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Abstract – Power consumption and power-related issues have become a first-order 
concern for most designs and loom as fundamental barriers for many others.  And, while 
the primary method used to date for reducing power has been supply voltage reduction, 
this technique begins to lose its effectiveness as voltages drop to sub-one volt range and 
further reductions in the supply voltage begin to create more problems than are solved.  
Under these circumstances, the process of design and the automation tools required to 
support that process become the critical success factors. In the last decade, huge effort 
has been invested to come up with a wide range of design solutions that help solve the 
power dissipation problem for different types of electronic devices, components and 
systems. These techniques range from RTL power management and multiple voltage 
assignment, to power-aware logic synthesis and physical design, to memory and bus 
interface design. This tutorial paper explains a number of representative low power 
design techniques from this large set. More precisely, we will describe basic techniques, 
applicable at RT-level and below, that have proven to hold good potential for power 
optimization in practical design environments. 

1 Introduction 

A dichotomy exists in the design of modern microelectronic systems: they must be low 
power and high performance, simultaneously. This dichotomy largely arises from the use 
of these systems in battery-operated portable (wearable) platforms. Accordingly, the goal 
of low-power design for battery-powered electronics is to extend the battery service life 
while meeting performance requirements. Unless optimizations are applied at different 
levels, the capabilities of future portable systems will be severely limited by the weight of 
the batteries required for an acceptable duration of service. In fixed, power-rich 
platforms, the packaging cost and power density/reliability issues associated with high 
power and high performance systems also force designers to look for ways to reduce 
power consumption. Thus, reducing power dissipation is a design goal even for non-
portable devices since excessive power dissipation results in increased packaging and 
cooling costs as well as potential reliability problems. Meanwhile, following Moore’s 
Law, integrated circuit densities and operating speeds have continued to go up in 
unabated fashion. The result is that chips are becoming larger, faster, and more complex 
and because of this, consuming increasing amounts of power. 
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These increases in power pose new and difficult challenges for integrated circuit 
designers.  While the initial response to increasing levels of power consumption was to 
reduce the supply voltage, it quickly became apparent that this approach was insufficient.  
Designers subsequently began to focus on advanced design tools and methodologies to 
address the myriad of power issues. Complicating designers’ attempts to deal with these 
issues are the complexities – logical, physical, and electrical – of contemporary IC 
designs and the design flows required to build them.   

This article reviews a number of representative RT-level design automation techniques 
that focus on low power design. It should be of interest to designers of power efficient 
devices, IC design engineering managers, and EDA managers and engineers. More 
precisely, it covers techniques for, sequential logic synthesis, RT-level power 
management, multiple voltage design, and low power bus encoding techniques. Interested 
readers can find wide-ranging information on various aspects of low power design in  [1]-
 [3]. Note that although, in many of today’s designs, the leakage component of power 
consumption has become comparable to the dynamic component, this tutorial does not 
discuss the leakage issue. Interested readers may refer to any of the excellent references 
on leakage power, including those in the abovementioned edited books.  

2 Multiple-Voltage Design 

Using different voltages in different parts of a chip may reduce the global energy 
consumption of a design at a rather small cost in terms of algorithmic and/or architectural 
modifications. The key observation is that the minimum energy consumption in a circuit 
is achieved if all circuits paths are timing-critical (there is no positive slack in the circuit.) 
A common voltage scaling technique is thus to operate all the gates on non-critical timing 
paths of the circuit at a reduced supply voltage. Gates/modules that are part of the critical 
paths are powered at the maximum allowed voltage, thus, avoiding any delay increase; 
the power consumed by the modules that are not on the critical paths, on the other hand, 
is minimized because of the reduced supply voltage. Using different power supply 
voltages on the same chip of circuitry requires the use of level shifters at the boundaries 
of the various modules (a level converter is needed between the output of a gate powered 
by a low VDD and the input of a gate powered by a high VDD, i.e., for a step-up change.)  
Figure 1 depicts a typical level converter design. Notice that if a gate that is supplied with 
VDD,L drives a fanout gate at VDD,H, transistors N1 and N2 receive inputs at reduced 
supply and the cross-coupled PMOS transistors do the level conversion. Level converters 
are obviously not needed for a step-down change in voltage. Overhead of level converters 
can be mitigated by doing conversions at register boundaries and embedding the level 
conversion inside the flip flops (see  [4] for details.)   
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Figure 1: A typical level-converter design. 

A polynomial time algorithm for multiple-voltage scheduling of performance-constrained 
non-pipelined designs is presented by Raje and Sarrafzadeh in  [5]. The idea is to establish 
a supply voltage level for each of the operations in a data flow graph, thereby, fixing the 
latency of that operation. The goal is then to minimize the total power dissipation while 
satisfying the system timing constraints. Power minimization is in turn accomplished by 
ensuring that each operation will be executed using the minimum possible supply 
voltage. The proposed algorithm is composed of a loop where, in each iteration, slacks of 
nodes in the acyclic data flow graph are calculated.  Then, nodes with the maximum slack 
are assigned to lower voltages in such a way that timing constraints are not violated. The 
algorithm stops when no positive slack exists in the data flow graph. Notice that this 
algorithm assumes that the Pareto-optimal voltage versus delay curve is identical for all 
computational elements in the data flow graph. Without this assumption, there is no 
guarantee that this algorithm will produce an optimal design.  

In  [6], the problem is addressed for combinational circuits, where only two supply 
voltages are allowed. A depth-first search is used to determine those computational 
elements, which can be operated at low supply voltage without violating the circuit 
timing constraints. A computational element is allowed to operate at VDD,L only is all its 
successors are operating at VDD,L. For example, Figure 2(a) demonstrates a clustered 
voltage scaling (CVS) solution in which each circuit path starts with VDD,H and switches 
to VDD,L when delay slack is available. The timing-critical path is shown with thick line 
segments. Here gray-colored cells are running at VDD,L. Level conversion (if necessary) is 
done in the flip flops at the end of the circuit paths. An extension to this approach is 
proposed in  [7], which is based on the observation that by optimizing the insertion points 
of level converters, one can increase the number of gates using VDD,L without increasing 
the number of level converters. This leads to higher power savings. For example, in the 
CVS solution depicted in Figure 2(a), assume that the path delay from flip-flop FF3 to 
gate G2 is much longer than that of the path from FF1 to G2. In addition, assume that if 
we apply VDD,L to G2, then the path from FF3 to FF5 through G2 will miss its target 
combinational delay i.e., G2 must be assigned a supply level of VDD,H. With the CVS 
approach, it immediately follows that G3 must be assigned VDD,H although a potentially 
large positive slack remains in the path from FF1 to G2. The situation is the same for G4 
and G5. Consequently, the CVS approach can miss opportunities for applying VDD,L to 
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some gates in the circuit. If the insertion point of the level converter LC1 is allowed to 
move up to the interface between G3 and G2, the gates G3 through G5 can be assigned a 
supply of VDD,L, as depicted in Figure 2(b). The structure shown there is one that can be 
obtained by the extended CVS (ECVS) algorithm. Both CVS and ECVS assign the 
appropriate power supply to the gates by traversing the circuit from the primary outputs 
to the primary inputs in a levelized order. ECVS allows a VDD,L-driven gate to feed a 
VDD,H driven gate along with the insertion of a dedicated level converter. 
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(b) 

Figure 2: Examples of (a) CVS solution, (b) ECVS solution. 

