design and Test Conference, pp. 404-410, Paris, France,
March 1997.

C. M. Huizer, “Power Dissipation Analysis of CMOS VLSI Cir-
cuits by means of Switch-Level Simulation,” IFEE European
Solid State Cuircuits Conference, pp. 61-64, 1990.

C. X. Huang, B. Zhang, A-C. Deng, B. Swirski, “The Design and
Implementation of PowerMill,” ISLPD-95: ACM/IEEE Inter-
national Symposium on Low Power Design, pp. 105-110, Dana
Point, CA, April 1995.

F. Najm, R. Burch, P. Yang, I. Hajj, “Probabilistic Simulation
for Reliability Analysis of CMOS VLSI Circuits,” IEEE Trans-
actions on CAD, Vol. 9, No. 4, pp. 439-450, 1990.

C-Y. Tsui, M. Pedram, A. M. Despain, “Efficient Estimation
of Dynamic Power Dissipation Under a Real Delay Model,”
ICCAD-93: IEEE/ACM International Conference on Com-
puter Aided Design, pp. 224-228, Santa Clara, CA, Novem-
ber 1993.

F. Najm, “Transition Density: A New Measure of Activity in
Digital Circuits,” IEFE Transactions on CAD, Vol. 12, No. 4,
pp. 310-323, 1993.

R. Marculescu, D. Marculescu, M. Pedram, “Efficient Power
Estimation for Highly Correlated Input Streams,” DAC-32:
ACM/IEEE Design Automation Conference, pp. 628-634, San
Francisco, CA, June 1995.

C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. Despain,
B. Lin, “Power Estimation in Sequential Logic Circuits,” IEEE
Transactions on VLSI Systems, Vol. 3, No. 3, pp. 404-416, 1995.
R. Burch, F. Najm, P. Yang, T. Trick, “A Monte Carlo Approach
for Power Estimation,” IEEE Transactions on VLSI Systems,
Vol. 1, No. 1, pp. 63-71, 1993.

C-S. Ding, C-T. Hsieh, Q. Wu, M. Pedram, “Stratified Random
Sampling for Power Estimation,” ICCAD-96: IEEE/ACM In-
ternational Conference on Computer Aided Design, San Jose,
CA, pp. 577-582, November 1996.

L-P. Yuan, C-C. Teng, S-M. Kang, “Statistical Estimation of
Average Power Dissipation in CMOS VLSI Circuits Using Non-
parametric Technique,” ISLPED-96: ACM/IEEE International
Symposium on Low Power FElectronics and Design, pp. 73-78,
Monterey, CA, August 1996.

T-L. Chou, K. Roy, “Statistical Estimation of Sequential Circuit
Activity,” ICCAD-95: IEEE/ACM International Conference on
Computer Aided Design, pp. 34-37, San Jose, CA, November
1995.

D. Marculescu, R. Marculescu, M. Pedram, “Stochastic Sequen-
tial Machine Synthesis Targeting Constrained Sequence Gener-
ation,” DAC-33: ACM/IEEE Design Automation Conference,
pp. 696-701, Las Vegas, NV, June 1996.

R. Marculescu, D. Marculescu, M. Pedram, “Adaptive Models
for Input Data Compaction for Power Simulators,” ASPDAC-2:
ACM/IEEE Asia South Pacific Design Automation Conference,
pp- 391-396, Chiba, Japan, January 1997.

D. Marculescu, R. Marculescu, M. Pedram, “Sequence Com-
paction for Probabilistic Analysis of Finite State Machines,”
DAC-34: ACM/IEEE Design Automation Conference, pp. 12-
15, Anaheim, CA, June 1997.

S. Powell, P. Chau, “Estimating Power Dissipation of VLSI Sig-
nal Processing Chips: The PFA Techniques,” IEEE Workshop
on VLSI Signal Processing, Vol. IV, pp. 250-259, 1990.

P. Landman, J. Rabaey, “Power Estimation for High-Level Syn-
thesis,” EDAC-93: IEEFE European Conference on Design Au-
tomation, pp. 361-366, Paris, France, February 1993.

