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Abstract

Recent studies indicate that interconnections occupy more than

hatf the total chip area and account for a significant part of the chip

delay. In spite of this, most logic synthesis systems do not explic-

itly take the wiring into account during the optimization phase. Our
work is a first step towards including wiring into the logic synthe-

sis process. In this paper, we present Lily, a technology mapper

integrated with MIS, which considers layout area and wire delay

during the technology dependent phase of logic synthesis. Lily es-

timates the intercomection dependent contributions to circuit area

and delay by referring to a dynamically updated global placement

of the Boolean network. The update does not restrict the dynamic

progr arnming approach adopted in technology mappers such as

DAGON and MIS. Our algorithm has been implemented and pre-

liminary results are encouraging.

1 Introduction and Motivation

The goat of logic synthesis is to produce a circuit which satisfies a

set of logic equations, occupies minimal silicon area and meets the

timing constraints. Most logic synthesis systems currently available

split this task into two phases – a technology independent phase and

a technology dependent phase [11, 10]. In the first phase, trans-

formations me applied on a Boolean network to find a representa-

tion with the least number of literrds in the factored form. Addi-

tional timing optimization transformations are applied on this min-

imat area network to improve circuit performance. The role of the

technology dependent phase is to tinish the synthesis of the circuit

by performing the finat gate selection from a target library. The

technology-dependent phase is, to a large exten~ constrained by

the structure of the optimized Boolean network. It is assumed that

wiring optimization can be handled efficiently in the physicat de-

sign phase.

Decisions made during the logic synthesis phase may limit the

optimization potential of physical design tools. For example, ex-

cessive factorization based on common kernel extraction during the

technology independent phase of logic synthesis can lead to gates

with high fanout count and increased path delay. Inordinate atten-

tion has been foeused on miniiizing the active cell are% during

technology mapping, leading to gates with high fanin count which

often increase routing congestion during the final layout and in-

crease interconnection lengths. Ignoring propagation delay through

wires has introduced inaccuracy in the timing analysis performed
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during technology mapping.

With recent studies [13] indicating that intercomections occupy

more than half the total chip area and account for a significant part

of the chip delay, it is appropriate that we integrate wiring into the

cost function for logic synthesis. The work presented in this paper

is a step toward fusing layout considerations into the logic synthesis

process. Speciticatly, we incorporate the wiring area and delay into

the technology mapping phase.

The technology mapping problem can be stated as follows:

Given a Boolean network representing a combinational logic cir-

cuit optimized by technology independent synthesis procedures and

a target library, we bind the nodes in the network to gates in the

library such that area of the final implementation (after gate place-

ment and routing) is minimized and timing constraints are satisfied.

A successful and efficient solution to this problem was suggested by

Kurt Keutzer and implemented in DAGON [8] and MIS [9]. The

idea is to reduce technology mapping to DAG covering and to ap-

proximate DAG covering by a sequence of tree coverings which can

be performed optimally using dynamic programming[2]. DAGON

and MIS technology mappers generate circuits with small active

cell area but ignore area and delay contributed by interconnections

between gates.

We justify incorporating wiring estimates into technology map-

ping by pointing out problems associated with minimizing only ac-

tive cell area. Figure 1.1 a shows a smatl portion of a Boolean net-

work. Source nodes s ~ have either been mapped (and hence have

been assigned matching gates and positions) or are fixed at the chip

boundary. Note thats 1 and sz have positions near one another but

are far from ss and s4. Our objective is to transfer the signals from

si ‘S to the sink node t implementing the desired logic function while
using minimum wire length. The decision problem can be stated as:

“Is there a miniium wire length solution with the number of dis-

lribuiion points < k?”l Technology mappers such as DAGON and

MIS attempt to find a solution with k = 1, i.e., they find the small-

est area gate which matches as many intermediate nodes as possi-

ble. This is a good approach if the fanin gates,s i, can be placed near

the matching gates. However, in many cases, these gates are either

strongly connected to different gate clusters on the layout plane or

are fixed at the chip boundary and hence may have positions far

from one another and from the matchmg gate. Therefore, a solu-

tion with one distribution point may incur a large intercomection

cost. In fac~ there is often an optimum k > 1 which will result in

overatl minimum wire cost as illustrated graphically in Figure 1.1a.