In  [8], the authors propose an approach for voltage assignment in combinational logic 
circuits. First, a lower bound on dynamic power consumption is determined by exploiting 
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the available slacks and the value of the dual-supply voltages that may be used in solving 
the problem of minimizing dynamic power consumption of the circuit. Next, a heuristic 
algorithm is proposed for solving the voltage-assignment problem, where the values of 
the low and the high supply voltages are either specified by the user or fixed to the 
estimated ones.  

In  [9], the authors present resource and latency constrained scheduling algorithms to 
minimize power/energy consumption when the resources operate at multiple voltages. 
The proposed algorithms are based on efficient distribution of slack among the nodes in 
the data-flow graph. The distribution procedure tries to implement the minimum energy 
relation derived using the Lagrange multiplier method in an iterative fashion. 

An important phase in the design flow of multiple-voltage systems is that of assigning the 
most convenient supply voltage, selected from a fixed number of values, to each 
operation in the control-date flow graph (CDFG). The problem is to assign the supply 
voltages and to schedule the tasks so as to minimize the power dissipation under 
throughput/resource constraints. An effective solution has been proposed by Chang and 
Pedram in  [10]. The technique is based on dynamic programming and requires the 
availability of accurate timing and power models for the macro-modules in a RTL library. 
A preliminary characterization procedure must then be run to determine an energy-delay 
curve for each module in the library and for all possible supply-voltage assignments. The 
points on the curve represent various voltage assignment solutions with different 
tradeoffs between the performance and the energy consumption of the cell. Each set of 
curves is stored in the RTL library, ready to be invoked by the cost function that guides 
the multiple supply-voltage scheduling algorithm. We provide a brief description of the 
method for the simple case of control and data flow graphs (CDFG’s) with a tree 
structure. The algorithm consists of two phases: first, a set of possible power-delay 
tradeoffs at the root of the tree is calculated; then, a specific macro-module is selected for 
each node in such a way that the scheduled CDFG meets the required timing constraints. 
To compute the set of possible solutions, a power-delay curve at each node of the tree 
(proceeding from the inputs to the output of the CDFG) is computed; such a curve 
represents the power-delay tradeoffs that can be obtained by selecting different instances 
of the macro-modules, and the necessary level shifters, within the subtree rooted at each 
specific node. The computation of the power-delay curves is carried out recursively, until 
the root of the CDFG is reached. Given the power-delay curve at the root node, that is, 
the set of tradeoffs the user can choose from, a recursive preorder traversal of the tree is 
performed, starting from the root node, with the purpose of selecting which module 
alternative should be used at each node of the CDFG. Upon completion, all the operations 
are fully scheduled; therefore, the CDFG is ready for the resource-allocation step.  

More recently, a level-converter free approach is proposed in  [11] where the authors try 
to eliminate the overhead imposed by level converters by suggesting a voltage scaling 
technique without utilizing level converters. The basic initiative is to impose some 
constraints on the voltage differences between adjacent gates with different supply 
voltages based on the observation that there will be no static current if the supply voltage 
of a driver gate is higher than the subtraction of the threshold voltage of a PMOS from 
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the supply voltage of a driven gate. In  [12], the authors propose behavioral-level power 
optimization algorithms that use voltage and frequency scaling. In this work, the 
operators in a data flow graph are scheduled in the modules of the given architecture, by 
applying voltage and frequency scaling techniques to the modules of the architecture such 
that the power consumed by the modules is minimized. The global optimal selection of 
voltages and frequencies for the modules is determined through the use of an auction-
theoretic model and a game theoretic solution. The authors present a resource constrained 
scheduling algorithm, which is based on applying the Nash equilibrium function to the 
game theoretic formulation.  

3 RT-level Power Management 

Digital circuits usually contain portions that are not performing useful computations at 
each clock cycle. Power reductions can then be achieved by shutting down the circuitry 
when it is idle. 

3.1 Precomputation Logic  
Precomputation logic, presented in  [13], relies on the idea of duplicating part of the logic 
with the purpose of precomputing the circuit output values one clock cycle before they 
are required, and then uses these values to reduce the total amount of switching in the 
circuit during the next clock cycle. In fact, knowing the output values one clock cycle in 
advance allows the original logic to be turned off during the next time frame, thus 
eliminating any charging and discharging of the internal capacitances. Obviously, the size 
of the logic that pre-calculates the output values must be kept under control since its 
contribution to the total power balance may offset the savings achieved by blocking the 
switching inside the original circuit. Several variants to the basic architecture can then be 
devised to address this issue. In particular, sometimes it may be convenient to resort to 
partial, rather than global, shutdown, i.e., to select for power management only a 
(possibly small) subset of the circuit inputs. 

 

 

Figure 3: A pipeline stage of a data path. 
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Figure 4:  A precomputation logic realization of the pipeline stage (subset-input disabling 
architecture). 

Figure 3 shows a combinational block A that implements an n-input, single-output 
Boolean function f, with registers R1 and R2 connected to its inputs and output pins, 
respectively. A precomputation architecture realization of this same logic block placed 
between register sets R1 and R2 is depicted in Figure 4. The key elements of the 
precomputation architecture are two n-input, single-output predictor functions g1 and g2, 
which satisfy the following constraints: 

g1 = 1  ⇒  f = 1 

g2 = 1  ⇒  f = 0 

If, at the present clock cycle, g1 or g2 evaluate to one, then the load enable signal, LE, 
goes to zero, and the inputs to block A at the next clock cycle are forced to retain the 
current values. Hence, no gate output transitions inside block A occur, while the correct 
output value for the next time frame is provided by the two registers located on the 
outputs of g1 and g2. Note that the precomputation logic is a function of a subset of the 
input variables, hence, it is called a “subset input-disabling architecture.” 