[41]

(42]

(43]

[44]

45]

[46]

(50]

(51]

(52]

(53]

(54]

55]

[56]

(57]

(58]

(59]

[60]

[61]

17

S. Gupta, F. N. Najm, “Power Macromodeling for High-Level
Power Estimation,” DAC-34: ACM/IEEE Design Automation
Conference, pp. 365-370, Anaheim, CA, June 1997.

D. Liu, C. Svensson, “Power Consumption Estimation in CMOS
VLSI Chips,” IEEE Journal of Solid State Circuits, Vol. 29,
No. 6, pp. 663-670, 1994.

H. Mehta, R. Owens, M. J. Irwin, “Energy Characterization
Based on Clustering,” DAC-33: ACM/IEEE Design Automa-
tion Conference, pp. 702-707, Las Vegas, NV, June 1996.

Q. Wu, C-S. Ding, C-T. Hsieh, M. Pedram, “Statistical Design
of Macro-Models for RT-Level Power Evaluation,” ASPDAC-2:
ACM/IEEE Asia South Pacific Design Automation Conference,
pp- 523-528, Chiba, Japan, January 1997.

Q. Qiu, Q. Wu, M. Pedram, C-S. Ding, “Cycle-Accurate Macro-
Models for RT-Level Power Analysis,” ISLPED-97: ACM/IEEE
International Symposium on Low Power FElectronics and De-
sign, pp. 125-130, Monterey, CA, August 1997.

C-T. Hsieh, C-S. Ding, Q. Wu, M. Pedram, “Statistical Sampling
and Regression Estimation in Power Macro-Modeling,” ICCA D-
96: IEEE/ACM International Conference on Computer Aided
Design, pp. 583-588, San Jose, CA, November 1996.

D. Kirovski, M. Potkonjak, “System-Level Synthesis of Low-
Power Hard Real-Time Systems,” DAC-34: ACM/IEEE Design
Automation Conference, pp. 697-702, Anaheim, CA, June 1997.
B. P. Dave, G. Lakshminarayana, N. K. Jha, “COSYN:
Hardware-Software Co-Synthesis of Embedded Systems,” DA C-
34: ACM/IEEE Design Automation Conference, pp. 703-708,
Anaheim, CA, June 1997.

R. P. Dick, N. K. Jha, “MOGAC: A Multiobjective Genetic
Algorithm for the Co-Synthesis of Hardware-Software Embed-
ded Systems,” ICCAD-97: IEEE/ACM International Confer-
ence on Computer Aided Design, pp. 522-529, San Jose, CA,
November 1997.

M. T.-C. Lee, V. Tiwari, S. Malik, M. Fujita, “Power Analy-
sis and Minimization Techniques for Embedded DSP Software,”
IEEFE Transactions on VLSI Systems, Vol. 5, No. 1, pp. 123-135,
1997.

V. Tiwari, S. Malik, A. Wolfe, M. T.-C. Lee, “Instruction Level
Power Analysis and Optimization of Software,” Journal of VLSI
Signal Processing, pp. 1-18, 1996.

S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man,
“Global Communication and Memory Optimizing Transforma-
tions for Low Power Design,” IWLPD-94: ACM/IEEE Inter-
national Workshop on Low Power Design, pp. 203-208, Napa
Valley, CA, April 1994.

P. R. Panda, N. D. Dutt, “Reducing Address Bus Transitions for
Low Power Memory Mapping,” EDTC-96: IEEFE European De-
sign and Test Conference, pp. 63-67, Paris, France, March 1996.
P. R. Panda, N. D. Dutt, “Low Power Mapping of Behav-
ioral Array to Multiple Memories,” ISLPED-96: ACM/IEEE
International Symposium on Low Power FElectronics and De-
sign, pp. 289-292, Monterey, CA, August 1996.

M. T.-C. Lee, V. Tiwari, “A Memory Allocation Technique for
Low-Energy Embedded DSP Software,” ISLPE-95: IEEE Inter-
national Symposium on Low Power Electronics, pp. 44-45, San
Diego, CA, October 1995.