Note that if the number of sources is small, say 3, one distribution

point will suffice for achieving both minimum active cell area and

minimum wire cost. However, if the number of sources is large, say

5 or more, then it will pay off to consider how close the sources can

be placed by a good placement optimizer before deciding whether
a solution of one gate (with high fanin count) or a solution of more

than one gate (with low fanin counts) should be accepted during the
technology mapping process.

]Here, a distribution point refers to a logic gate between the sources and the sink.
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Figure 1.1: (a) Active gate area versus wire length (b) Motivation

for a layout oriented decomposition

Figure 1.lb illustrates the importance of a good decomposition

for the layout-driven technology mapping scheme. In this figure,

we show the same decomposition tree as in Figure 1.1a. However,

this time, as a result of placing the Boolean network or dynamic

updating of node pxitions, source nodess 1 and S3 (s2 and .w) have

been positioned near one another. Signala coming froms 1 and S3

(s2 and SQ) enter the decomposed network (subject graph, during

technology mapping) at topologically dktant points. This is tmde-

sirable because the decomposition tree conflicts with the placement

solution (which reflects the global connectivity structure of the net-

work). The mapper has lost the option of reducing the wiring cost

by bretimg one big match into smaller matches. Generalizing this

observation, we seek a decomposition of the logic function associ-

ated with each node in the optirrized Boolean network such that the

fanin signals which are carting from nearby regions in the compan-

ion placement solution enter the decomposition tree at topologically

near points. For example, Figure 1.1 a provides abetter decompo-

sition (and hence potential for higher quality mapping) than that in

Figure l.lb. Note that thk distinction does not arise if the mapper

chooses to ignore wiring cost and to minimize only gate area.

In this paper, we present Lily, a technology mapper based on

DAG covering which integrates gate placement and interconnec-

tion length estimation with the dynamic prograrnmin g algorithm.
Lily maps a given logic circuit onto a set of gates in the target li-

brary such that t’oyout area and delay are minimized. The layout

areais the sum of-gate areas and routing area. The delay in the cir-

cuit is contributed by gates and intercomections among them. We

estimate the interconnection dependent contributions to circuit area

and delay by referring to a dynamically updated global placement

of the Boolean network. This updating is consistent with the dy-

namic progr arnming approach adopted in technology mappers such
as DAGON and MIS.

The rest of the paper is organized as follows. In Section Z we

state the terminology and notations used throughout the paper. In
Sections 3 and 4 we discuss technology mapping targeted towards

area minimization and &lay minimization, respectively. Experi-

mental results and concluding remarks are presented in Sections 5
and 6.

2 Terminology

The DAG covering approach to technology mapping can be sum-

marized as follows [16]. A set of base functions is chosen, such as

a 2-input nand gate and an inverter. The optimized logic equations
(obtained from technology independentoptitnization) areconverted

into a graph where each node is one of the base functions. This

graph is called the subject graph. Each library gate is also rep-

resented by a graph consisting of only base functions. Each such

graph is called a puttern groph. (Each library gate may have many

different pattern graphs.) A sink node in apatterm graph is defined as

anode which does not fanout to any other node in the pattern graph.

The technology mapping problem is then defined as the problem of

tinding a minimum cost covering of the subject graph by choosing

horn the mllection of pattern graphs for all gates in the library. For

area optimization, the cost of a cover is defined as the sum of gate

areas. For minimum delay optimization, the cost of a cover is de-

fined as the critical path delay of the resulting circuit.