The synthesis algorithm presented in  [13] suffers from the limitation that if a logic 
function is dependent on the values of several inputs for a large fraction of the applied 
input combinations, then no reduction in switching activity can be obtained. In  [14], the 
authors focus on a particular sequential precomputation architecture where the 
precomputation logic is a function of all of the input variables. The authors call this 
architecture the “complete input-disabling architecture.” It is shown that the complete 
input disabling architecture can reduce power dissipation for a larger class of sequential 
circuits compared to the subset input-disabling architecture. The authors present an 
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algorithm to synthesize precomputation logic for the complete input-disabling 
architecture. 

 

Figure 5: An example of a complete input-disabling precomputation architecture. 

In Figure 5, a complete input-disabling precomputation architecture for a comparator 
circuit is shown. Functions g1 and g2 satisfy the conditions of (1) and (2) as before. 
During clock cycle t; if either g1 or g2 evaluates to a 1, the load enable signal of register 
R1 is set to be 0. This means that in clock cycle t + 1; none of the inputs to the 
combinational logic block A change. If g1 evaluates to 1 in clock cycle t, the input to 
register R2 is a 1 in clock cycle t+1, and if g2 evaluates to a 1, then the input to register 
R2 is a 0. Note that g1 and g2 cannot both be 1 during the same clock cycle, due to the 
conditions imposed by (1) and (2). The important difference between this architecture 
and the subset input-disabling architecture shown in Figure 4 is that the precomputation 
logic can be a function of all input variables, allowing us to precompute any input 
combination.  

3.2 Clock Gating 
Another approach to RT and gate-level dynamic power management, known as gated 
clocks  [15]– [17], provides a way to selectively stop the clock, and thus, force the original 
circuit to make no transition, whenever the computation that is to be carried out at the 
next clock cycle is redundant. In other words, the clock signal is disabled according to the 
idle conditions of the logic network. For reactive circuits, the number of clock cycles in 
which the design is idle in some wait states is usually large. Therefore, avoiding the 
power waste corresponding to such states may be significant.  
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Figure 6: Clock gating logic for ALU in a typical processor microarchitecture with 
negative-edge triggered flip-flops. 

The logic for the clock management is automatically synthesized from the Boolean 
function that represents the idle conditions of the circuit (cf. Figure 6.) It may well be the 
case that considering all such conditions results in additional circuitry that is too large 
and too power consuming. It may then be necessary to synthesize a simplified function, 
which dissipates the minimum possible power and stops the clock with maximum 
efficiency. The use of gated clocks has the drawback that the logic implementing the 
clock-gating mechanism is functionally redundant, and this may create major difficulties 
in testing and verification. The design of highly testable-gated clock circuits is discussed 
in  [18]. 

 

Figure 7: Clock is disabled when EN = 0; Furthermore, a hazard on EN will be stopped 
from reaching GCLK. 

Another difficulty with clock gating is that one must stop hazards/glitches on EN signal 
from corrupting the clock signal to the register sets. This can be accomplished by 
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introducing a transparent negative latch between EN and the AND gate as shown in 
Figure 7. 

3.3 Computational Kernels 
 
Sequential circuits may have an extremely large number of reachable states, but during 
normal operation, these circuits tend to visit only a relatively small subset of the 
reachable states. A similar situation occurs at the primary outputs; while the circuit walks 
through the most probable states, only a few distinct patterns are generated at the 
combinational outputs of the circuit. Many researchers have proposed approaches for 
synthesizing a circuit that is fast and power-efficient under typical input stimuli, but 
continues to operate correctly even when uncommon input stimuli are applied to the 
circuit. 

Reference  [19] presents a power optimization technique by exploiting the concept of 
computational kernel of a sequential circuit, which is a highly simplified logic block that 
imitates the steady-state behavior of the original specification. This block is smaller, 
faster, and less power consuming than the circuit from which it is extracted and can 
replace the original network for a large fraction of the operation time.  

The p-order computational kernel of an FSM is defined with respect to a given 
probability threshold p and includes the subset of the states, SP, of the original FSM 
whose steady-state occupation probabilities are larger than p. The combinational kernel 
also includes the subset of states, RP, where for each state in Rp there is an edge from a 
state in Sp to that state. As an example, consider the simple FSM shown in Figure 8(a) in 
which the input and output values are omitted for the sake of simplicity and the states are 
annotated with the steady-state occupation probabilities calculated through Markovian 
analysis of the corresponding state transition graph (STG.) If we specify a probability 
threshold of p=0.25, then the computational kernel of the FSM is depicted in Figure 8(b). 
States in black represent set Sp, while states in grey represent Rp. The kernel probability 
is Prob(Sp) = 0.29 + 0.25 + 0.32 = 0.86. 
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(a)       (b)  

Figure 8:  (a) Moore-type FSM and (b) its 0.25-order computational kernel. 

Given a sequential circuit with the standard topology depicted in Figure 9(a), the 
paradigm for improving its quality with respect to a given cost function (e.g., power 
dissipation, latency) is based on the architecture shown in Figure 9(b). 

 

(a)       (b)  

Figure 9: Kernel-based optimized architecture. 

The basic elements of the architecture are: the combinational portion of the original 
circuit (block CL), the computational kernel (block K), the selector function (block S), 
the double state flip-flops (DSFF), and the output multiplexers (MUX.) 

The computational kernel can be seen as a “dense" implementation of the circuit from 
which it has been extracted. In other terms, K implements the core functions of the 
original circuit, and because of its reduced complexity, it usually implements such 
functions in a faster and more efficient way. The purpose of selector function S is that of 
deciding what logic block, between CL and K, will provide the output value and the next-
state in the following clock cycle. To take a decision, S examines the values of the next-
state outputs at clock cycle n. If the output and next-state values in cycle n+1 can be 
computed by the kernel K, then S takes on the value 1. Otherwise, it takes on the value 0. 
The value of S is fed to a flip-flop, whose output is connected to the MUXes that select 
which block produces the output and the next-state. The optimized implementation is 
functionally equivalent to the original one.  Computational kernels are a generalization of 
the precomputation architecture from combinational and pipelined sequential circuits to 
finite state machines. The authors in  [19] proposed an algorithm for generating the 
computational kernel of a FSM by iterative simplification of the original network by 
redundancy removal. 
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In  [20], the authors raise the level of abstraction at which the kernel-based optimization 
strategy can be exploited and show how RTL components for which only a functional 
specification is available can be optimized using the computational kernels. They present 
a technique for computational kernel extraction directly from the functional specification 
of a RTL module. Given the state transition graph (STG) specification, the proposed 
algorithm calculates the kernel exactly through symbolic procedures similar to those 
employed for FSM reachability analysis. The authors also provide approximate methods 
to deal with large STG’s. More precisely, they propose two modifications to the basic 
procedure. The first one replaces the exact probabilistic analysis of the STG with an 
approximate analysis. In the second solution, symbolic state probability computation is 
bypassed and the set of states belonging to the kernel is determined directly from RTL 
simulation traces of a given (random or user-provided) stream. 