S. Wuytack, F. Catthoor, .. Nachtergaele, H. De Man, “Power
Exploration for Data Dominated Video Applications,” ISLPED-
96: ACM/IEEE International Symposium on Low Power Elec-
tronics and Design, pp. 359-364, Monterey, CA, August 1996.
J. P. Diguet, S. Wuytack, F. Catthoor, H. De Man, “For-
malized Methodology for Data Reuse Exploration in Hierarchi-
cal Memory Mappings,” ISLPED-97: ACM/IEEE International
Symposium on Low Power FElectronics and Design, pp. 30-35,
Monterey, CA, August 1997.

M. B. Srivastava, A. P. Chandrakasan, R. W. Brodersen, “Pre-
dictive System Shutdown and Other Architectural Techniques
for Energy Efficient Programmable Computation,” IEEE Trans-
actions on VLSI Systems, Vol. 4, No. 1, pp. 42-55, March 1996.
C.-H. Hwang, A. C.-H. Wu, “A Predictive System Shutdown
Method for FEnergy Saving of Event-Driven Computation,”
ICCAD-97: IEEE/ACM International Conference on Com-
puter Aided Design, pp. 28-32, San Jose, CA, November 1997.
E. Musoll, J. Cortadella, “Scheduling and Resource Binding for
Low Power,” 1S585-95: IEEFE International Symposium on Sys-
tem Synthesis, pp. 104-109, Cannes, France, April 1995.

E. Musoll, J. Cortadella, “High-Level Synthesis Techniques
for Reducing the Activity of Functional Units,” ISLPD-95:

(62]

(63]

(64]

[65]

[66]

(67]

(68]

(73]

[74]

[75]

[76]

(77]

(78]

[79]

(80]

(81]

(82]

(83]

ACM/IEEE International Symposium on Low Power Design,
pp- 99-104, Dana Point, CA, April 1995.

D. Kim, K. Choi, “Power-Conscious High-Level Synthesis Us-
ing Loop Folding,” DAC-84: ACM/IEEE Design Automation
Conference, pp. 441-445, Anaheim, CA, June 1997.

J. Monteiro, S. Devadas, P. Ashar, A. Mauskar, “Schedul-
ing Techniques to Enable Power Management,” DAC-33:
ACM/IEEE Design Automation Conference, pp. 349-352, Las
Vegas, NV, June 1996.

J. M. Chang, M. Pedram, “Low Power Register Allocation and
Binding,” DAC-32: ACM/IEEE Design Automation Confer-
ence, pp. 29-35, San Francisco, CA, June 1995.

A. Raghunathan, N. K. Jha, “Behavioral Synthesis for Low
Power,” ICCD-94: IEEFE International Conference on Com-
puter Design, pp. 318-322, Cambridge, MA, October 1994.

S. Bhatia, N. K. Jha, “Genesis: A Behavioral Synthesis System
for Hierarchical Testability,” EDTC-94: IEEE FEuropean Design
and Test Conference, pp. 272-276, Paris, France, February 1994.
L. Goodby, A. Orailoglu, P. M. Chau, “Microarchitectural Syn-
thesis of Performance-Constrained, Low-Power VLSI Designs,”
ICCD-94:1FEEE International Conference on Computer Design,
pp. 323-326, Cambridge, MA, October 1994.

R. Mehra, J. Rabaey, “Exploiting Regularity for Low-Power
Design,” ICCAD-96: IEEE/ACM International Conference on
Computer Aided Design, pp. 166-172, San Jose, CA, Novem-
ber 1996.

C. Gebotys, “Low Energy Memory and Register Allocation Us-
ing Network Flow,” DAC-34: ACM/IEEE Design Automation
Conference, pp. 435-440, Anaheim, CA, June 1997.

D. D. Gajski, L. Ramachandran, “Introduction to High-Level
Synthesis,” IEEE Design and Test of Computers, Vol. 11, No. 4,
pp- 44-54, Dec, 1994.

G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

A. Raghunathan, N. K. Jha, “An Iterative Improvement Algo-
rithm for Low Power Data-Path Synthesis,” ICCAD-95: IEEE
International Conference on Computer Aided Design, pp. 597-
602, San Jose, CA, November 1995.