Consider a Boolean network, N, which has been transformed

into a subject graph consisting of only 2-input nand and inverter

gates. This is the network in its unmapped form which we shall re-

fer to as the inchoute network, Ninc~oace. In DAGON, Ni..~..t. is
partitioned into a set of maximal trees, Ti, and an optimal dynamic

progr antming solution is found for each tree. In MIS, Nincho.te is
split into a set of logic cones, Ki, where each cone cm’qxm-k to
a~W output ~d ~ Its transhive fanin nodes. TMS allows cov-

ering across tree boundiwies and, as a resul~ may duplicate logic.

The MIS technology mapper implements DAGON as a subset.

pi6 pii P“4 pi3 pi2 pil

Inchoate Network

pi6 pi5 pi4 pi3 pi2 pil

Partially Mapped Network

po 1

hA
pi6 pi5 pi4 pi3 pi.? pil

Current View of Final Network

Figure 2.1: Incremental updating of the Boolean network

Consider Figure 2.1 which shows an example Ni.choate at some

point during the mapping process. Assume that we have processed
cone K1 corresponding to primary output pol. We have also pro-

cessed some of the nodes in cone Ffz and have to process the re-

maining nodes in cone KZ as well as nodes in cone Kj. (In the
dynamic programming g approach, we start from the primary inputs
of the logic cone and recursively process nodes in a reversed depth

first search order toward the primary output.) At this poin~ nodes

in Ninchoote can be Ckdkd into four categories. Art egg k a node

which has not been processed (visited) by the mapper. A nes[ling is

a node in the current cone, Kz, which has been visited. We cannot

predict whether or not a nestling will be present in the final mapped
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network, Nmappeci, until we reach P02. A dove is a node in KI
which is a non-sink element of some pattern match. Such a node
will not be present in Nm.pped because it has keen merged into an-

other. A hawk is anode in K1 which is a sink node in some pattern

match. Such anode will inevitably show up in N~~Pp~d. Note that

every dove has been merged into (fallen prey to) at least one hawk.

A nestling can become a hawk or a dove. Due to the possibility

of logic duplicatio~ it may be possible for a dove to reincarnate

and restart the node’s life cycle as an egg and later become a hawk.

(See Figure 2,2.) At the end of the mapping procedure, ordy hawks

and doves remain. This classification will be used later to describe

the construction of fanin rectangles which are needed for updating

placement positions and estimating wire lengtha.

F&
Figure 2.2: A node’s life cycle during the mapping

A stem refers to a multiple- fanout node in Ni.chOat=. A branch

is the immediate fanout node of a stem. A line refers to a duected

edge m NinchOatc. An exitlinefor a cone Ki is a line which is an
output line of a node in Ki and input line of anode which is not in

Ki .

3 Technology Mapping for Minimum Layout

Area

We intend to find a covering of a subject graph G by a set of pattern

graphs P such that layout cost is minimized. The layout cost refers

to the actual mea of the implementation after placement and routing.

Lily’s cost function accounts for the gate area and the routing area.

Assume that we are evaluating the cost of match m at node v.

(See Figure 3.1.) This cost consists of two components:

aCost(v, m) = area(gate(m)) + ~ UC09t(Vi)

w;

wCo.d(v, m) = wire(gate(m), fJ~L’e(Vi)) + ~ WC70St(tJi)

~,
Here, vi E inputs(o, m), where inputs(v, m) refers to the list

of nodes of G which correspond to the inputs of m. gate(m) is

the physical gate corresponding to match m. gate(v i ) is the best

gate matching at node vi. The area cost calculation is straiglht for-

ward and is sirdar to that in MIS. The wire cos~ wC’ost(v, m),

consists of two terms. The first term is the interconnection length

required to complete comections from gate(m) to its fanin gates,

i.e., gaf,e(vi ). The latter is the dynamic programming recursive cost

and represents the sum of wire lengths required to comcct all gates

from primary inputs up to gde.(Vi).