3.4 State Machine Decomposition 
Decomposition of finite state machines for low power has been proposed in  [21]. The 
basic idea is to decompose the STG of a finite state machine (FSM) into two STGs that 
jointly produce the equivalent input-output behavior as the original machine. Power is 
saved because, except for transitions between the two sub-FSMs, only one of the sub-
FSMs needs to be clocked. The technique follows a standard decomposition structure. 
The states are partitioned by searching for a small subset of states with high probability 
of transitions among these states and a low probability of transitions to and from other 
states. This subset of states will then constitute a small sub-FSM that is active most of the 
time. When the small sub-FSM is active, the other larger sub-FSM can be disabled. 
Consequently, power is saved because most of the time only the smaller, more power-
efficient, sub-FSM is clocked.  

In  [22], the combinational logic block is partitioned (for example to CL1 and CL2) and 
the active part is decided based on the encoding of the present state. The states selected 
for one of the sub-FSMs (i.e., M1) are all encoded in such a way that the enable signal is 
always on for CL1 while it is off for CL2. Conversely, for all states in the other sub-FSM 
(i.e., M2), the enable signal is always off for CL1 while it is on for CL2. Consequently, 
for all transitions within M1, only CL1 will be active and vice-versa.  

Consider as an example dk27 FSM from the MCNC benchmark set, depicted in Figure 
10. Assume that the input signal values, 0 and 1, occur with equal probabilities. The 
steady state probabilities which are shown next to the states in this figure have been 
computed accordingly. Suppose we partition the FSM into two sub-machines M1 and M2 
along the dotted line. Then around 40% of the transitions occur in submachine M1, 40% 
of the transitions occur in submachine M2, and 20% of the transitions occur between sub-
machines M1 and M2. Now suppose that the FSM is synthesized as two individual 
combinational circuits for sub-machines M1 and M2. Then we can turn off the 
combinational circuit for submachine M2 when transitions occur within submachine M1. 
Similarly, we can turn off the combinational circuit for submachine M1 when transitions 
occur within submachine M2. The states are partitioned such that the probability of 
transitions within any sub-FSM is maximized and the estimated overhead is minimized. 
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Figure 10: Example of an FSM (dk27) that may be decomposed into two sub-FSMs such 
that one sub-FSM can be shut off when the other is active and vice versa. .  

These methods for FSM decomposition can be considered as extensions of the gated-
clock for FSM self-loops approach proposed in  [23]. In FSM decomposition the cluster of 
states that are selected for one of the sub-FSMs can be considered as a “super-state” and 
then transitions between states in this cluster can be seen as self-loops on this “super-
state”.  

3.5 Guarded Evaluation 
Guarded evaluation  [24] is the last RT and gate-level shutdown technique we review in 
this section. The distinctive feature of this solution is that, unlike precomputation and 
gated clocks, it does not require one to synthesize additional logic to implement the 
shutdown mechanism; instead, it exploits existing signals in the original circuit. The 
approach is based on placing some guard logic, consisting of transparent latches with an 
enable signal, at the inputs of each block of the circuit that needs to be power managed. 
When the block must execute some useful computation in a clock cycle, the enable signal 
makes the latches transparent. Otherwise, the latches retain their previous states, thus, 
blocking any transition within the logic block. 

Guarded evaluation provides a systematic approach to identify where transparent latches 
must be placed within the circuit and by which signals they must be controlled. For 
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Example, Let C be a combinational logic block (cf. Figure 11(a)), X be the set of primary 
inputs to C, and z be a signal in C. Furthermore, let F be the portion of logic that drives z 
and Y be the set of inputs to F. Finally, let DZ(X) be the observability don’t-care set for z 
(that is, the set of primary input assignments for which the value of z does not influence 
the outputs of C). Now consider a signal s in C which logically implies DZ(X), that is, 
s⇒DZ(X). Then, if s=1, then the value of z is not required to compute the outputs of C. If 
we call te(Y) the earliest time at which any input to F can switch when s=1, and tl(s) as the 
latest time at which s settles to one, then signal s can be used as the guard signal for F (cf.  
Figure 11(b)) if tl(s)< te(Y). This is because z is not required to compute the outputs of C 
when s=1, and therefore,  block F can be shut down. Notice that the condition tl(s)< te(Y) 
guarantees that the transparent latches in the guard logic are shut down before any of the 
inputs to F makes a transition. 

 

(a)     (b) 

Figure 11: Example of guard logic insertion. 

This technique, referred to as pure guarded evaluation, has the desirable property that 
when applied, no changes in the original combinational circuitry are needed. On the other 
hand, if some resynthesis and restructuring of the original logic is allowed, a larger 
number of logic shutdown opportunities may become available. 

4 Sequential Logic Synthesis for Low Power 

Power can be minimized by appropriate synthesis of logic. The goal in this case is to 
minimize the so-called switched capacitance of the circuit by low power driven logic 
minimization techniques. 

4.1 State Assignment 
State encoding/assignment, as a crucial step in the synthesis of the controller circuitry, 
has been extensively studied. Roy et al. was the first to address the problem of reducing 
switching activity of input state lines of the next state logic, during the state assignment, 
formulating it as a Minimum Weighted Hamming Distance problem  [25]. Olson et al. 
used a linear combination of switching activity of the next state lines and the number of 
literals as the cost function  [26]. Tsui et al.  [27] used simulated annealing as a search 
strategy to find a low power state encoding that accounts for both the switching activity 
of the next state lines and switched capacitance of the next state and output logic.   
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For example, consider the state transition graph for a BCD to Excess-3 Converter 
depicted in Figure 12. Assume that the transition probabilities of the thicker edges in this 
figure are more than those of the thin edges. The key idea behind all of the low power 
state assignment techniques is to assign minimum Hamming distance codes to the states 
pairs that have large inter-state transition probabilities. For example the coding, S0=000, 
S1=001, S2=011, S3=010, S4=100, S5=101, S6=111, S7=110 fulfills this requirement. 

 

Figure 12: Excess-3 Converter state transition graph. 

In  [28], Wu et al. proposed the idea of realizing a low power FSM by using T flip-flops. 
The authors showed that use of T flip flops results in a natural clock gating and may 
result in reduced next state logic complexity. However, that work was mostly focused on 
BCD counters which have cyclic behavior. The cyclic behavior of counters results in a 
significant reduction of combinational logic complexity and, hence, lowers power 
consumption. Reference  [29] introduces a mathematical framework for cycle 
representation of Markov processes and based on that, proposes solutions to the low 
power state assignment problem. The authors first identify the most probable cycles in 
the FSM and encode the states on these cycles with Gray codes. The objective function is 
to minimize the Weighted Hamming Distance. This reference also teaches how a 
combination of T and D flip-flops as state registers can be used to achieve a low power 
realization of a FSM.  