J. M. Chang, M. Pedram, “Energy Minimization Using Multiple
Supply Voltages,” IEEE Transactions on VLSI Systems, Vol. 5,
No. 4, pp. 436-443, 1997.

S. Raje, M. Sarrafzadeh, “Variable Voltage Scheduling,” ISLPD-
95: ACM/IEEE International Symposium on Low Power De-
sign, pp. 9-14, Dana Point, CA, April 1995.

M. Johnson, K. Roy, “Optimal Selection of Supply Voltages and
Level Conversions During Data-Path Scheduling Under Resource
Constraints,” ICCD-96: IEEE International Conference Com-
puter Design, pp. 72-77, Austin, TX, October 1996.

M. Igarashi, et al.,, “A Low-Power Design Method Using Mul-
tiple Supply Voltages,” ISLPED-97: ACM/IEEE International
Symposium on Low Power FElectronics and Design, pp. 36-41,
Monterey, CA, August 1997.

M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-Power
1/0,” IEEE Transactions on VLSI Systems, Vol. 3, No. 1,
pp. 49-58, 1995.

C.-L. Su, C.-Y. Tsui, A. M. Despain, “Saving Power in the Con-
trol Path of Embedded Processors,” IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 24-30, 1994.

H. Mehta, R. M. Owens, M. J. Irwin, “Some Issues in Gray Code
Addressing,” GLS-VLSI-96: IEEE/ACM Great Lakes Sympo-
sium on VLSI, pp. 178-180, Ames, IA, March 1996.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“Asymptotic Zero-Transition Activity Encoding for Address
Busses in Low-Power Microprocessor-Based Systems,” GLS-
VLSI-97: IEEE/ACM Great Lakes Symposium on VLSI, pp. 77-
82, Urbana, IL, March 1997.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, “Ad-
dress Bus Encoding Techniques for System-Level Power Opti-
mization”, DATE-98: IEEE Design Automation and Test in
FEurope, pp. 861-866, Paris, France, February 1998.

E. Musoll, T. Lang, J. Cortadella, “Exploiting the Locality
of Memory References to Reduce the Address Bus Energy,”
ISLPED-97: ACM/IEEE International Symposium on Low
Power Electronics and Design, pp. 202-207, Monterey, CA, Au-
gust 1997.

L. Benini, G. De Micheli, E. Macii, M. Poncino, S. Quer,
“System-Level Power Optimization of Special Purpose Appli-
cations: The Beach Solution”, ISLPED-97: ACM/IEEE In-

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

(94]

[95]

(98]

[99]

18

ternational Symposium on Low Power Electronics and Design,
pp. 24-29, Monterey, CA, August 1997.

R. E. Bryant, “Graph-Based Algorithms for Boolean Func-
tion Manipulation,” IEFE Transactions on Computers, Vol. 35,
No. 8, pp. 677-691, 1986.

J. Hartmanis, R. E. Stearns, “Algebraic Structure Theory of Se-
quential Machines,” Prentice-Hall, Englewood Cliffs, NJ, 1966.
S. Devadas, A. R. Newton, “Decomposition and Factorization of
Sequential Finite State Machines,” IEEE Transactions on CAD,
Vol. 8, No. 11, pp. 1206-1217, 1989.

L. Benini, P. Vuillod, C. Coelho, G. De Micheli, “Synthesis of
Low-Power Selectively-Clocked Systems from High-Level Speci-
fication,” 1555-96: IEEE International Symposium on System
Synthesis, La Jolla, CA, pp. 57-62, October 1996.

B. Lin, A. R. Newton, “Implicit Manipulation of Equivalence
Classes Using Binary Decision Diagrams,” ICCD-91: IEFE
International Conference Computer Design, pp. 81-85, Cam-
bridge, MA, October 1991.

B. Kumthekar, I. H. Moon, F. Somenzi, “A Symbolic Algorithm
for Low-Power Sequential Synthesis,” ISLPED-97: ACM/IEEE
International Symposium on Low Power FElectronics and De-
sign, pp. 56-61, Monterey, CA, August 1997.