3.1 Global Placement

We use a global placement procedure [14, 21] to place the base fonc-

tion gates in Ni.ch..te on a layout image. The aCtUd area of the im-

age is estimated by accurate area predictors for standard cell based
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Figure 3.1: Cost calculation for a candidate match

designs such as that in [15]. Prior to the mapping process, posi-

tions of the I/O pins (primary inputs and outputs of the logic circuit)
are assigned either by a top down floorplanning and pin assignment

procedure driven by system-level considerations (as in [ 19]) or by a

bottom-up 1/0 pin assignment procedure driven by the connectivity

StfUCtUre Of Ni.ch..te (~ in [20]).

The global placement phase generates a balanced point place-

ment for all gates subject to the given I/O pad assignment which

minimizes the Euclidean distance squared metric summed over all

connected gates. It uses quadratic optimization and bi-partitioning

techniques to place the gates. The bi-petitioning step may be

stopped when the number of modules assigned to any subregion is

less than some user-spccfiedparameter. (A lirnh of one module per

region and an assignment of modules to rows or slots corresponds

to a detailed placement.) By a balanced global placement, we mean

that the gates are uniformly distributed within the chip boundary,

i.e., there are no over-subscribed or under-subscribed subregions.

Such a global placement is desirable for two reasons. Firstly,

the incentive for the global placement is to capture the connectiv-

ity structure of the Boolean network on a plane. We do not want

to destroy the global optirnality of the solution and the ability to

capture the logic structure by prematurely forcing gates into rows

(which would be the case, if we did a detailed placement). Sec-

ondly, the placement updating procedure does not perform well on

a twodimensional mesh due to the inability to keep track of the slot

capacity constraints during the dynamic programming process.

We use a point model during the gate placement. The gate pins

are assumed to be located at the center of the gate and the location of

the gate is represented by a single (z, y) coordinate that coincides

with the center of the gate. These assumptions do not introduce

much error when the number of gates in the circuit is large.

3.2 Incremental Updating of Placement

Initially, nodes in Ninth..te are assigned valid placePosilions
based on the global placement solution. As nodes are mapped, new

mapPosi&ions are calculated and assigned to them. There are two

options for computing the mapPositions. In the CM-of-Merged op-
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tio~ we place match m at the center of mass of merged(o, m).

~s is the list of nodes of ffinchoate, including v, which are ‘COV-

ered by’ or ‘merged into’ m.) The calculation uses placePositwns

for ui. (See Figure 3.1.) In the CM-of-Fans option, we place match

m such that the wire length to inputs(v, m) and to outputs(v)

is minimized. Doe to depth tirst search ordering, inputs (v, m)

have akeadybeen mapped and therefore we use their mapPositions.
outputs (v) are not mapped yet and we use their placePositions.

The advantage of the first approach is that the rnupPositions are
always calculated by referring to the global placement result. Since

the initial placement is balanced and captures the adjacency rela-

tions among nOdeS in Ninth..t., the evolving placement will dao

be balanced. Note that mapping decisions made at node v are in-

fluenced by the estimated wire length cost which is computed as

a function of the distances between gate(m) and the best gates

matching at inputs(v, m) and between gate(m) and the base gates

at outputs(v). The disadvantage is that the position of the candi-

date gate is ~dependent of the positions of gates d~ectly comected

to it and hence the wire cost associated with this dynamic updating

is pessimistic.

The advantage of the second approach is that m will be placed at

a position which causes minimum increase in the wire length with
respect to its fanin and farsout which is a desirable feature. (This op-

tion corresponds to a constructive placement procedure for the net-

work being mapped. Note that because of dynamic programming

formulation, we are generating and storing as many constructive

placement solutions as there are mapping solutions. A mapping so-

lution along with its associated placement solution are determined

after each logic cone is processed.) The disadvantages are that the

placePo.m”tions for the as yet unmapped outputs(v) do not have

much correlation with the rrsapPositions of the gates actually show-

ing up at the outputs of v in the final network and that the place-

ment may become unbalanced (i.e., one with overlaps and locally

‘congested’ areas along with ‘holes’ in the layout plane). The latter
problem can be reduced by repeating the global placement on the