4.2 Retiming 
Retiming is to reposition the registers in a design to improve the area and performance of 
the circuit without modifying its input-output behavior. The technique was initially 
proposed by Leiserson and Saxe  [30]. This technique changes the location of registers in 
the design in order to achieve one of the following goals: 1) minimize the clock period; 2) 
minimizing the number of registers; or 3) minimize the number of registers for a target 
clock period. 
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Minimizing dynamic power for synchronous sequential digital designs is addressed in the 
literature. In  [31], Monteiro et al. presented heuristics to minimize the switching activity 
in a pipelined sequential circuit. Their approach is based on the fact that registers have to 
be positioned on the output edges of the computational elements that have high switching 
activity. The reason for power savings is that in this case the output of a register switches 
only at the arrival of the clock signal as opposed to potentially switching many times in 
the clock period. Consider the simple example of a logic gate belonging to a synchronous 
circuit and a capacitive load driven by the output gate. In CMOS technology, the power 
dissipated by gate is proportional to the product of the switching activity of the output 
node of the gate and the output load. At the output of gate some spurious transitions (i.e., 
glitches) may occur, which can result in a significant power waste. Suppose a register is 
inserted between the output of the gate and the capacitive load. In the new circuit, the 
output of the register can make, at most, one transition per clock cycle. In fact, the gate 
output may have many redundant transitions but they are all filtered out by the register; 
hence, these logic hazards do not propagate to the output load.  

The heuristic retiming technique of  [31] applies to a synchronous network with pipeline 
structure. The basic idea is to select a set of candidate gates in the circuit such that if 
registers are placed at their outputs, the total switching activity of the network gets 
minimized. The selection of the gates is driven by two factors: the amount of glitching 
that occurs at the output of each gate and the probability that such glitching propagates to 
the gates located in the transitive fanout. Registers are initially placed at the primary 
inputs of the circuit, and backward retiming (which consists of moving one register from 
all gate inputs to the output) is applied until all the candidate gates have received a 
register on their outputs. Then, registers that belong to paths not containing any of the 
candidate gates are repositioned, with the objective of minimizing both the delay and the 
total number of registers in the circuit. This last retiming phase does not affect the 
registers that have been already placed at the outputs of the previously selected gates. In 
 [32], fixed-phase retiming is proposed to reduce dynamic power consumption. The edge-
triggered circuit is first transformed to a two-phase level-clocked circuit, by replacing 
each edge-triggered flip-flop by two latches. Using the resulting level-clocked circuit, the 
latches of one phase are kept fixed, while the latches belonging to the other phase are 
moved onto wires with high switching activity and loading capacitance. 

Fixed-phase retiming is best illustrated by the example shown below. Figure 13(a) shows 
a section of a pipelined circuit with edge-triggered flip-flops. The numbers on the edges 
represent the potential reduction in power dissipation when an edge-triggered flip-flop is 
present on that edge, assuming that the rest of the circuit remains unchanged. Negative 
values of power reduction indicate an increase in power dissipation when a flip-flop is 
placed on an edge. This reduction in power dissipation can be achieved if the edge has a 
high glitching-capacitance product [3]. After replacing each edge-triggered flip-flop by 
two back-to-back level-clocked latches, the resulting circuit is fixed-phase retimed to 
obtain the circuit in Figure 13(b).  
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Figure 13: Illustration of fixed-phase retiming. (a) Initial edge-triggered circuit. (b) Fixed-
phase retimed circuit. (c) A two-phase clocking scheme π =  〈φ0 = 4, γ0 = 1, φ1 = 4, γ1 = 1〉.  
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Assuming a non-overlapping two-phase clocking scheme π =  〈φ0 = 4, γ0 = 1, φ1 = 4, γ1 = 
1〉 such as the one shown in Figure 13(c), power dissipation can be reduced by 11.8 units. 
Specifically, the glitching on edges B→D, E→F and E→H is “masked” for 60% of the 
clock cycle which decreases power dissipation by 0.6×(12 + 13 -2) = 13.8 units of power. 
At the same time, the glitching on edges G→J and H→K is “exposed” for 40% of the 
clock cycle which increases power dissipation by 0.4×(10 – 5) = 2 power units. In order 
to simplify the computation of changes in power dissipation for this example, it is 
assumed that glitching is uniformly distributed over the entire clock period and that the 
relocation of latches does not change glitching significantly. 

In  [33], the authors propose a hybrid retiming and supply voltage scaling. They observe 
that critical paths are related to the position of registers in a design so they try not only to 
scale down the supply voltage of computational elements that are off the critical paths, 
but also to move registers to maximize the number of computational elements that are off 
the critical paths, thereby further minimizing the circuit power consumption. Registers 
have to be moved from their positions by the standard retiming technique. Instead of 
unifying basic retiming and supply voltages scaling, the authors propose to apply “guided 
retiming” followed by the application of voltage scaling on the retimed design. 
Polynomial time algorithms based on dynamic programming to realize the guided 
retiming as well as the supply voltage scaling on the retimed design are proposed. 

5 Bus Encoding for Low Power 

A lot of power is consumed in the on-chip and off-chip busses in a VLSI circuit. These 
buses, which connect various internal blocks of the circuit or connect the circuit to the 
external environment, have large capacitive loads and high transition counts. Power on 
these buses can be reduced by properly coding the data and/or address bus values so as to 
minimize the number of transitions that occur on the bus.  

Musoll, et al. proposed the working zone method in  [34]. Their method takes advantage 
of the fact that data accesses tend to remain in a small set of working zones. For the 
addresses that lie in each of these zones, a relatively high degree of locality is observed. 
Each working zone requires a dedicated register called zone register that is used to keep 
track of the accesses in that zone. When a new address arrives, the offset of the address is 
calculated with respect to all zone registers. The address is, thus, mapped to the working 
zone with the smallest offset. If the offset is sufficiently small, one-hot encoding is 
performed and the result is sent on the bus using transition signaling (by transition 
signaling we mean that instead of sending the code itself we XOR it with the previous 
value of the bus). Otherwise, the address itself is sent over the bus. The working zone 
method uses one extra line to show whether encoding has been done or the original value 
has been sent. It also uses additional lines to identify the working zone that was used to 
compute the offset. Based on this information, the decoder on the other side of the bus 
can uniquely decode the address.  
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The working zone method also has the ability to detect a stride in any of the working 
zones. A stride is a constant offset that occurs between multiple consecutive addresses 
repeatedly and if detected, can be used to completely eliminate the switching activity for 
such addresses. For instruction addresses, stride corresponds to the offset of sequential 
instructions. Stride is very important when instruction address encoding is tackled. In 
fact, the large number of sequential instructions with constant stride is the foundation of 
considerable transition savings that is usually seen in instruction address encoding 
techniques. For data addresses, stride can occur when, for example, a program is 
accessing elements of an array in the memory. Except for special cases, detecting and 
utilizing strides has a very small impact on decreasing the switching activity of data 
addresses. 