K. Roy, S. C. Prasad, “Circuit Activity Based Synthesis for Low
Power Reliable Operations,” IEEE Transactions on VLSI Sys-
tems, Vol. 1, No. 4, pp. 503-513, 1993.

E. Olson, S. M. Kang, “Low-Power State Assignment for Finite
State Machines,” IWLPD-94: International Workshop on Low
Power Design, pp. 63-68, Napa Valley, CA, April 1994.

C.-Y. Tsui, M. Pedram, A. M. Despain, “Low Power State
Assignment Targeting Two- and Multi-Level Logic Implemen-
tations, ICCAD-94: IEEE/ACM International Conference on
Computer Aided Design, San Jose, CA, pp. 82-87, Novem-
ber 1994.

L. Benini, G. De Micheli, “State Assignment for Low Power Dis-
sipation,” IEEE Journal of Solid State Circuits, Vol. 30, No. 3,
Pp. 258-268, 1995.

P. Surti, L. F. Chao, A. Tyagi, “Low Power FSM Design Using
Huffman-Style Encoding,” EDTC-97: IEEE FEuropean Design
and Test Conference, pp. 521-525, Paris, France, March 1997.
G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi,
“Re-Encoding Sequential Circuits to Reduce Power Dissipation,”
ICCAD-94: IEEE/ACM International Conference on Com-
puter Aided Design, pp. 70-73, San Jose, CA, November 1994.
G. D. Hachtel, E. Macii, A. Pardo, F. Somenzi, “Markovian
Analysis of Large Finite State Machines,” IEEE Transactions
on CAD, Vol. 15, No. 12, pp. 1479-1493, 1996.

L. Lavagno, P. C. McGeer, A. Saldanha, A. L. Sangiovanni-
Vincentelli, “Timed Shannon Circuits: A Power-Efficient De-
sign Style and Synthesis Tool,” DAC-32: ACM/IEEE De-
sign Automation Conference, pp. 254-260, San Francisco, CA,
June 1995.

S.-I. Minato, “Zero-Suppressed BDDs for Set Manipulation in
Combinatorial Problems,” DAC-30: ACM/IEEE Design Au-
tomation Conference, pp. 272-277, Dallas, TX, June 1993.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Pa-
paefthymiou, “Precomputation-Based Sequential Logic Opti-
mization for Low Power,” IEEE Transactions on VLSI Systems,
Vol. 2, No. 4, pp. 426-436, 1994.

[100] J. Monteiro, J. Rinderknecht, S. Devadas, A. Ghosh, “Op-

timization of Combinational and Sequential Circuits for Low
Power Using Precomputation,” 1995 Chapel Hill Conference
on Advanced Research in VLSI, pp. 430-444, Chapel Hill, NC,
March 1995.

[101] L. Benini, P. Siegel, G. De Micheli, “Automatic Synthesis of

Gated Clocks for Power Reduction in Sequential Circuits,” IEEE
Design and Test of Computers, Vol. 11, No. 4, pp. 32-40, 1994.

[102] L. Benini, G. De Micheli, “Transformation and Synthesis of

FSMs for Low Power Gated Clock Implementation,” IEEE
Transactions on CAD, Vol. 15, No. 6, pp. 630-643, 1996.

[103] L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi,

“Symbolic Synthesis of Clock-Gating Logic for Power Optimiza-
tion of Control-Oriented Synchronous Networks,” EDTC-97:
IEEFE FEuropean Design and Test Conference, pp. 514-520, Paris,
France, March 1997.

[104] L. Benini, M. Favalli, G. De Micheli, “Design for Testability

of Gated-Clock FSMs,” EDTC-96: IEEE European Design and
Test Conference, pp. 589-596, Paris, France, March 1996.

[105] V. Tiwari, S. Malik, P. Ashar, “Guarded Evaluation: Push-
ing Power Management to Logic Synthesis/Design,” ISLPD-95:
ACM/IEEE International Symposium on Low Power Design,
pp- 221-226, Dana Point, CA, April 1995.