piwtially mapped network after a cone or a predetermined number

of cones me processed. In that case, we can assign placePositions

to eggs and hawks based on the new placement result. The first

problem is more difficult to overcome. One solution is to perform

a preprocessing pass on the network during which we record sepa-

rately for each node w all possible outputs(v) by exarniniig every

possible match in the network which has v as an input. During this

preprocessing phase, we place the matches at the center of mass of

their merged nodes. Clearly, this technique leads to a slowdown

of Lily since we now need to consider all different matches at the

outputs (v) before choosing m.

When using CM-of-Fans option, depending on the wire length

metric adopted, the problem can be solved efficiently or can become

difficult. Consider Figure 3.Z which shows the enclosing rectangles

for the fanin and fsmout nets of match m at v. Given a norm and the

coordinates of these fsnin and fanout rectangles r, the problem is

to find a point p which results in the minimum sum of distances be-

tween that point and the rectangles. In case of the Manhattan norm,
the solution easily follows by observing that the d~tance function

has a separable form with respect to the variables z and y. E.g., the

z dkance of point p from rectangle r can be written as:

f(z) = ;(W.Z – p.zl + Ir.ur.z – p.zl - Ir.ur.z – T.U.ZI)

where 1/ and w refer to the lower left and the upper right of rectangle

r. The constant term is dropped and the problem can be restated

as: Find the point x such that xi Izi — z I is minimum where zi

corresponds to either the left or the right comer point coordinates

of each of the rectangles. The problem is a specird case of solving

for the median of a graph which is presented in [1]. It can be shown

faninrectangle

f2/

x2

Figure 3.2: Dynamic updating of placement positions

that this problem, treating only a linear tree rather than a general

graph is very easy to solve; the solution is the median point for the

sorted lkt of zi ‘s.

For the Euclidean norm, N rectangles partition the plane into N2

subregions. In each subregion, the above optimization can be for-

mulated as a quadratic optimization problem with liiear constraints

which can be solved efficiently. The global solution is obtained by

comparing the cost of the best solution in each subregion and pick-

ing the Wlmum cost solution. Pruning of regions can reduce the

number of subregions that must be considered. However, this still

takes far more time than we can afford during the mapping pro-

cess. Hence, an approximate solution is pursued. In particular, we

represent each fanin/fanout rectangle by its center point, then the

optimal point location problem is solved by computing the center

of mass of these center points. Note that when constructing the

fartin/fanout rectangles, we exclude nodes of merged (v, m) from

the fanin/fanout nets.

3.3 Fanin and Fanout Rectangles

We explain how the fanin rectangles for match m at v (which is a

node in cone Ki) are constructed. (See Figure 3. 1.) The key proce-

dure is add-true- fwut-recursively which accepts a stem node, say

vi, ala fanout branch, say f j, and fids the ‘me fmout’(s) for tie
stem node along that branch. Here, ‘true fsrtout’ refers to a fanout

of vi that would be present had the mapping process been termi-

nated after cone Ki–1 was processed. A ‘true fanout’ is a hawk, a

nestling or an egg which has vi as its fanin. Due to logic duplica-

tiotL it is pssible to tind more than one ‘true fanout’ along a given
branch. For hawks, we use their rnapPositions. For other nodes, we

use their placePositions. (For example, the list of ‘true fanout’s of
node VI consists of nodes u I, z1, fz and fs.)