Another encoding method that can be used for data addresses is the bus-invert method 
 [35]. The bus-invert selects between the original and the inverted pattern in a way that 
minimizes the switching activity on the bus. The resulting patterns together with an extra 
bit (to notify whether the address or its complement has been sent) are transition signaled 
over the bus (cf. Table I, column 4.) This technique is quite effective for reducing the 
number of one’s in addresses with random behavior, but it is ineffective when addresses 
exhibit some degree of locality. To make the bus-invert method more effective, the bus 
can be partitioned into a handful of bit-level groups and a bus-invert can be separately 
applied to each of these groups. However, this scheme will increase the number of 
surplus bits required for the encoding, which is absolutely undesirable. 

TABLE I- EXAMPLE SHOWING THE T0, BI, AND T0-BI CODES 

Address (Hex) Source word T0 Code word BI Code word T0-BI Code word 
31 0011 0001 0  0011 0001 0 0011 0001 00  0011 0001 
32 0011 0010 1  0011 0001 0 0011 0010 10  0011 0001 
33 0011 0011 1  0011 0001 0 0011 0011 10  0011 0001 
C2 1100 0010 0  1100 0010 1 0011 1101 01  0011 1101 
C3 1100 0011 1  1100 0010 1 0011 1100 11  0011 1101 
C4 1100 0100 1  1100 0010 1 0011 1011 11  0011 1101 
C2 1100 0010 0  1100 0010 1 0011 1101 01  0011 1101 
C3 1100 0011 1  1100 0010 1 0011 1100 11  0011 1101 
C4 1100 0100 1  1100 0010 1 0011 1011 11  0011 1101 

 Tr. Cnt  = 19 Tr. Cnt  = 11 Tr. Cnt  = 16 Tr. Cnt  = 9 
 

In  [36], Benini et al. proposed the T0 code, which exploits data sequentiality to reduce 
the switching activity on the address bus. The observation is that addresses are sequential 
except when control flow instructions are encountered or exceptions occur. T0 adds a 
redundant bus line, called INC. If the addresses are sequential, the sender freezes the 
value on the bus and sets the INC line. Otherwise, INC is de-asserted and the original 
address is sent (cf. Table I, column 3.) Several methods that are combinations of the Bus-
Invert and T0 encodings were proposed in  [37]. For instance, one of the introduced 
methods called T0-BI, adds two redundant bits, named INV and INC to the bus. If the 
addresses are sequential, T0 encoding is applied and the bus is frozen; otherwise, the new 
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address, which is not sequential, is encoded based on the Bus-Invert coding. INC and 
INV bits are used to correctly decode the bus value on the receiver side (cf. Table I, 
column 5.)    

The major drawback of the encoding methods introduced in this work is that they 
introduce redundant bits. In T0 code, one extra bit was used to identify between these two 
cases in the receiver. Aghaghiri et al  [38] improved on this technique by eliminating the 
redundant bit in T0-concise. The idea is to send previous source plus stride if the bus 
value is equal to the current non-sequential source word.  This is the only thing that the 
receiver does not expect, therefore, it can correctly decode it as a jump back to the 
address that was frozen on the bus at the beginning of the current sequential access.  

 

Figure 14: The block diagram of a generic low power encoder. 

Reference  [39] proposes a low-power coding framework for address and data buses. They 
describe the general architecture of a low power encoder (cf. Figure 14.) In this Figure, 
choices for function F1 include identity or increment transformations, choices for F2 
include XOR operation, subtraction, or difference-based mapping, and choices for F3 are 
inversion or probability-based mapping. For example, the INC-XOR encoder, also known 
as T0-XOR, generates the new bus value as the XOR of the previous bus value and the 
new code word (this is known as the transition signaling over the bus.) The new code 
word is in turn obtained as the XOR of the new source word and the summation of the 
previous source word and the stride value. Obviously, when consecutive addresses grow 
by the stride, no transitions will occur on the bus. The Offset-XOR encoder also relied on 
transition signaling. However, the new code word is obtained as the new source word 
minus the summation of the previous source word and the stride value. In  [40], Aghaghiri 
and Pedram presented the Offset-XOR-SM encoding whereby the new code word is 
again transition signaled over the bus. The new code word itself is generated as LSB-
Invert of the Offset-XOR code word followed by a codebook-based mapping. The LSB-
Invert function is a simple mapping function that reduces number of one’s in the binary 
representation of small negative numbers (LSB-INV(X)=if(X>0) X; otherwise X ⊕ (2N-1 
- 1). The codebook maps small offsets (say up to 10 bits) to K-limited codes in order to 
reduce the number of 1’s in the new code word (recall that a 1 in the code word translates 
to a bit-level activity after transition signaling the code word over the bus.) 

Source word Code word

 
F1 

F2 F3

Decorrelator Entropy Encoder 

BUS 
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In  [41], Mamidipaka, et al. proposed an encoding technique based on the notion of self-
organizing lists. They use a list to create a one-to-one mapping between addresses and 
codes. The list is reorganized in every clock cycle to map the most frequently used 
addresses to codes with fewer one’s. For multiplexed address buses, the authors used a 
combination of their method and INC-XOR. The size of the list in this method has a 
significant impact on the performance. To achieve satisfactory results, it is necessary to 
use a long list. However, the large hardware overhead associated with maintaining long 
lists makes this technique quite expensive. Furthermore, the encoder and the decoder 
hardware are practically complex and their power consumption appears to be quite large. 

In  [42], the authors introduced a class of irredundant low power techniques for encoding 
instruction or data source words before they are transmitted over buses. The key idea is to 
partition the source word space into a number of sectors with unique identifiers called 
sector heads (SH). These sectors can, for example, correspond to address spaces for the 
code, heap, and stack segments of one or more application programs. Each source word is 
then mapped to the appropriate sector and is encoded with respect to the sector head. 
Suppose X is an N-bit source word to be encoded. There are 2k fixed sectors with 2k 
sector heads, SH[0]…SH[2k-1]. The code word is comprised of k most significant Sec-ID 
bits used for identifying the sector, and N-k least significant difference bits representing 
the XOR difference between the source word and the corresponding sector head. The 
encoder takes a source word X: (XN…X1), and assigns it to the corresponding sector by 
examining its Sec-ID bits. Next, it sets the  N-k LSB’s of the code word to the XOR 
difference between the N-k LSB’s of the source word and the corresponding bits of the 
SH for the identified sector. The SH of the identified sector is set to X. Finally, the code 
word is transition signaled over the bus.  As an example, consider a 5-bit space with 4 
sector heads initialized at equal distances from each other i.e., 
{00000,01000,10000,11000}. Table II shows the results of the fixed four-sector encoder. 