[106] C.Lemonds, S. S. Shetti, “A Low Power 16 by 16 Multiplier Us-
ing Transition Reduction Circuitry,” IWLPD-94: ACM/IEEE
International Workshop on Low Power Design, pp. 139-142,
Napa Valley, CA, April 1994.

[107] A. Raghunathan, S. Dey, N. K. Jha, K. Wakabayashi, “Con-
troller Re-Specification to Minimize Switching Activity in Con-
troller/Data Path Circuits,” ISLPED-96: ACM/IEEE Inter-
national Symposium on Low Power FElectronics and Design,
pp. 301-304, Monterey, CA, August 1996

[108] A. Raghunathan, S. Dey, N. K. Jha, K. Wakabayashi, “Power
Management Techniques for Control-Flow Intensive Designs,”
DAC-34: ACM/IEEE Design Automation Conference, pp. 429-
434, Anaheim, CA, June 1997.

[109] A. Raghunathan, S. Dey, N. K. Jha, “Glitch Analysis and Re-
duction in Register Transfer Level Power Optimization,” DA C-
38: ACM/IEEFE Design Automation Conference, pp. 331-336,
Las Vegas, NV, June 1996.

[110] C. E. Leiserson, J. B. Saxe, “Optimizing Synchronous Sys-
tems,” Journal of VLSI and Computer Systems, Vol. 1, No. 1,
pp. 41-67, 1983.

[111] J. Monteiro, S. Devadas, A. Ghosh, “Retiming Sequential Cir-
cuits for Low Power,” ICCAD-95: IEEE/ACM International
Conference on Computer Aided Design, pp. 398-402, Santa
Clara, CA, November 1993.

19

Function
Partitionin
and
HW/SW
Allocation

System-Level
Power Analysi.

Software

Hardware

Behaviorall
Descriptiol

Software
Funcions

Processor Power Driven Behavioral
Selecti i
election Transformation: Power Analysi
— —
Power
Conscious
Behaviora
High-Level
Software | Software Synthesis RT-Level
Power Analysifl— ™ optimization Power Analysi
optimization|
T

RT-Level

Description

Data-Paths Controller
— A\l
Logic
RTL RTL Synthesis Gate-Level
Mapping Library and Power Analysi
Optimization
— —
Gate-Level
Processor iDescriptio
Memory
Control Tech-M .
seond, STD cell pattel Switch-Level
eering RTL Library {tohe Power Analysisg|
Logic Macrocells Switch-Level
- - Optimzation
—
BUS

Switch-Leve:
Description

Fig. 1. Low power design flow.

for (i=0;i<=n;i++)

b[il = f(alil);

for (i=0;i<=n;i++) {

bli] = f(alil);

Activ

e |

20

| Active

b=l

>

>

T Power-Down

Mode

Tr

Fig. 3. Static shut-down strategy.

(D~ <=
‘E’ B X B

Fig. 4. Evaluation of a second-order polynomial.

for (i=0;i<=n;i++)

cl[il = g(bl[il); }

clil = g(blil);

Fig. 2. Code optimization to reduce the number of memory accesses.

A
P OSO ™
X
M OROSC A2
c
x 2 <>
X e X B X c
B
Fig. 5. Evaluation of a third-order polynomial.
Before constant mult. After constant mult.
Component Switched %% of Switched %% of
cap. (pF) | total cap. | cap. (pF) | total cap.
Execution units 739.65 64.80 93.07 21.63
Registers/clock 179.57 15.73 161.40 37.50
Control logic 65.45 5.73 83.79 19.47
Interconnect 156.69 13.74 92.10 21.40
[Total | 114136 [100.00 | 430.36 | 100.00 |
TABLE 1

CAPACITANCE STATISTICS FOR A TAP FIR FILTER.

21

Xl

X

*—IR, A R,
XN____ S

Fig. 8. Example of guard logic insertion.

=

b}

Fig. 6. Example of pre-computation architecture.

STATE
Combinational
IN . ouT
Logic —
CLK
STATE

Combinational ouT
Logic

i

F, o C :Bi E
LK c K Agiijgi
b . : T

Fig. 7. Example of gated clock architecture.

IN

\Y

Fig. 9. Reducing the switching activity by inserting registers.