TABLE II- EXAMPLE SHOWING A FIXED 4-SECTOR ENCODER 

X SH[0] SH[1] SH[2] SH[3] Code(X) 
01111 00 000 01 000 10 000 11 000 01111 
00010 00 000 01 111 10 000 11 000 00010 
00011 00 010 01 111 10 000 11 000 00001 
01110 00 011 01 111 10 000 11 000 01001 
10001 00 011 01 110 10 000 11 000 10001 
00011 00 011 01 110 10 001 11 000 00000 
01100 00 011 01 110 10 001 11 000 01010 

Tr. Cnt=12 00 011 01 100 10 001 11 000 Tr. Cnt=8 
 
Note that the sectors are fixed, but the sector heads are dynamically updated. In a 
generalization of this approach the sectors can dynamically be defined based on program 
behavior. This feature is very useful because the source word space is very large while 
the total working zone of a program is usually small. Therefore, it pays off to have 
dynamically defined sectors which can “zoom into” the working zone of a program. The 
sector-based encoding techniques are quite effective in reducing the number of inter-
pattern transitions on the, bus while incurring rather small power and delay overheads.  
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In  [43], the authors provide a modified bus-invert (MBI) technique which besides 
reducing delay and power also minimizes the crosstalk noise that results from inductive 
coupling between the bus lines. Their proposed approach is based on the observation that 
opposite skews can reduce the crosstalk noise. Therefore, the authors propose to 
minimize the number of transitions that are in the same direction by selectively inverting 
the data patterns. The method requires an extra line which carries the “invert signal” and 
is used by the decoder in order to restore the original data. In the encoder the bus lines are 
partitioned into pairs and each pair of adjacent lines as well as their values from the 
previous clock cycle drive the inputs of a logic cell which encodes the types of events 
that occur on the pair of bus lines. This cell generates 11 if the transitions occur in the 
same direction, 00 if both lines are idle, 01 if either only one line switches, or both lines 
switch in opposite directions. A majority voter takes the outputs of the logic cells and the 
previous invert signal and sets the invert signal to 0 when the count of 1’s is less than n 
and to 1 otherwise. 

6 Conclusion 

Several key elements emerge as enablers for an effective low power design methodology.  
The first is the availability of accurate, comprehensive power models.  The second is the 
existence of fast, easy to use high level estimation and design exploration tools for 
analysis and optimization during the design creation process, while the third is the 
existence of highly accurate, high capacity verification tools for tape-out power 
verification. As befitting a first-order concern, successfully managing the various power-
related design issues will require that power be addressed at all phases and in all aspects 
of design, especially during the earliest design and planning activities.  Advanced power 
tools will play central roles in these efforts. 

This paper reviewed a number of techniques for low power design of VLSI circuits 
including RT level synthesis, bus encoding and voltage scaling. Emphasis was placed on 
runtime power management techniques and sequential circuit synthesis. A review of 
techniques for low power design of combinational logic circuits can be found in many 
references, including  [44],  [45]. 

References 
[1] M. Pedram and J. Rabaey (editors), Power Aware Design Methodologies,  Kluwer 

Academic Publishers, Boston, 2002. 
[2] E. Macii (editor), Ultra Low-Power Electronics and Design, Kluwer Academic 

Publishers, Boston, 2004. 
[3] C. Piguet (editor), Low Power Electronics Design, The CRC Press, 2004. 
[4] M. Hamada, M. Takahashi, H. Arakida, A. Chiba, T. Terazawa, T. Ishikawa, M. 

Kanazawa, M. Igarashi, K. Usami, and T. Kuroda,"A top-down low power design 
technique using clustered voltage scaling with variable supply-voltage scheme," in 
Proc. IEEE Custom Integrated Circuits Conference (CICC’98), May 1998, pp. 495-
498,. 

[5] S . Raje and M. Sarrafzadeh, “Variable voltage scheduling,” in Proc. Int’l. 
Workshop Low Power Design, Aug. 1995, pp. 9–14. 



 23 

[6] K. Usami and M. Horowitz, “Clustered voltage scaling technique for low-power 
design,” in Proc. Int’l. Workshop Low Power Design, 1995, pp. 3–8. 

[7] Usami, K.   Igarashi, M.   Minami, F.   Ishikawa, T.   Kanzawa, M.   Ichida, M.   
Nogami, K. “Automated low-power technique exploiting multiple supply voltages 
applied to a media processor," IEEE Journal of Solid-State Circuits, vol. 33, no. 3, 
Mar. 1998, pp 463 – 472. 

[8] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On gate level power optimization 
using dual supply voltages,” IEEE Trans. on VLSI Systems, vol. 9, Oct. 2001, pp. 
616–629. 

[9] A. Manzak and C. Chakrabarti, “A Low Power Scheduling Scheme with Resources 
Operating at Multiple Voltages,” IEEE Trans. on VLSI Systems, vol. 10, no. 1, Feb. 
2002, pp. 6-14. 

[10] J. M. Chang and M. Pedram, “Energy minimization using multiple supply voltages,” 
IEEE Trans. VLSI Systems, vol. 5, no. 4, 1997, pp. 436–443. 

[11] Y.-J. Yeh, S.-Y. Kuo, and J.-Y. Jou, “Converter-free multiple-voltage scaling 
techniques for low-power CMOS digital design,” IEEE Trans. Computer-Aided 
Design, vol. 20, Jan. 2001, pp. 172–176. 

[12] A. K. Murugavel, N. Ranganathan, “Game Theoretic Modeling of Voltage and 
Frequency Scaling during Behavioral Synthesis,” in Proc. of VLSI Design, 2004, pp. 
670-673. 

[13] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou, 
“Precomputation-based sequential logic optimization for low power,” IEEE Trans. 
VLSI Systems, vol. 2, no. 4, 1994, pp. 426–436. 

[14] J. Monteiro, S. Devadas, A. Ghosh,  “Sequential Logic Optimization For Low 
Power Using Input-disabling,” IEEE Trans. on Computer-Aided Design, vol. 17, no. 
3, 1998, pp. 279–284. 

[15] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated clocks for 
power reduction in sequential circuits,” IEEE Design Test Computer Magazine, vol. 
11, no. 4, pp. 32–40, 1994. 

[16] L. Benini and G. De Micheli, “Transformation and synthesis of FSM’s for low 
power gated clock implementation,” IEEE Trans. on Computer-Aided Design, vol. 
15, no. 6, 1996, pp. 630–643. 

[17] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi, “Symbolic synthesis 
of clock-gating logic for power optimization of control-oriented synchronous 
networks,” in Proc. European Design and Test Conf., Paris, France, Mar. 1997, pp. 
514–520. 

[18] L. Benini, M. Favalli, and G. De Micheli, “Design for testability of gated-clock 
FSM’s,” in Proc. European Design and Test Conf., Paris, France, Mar. 1996, pp. 
589–596. 

[19] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, “Synthesis 
of Power-Managed Sequential Components Based on Computational Kernel 
Extraction,” IEEE Trans. on Computer-Aided Design, vol. 20, no. 9, September 
2001, pp. 1118-1131. 

[20] L Benini, G. De Micheli, E. Macii, G. Odasso, M. Poncino, “Kernel-Based Power 
Optimization of RTL Components: Exact and Approximate Extraction Algorithms,” 
in Proc. of Design Automation Conf., 1999, pp.247-252. 



 24 

[21] J. Monteiro and A. Oliveira. Finite State Machine Decomposition for Low Power. In 
Proc. of Design Automation Conference, June 1998, pages 758-763. 

[22] S-H. Chow, Y-C. Ho, and T. Hwang. “Low Power Realization of Finite State 
Machines A Decomposition Approach,” ACM Trans. on Design Automation of 
Electronic Systems, vol. 1 no. 3, July 1996, pp.315-340,. 

[23] L. Benini, P. Siegel, and G. De Micheli. Automatic Synthesis of Low-Power Gated-
Clock Finite-State Machines. IEEE Trans. on Computer-Aided Design, 
15(6):630643, June 1996. 

[24] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing power 
management to logic synthesis/design,” in Proc. ACM/IEEE Int’l. Symp. Low Power 
Design, Dana Point, CA, Apr. 1995, pp. 221–226. 

[25] K. Roy and S. Prasad, “Syclop: Synthesis of CMOS Logic for Low-Power 
Application,” Proc. of Int’l Conf. on Computer design, pp. 464-467, Oct. 1992. 

[26] E. Olson and S. M. Kang, “Low-Power State Assignment for Finite State 
Machines,” in Proc. of Int’l Workshop on Low Power Design, pp. 63-68, April 
1994. 

[27] C. Y. Tsui, M. Pedram and A. M. Despain, “Low-Power State Assignment 
Targeting Two- and Multilevel Logic Implementation,” IEEE Trans. on Computer-
Aided Design, vol. 17, no. 12, Dec. 1998, pp. 1281-1291. 

[28] X. Wu, J. Wei, Q. Wu, and M. Pedram, “Low-Power Design of Sequential Circuits 
Using a Quasi-Synchronous Derived Clock,” Int’l Journal of Electronics, Taylor 
and Francis Publishing Group, vol. 88, no. 6, Jun. 2001, pp. 635-643. 

[29] A. Iranli, P. Rezvani, and M. Pedram, "Low power synthesis of finite state machines 
with mixed D and T flip-flops,"  in Proc. of Asia and South Pacific Design 
Automation Conference, Jan. 2003 pp. 803-808. 

[30] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,” Journal of VLSI 
Computer Systems, vol. 1, no. 1, 1983, pp. 41–67. 

[31] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits for low 
power,” in Proc. Int’l. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 1993, 
pp. 398–402. 

[32] K. N. Lalgudi and M. Papaefthymiou, “Fixed-phase retiming for low power,” in 
Proc. Int’l. Symp Low-Power Electronics and Design, 1996, pp. 259–264. 

[33] N. Chabini and W. Wolf, "Reducing Dynamic Power Consumption in Synchronous 
Sequential Digital Designs Using Retiming and Supply Voltage Scaling" IEEE 
Trans. on VLSI Systems, vol. 12, no. 6, June 2004, pp.573-589. 

[34] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the Locality of Memory 
References to Reduce the Address Bus Energy,” in Proc. Int’l Symp. on Low Power 
Electronics and Design, 1997, pp. 202-207. 

[35] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low Power I/O,” IEEE Trans. 
on VLSI  Systems, vol. 3, no. 1, Mar. 1995, pp. 49-58. 

[36] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano, “Asymptotic Zero-
Transition Activity Encoding for Address Buses in Low-Power Microprocessor-
Based Systems,” Proc. Seventh Great Lakes Symposium on VLSI, pp. 77-82, Mar. 
1997. 



 25 

[37] 4. L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Address Bus 
Encoding Techniques for System-Level Power Optimization,” Proc. Design 
Automation and Test in Europe, pp. 861-866, 1998. 

[38] Y. Aghaghiri, F. Fallah and M. Pedram, “A class of irredundant encoding 
techniques for reducing bus power,” Special Issue on Low Power Design in Journal 
of Circuits, Systems, and Computers, World Scientific Publishers, Vol. 11, No. 5 
(2002), pp. 445-457. 

[39] S. Ramprasad, N. Shanbhag, I. Hajj, “A Coding Framework for Low Power Address 
and Data Busses,” IEEE Trans. on VLSI Systems, vol. 7, no. 2, Jun. 1999, pp. 212-
221. 

[40] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredundant address bus encoding for low 
power,” Proc. of Symp. on Low Power Electronics and Design, Aug. 2001, pp. 182-
187. 

[41] M. Mamidipaka, D. Hirschberg, N. Dutt, “Low Power Address Encoding Using 
Self-Organizing Lists,” in Proc. Intl. Symp. on Low Power Electronics and Design,  
2001, pp. 188-193. 

[42] Y. Aghaghiri, F. Fallah, and M. Pedram, “Transition reduction in memory buses 
using sector-based encoding techniques,”   IEEE Trans. on Computer-Aided Design, 
Vol. 23, No. 8, Aug. 2004, pp. 1164-1174.  

[43] M. Lampropoulos, B.M. Al-Hashimi, P.M. Rosinger, “Minimization of Crosstalk 
Noise, Delay and Power Using a Modified Bus Invert Technique,” Proc. Design 
Automation and Test in Europe, 2004, pp. 1372-1373. 

[44] J. Rabaey and M. Pedram (editors), Low Power Design Methodologies,  Kluwer 
Academic Publishers, Boston, Oct. 1995. 

[45] M. Pedram, “Power minimization in IC design: principles and applications,” ACM 
Trans. on Design Automation of Electronic Systems, vol. 1, no. 1, 1996, pp. 3-56.  

 
 
 