We add vi to the list of nodes and delete those ‘true fanout’s of

vi which are COVcred by the current match m. (The new list for v 1
comis~ of z ~, fz, f3 and VI.) Next, we build a minimum rectangle

enclosing all no&s in the new list. Note that we use mapPositions

of vi and its hawk fanouts and placePositions of all other nodes in

the list. Construction of the fanout rectangle is easy since outputs

of gate(m) are eggs due to depth first search ordering of processed

nodes. We directly use their placePosit ions to build the fanout rect-

angles.
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3.4 Wire Cost Estimation

After positioning gate(m), we must estimate the wire cost asso-

ciated with the matching of m at node v. We have implemented
two options. For each fanin vi, we include gate(m) in the fanin

rectangle for vi and calculate the half perimeter length of the fanin

rectangle divided by ‘hue fanout’ count at tsi (in order to avoid du-

plicate accounting for the wire cost) to get the expected wire length

contributed by input net to vi. This length is then multiplied by the

ratio of minimum rectilinein Steiner tree length to half perimeter

of enclosing rectangle as given by [3]. We have also implemented

another wiring model based on finding the rectilinear spanning tree

connecting all “pins” on a given net.

3.5 Cone Ordering

The ‘true fanout’s corresponding to the hawks will necessarily ex-

ist in the final network. Other ‘true fanout’s are tentative, in the

sense that they may not exist in the tinal network. However, we use

all ‘trite fanouts’ for constructing the fanin rectangles as described

above. Therefore, we should come up with an ordering of out-

put cones that minimizes number of references to the ‘true fanout’s

which have not been mapped yet. Reconvergent stem nodes whose

reconvergence region is a subset of exactly one logic cone give rise

to egg or nestling ‘true fanout’s inside the current logic cone. How-

ever, we cannot avoid this situation. Therefore, we set out to tind

an or&ring that minimizes the number of references to the eggs

outside the current logic cone. This problem may be restated as fol-

lows: Find an output cone ordering such that the sum over all cones

of the number of exit lines from any cone to rdl unmapped cones is

minimizecl.

More formally, let (ml, TZ, . . . , mn) denote a linear ordering on

cones K1, lCZ, ..., K.. Them it is the desired ordering if it mtil-

mixes the following sum:

n-1 n

~ ~ ~(~.,j~.,)

i=l j=i+l

where E( K=,, K=3 ) denotes the number of exit lines from h’., to

K=,. We build an n x n matrix, M, where we store E(Ki, Kj) in

its ij position. Note that M is asymmetric matrix with all diagonal

entries equal to zero. The &sired ordering is obtained by recursive

application of the following operations: Find a row, i, with mini-
mum row sum ~~= ~ E(Ki, Kj); push its corresponding primary

output cone into a queuq delete row i and column i from M. This

procedure will find the optimum linear ordering of output cones for

the specified objective function.

4 Technology Mapping for Minimum Delay

In the delay mode, the best mapping at a node is determined based

on the aival time of the signal at the node output. As technology

scales down, the contribution of wiring to the delay becomes sig-
nitican~ and even dominating [4, 13]. Hence, it is only natural that

we have attempted incorporating wiring delay into the calculation

of the arrival time.

4.1 Arrival time calculation

Consider a gate g with output line y and input lines i, i = 1 . . . p.
Lctg fanout to inputs of gj. In a simple linear delay model, the delay

through g is a line~ function of its output load capacitance CL.
The slope of thii linearity can be thought of as the output resistance

and the offset (at zero CL) can be thought of as the intrinsic delay
through g. In general, the delays from different inputs to the output

are dtiferent. We represent the in~insic delay from input i to y by

Ii and the output resistance at y corresponding to input i by R i.

Note that 1; and Ri have separate values each for rising and falling

delays.

Based on this model, the arrival time [7] at ~ from input i, ty,,
can be easily calculated ss t ~, = ii + Ii + R;CL where ti is the

arrival time at input line i. (Again, note that arrival times have to be

calculated separately for rising and falling delays). Using a worst

case analysis, the output arrival time at y, t ~ is defined as the the

time at which all signals from input lines i will be available at y

and is given by tv = maz{tv, } computed over all i, i = 1 . . . p.

Combtig the above two equations, we have the recursive formula

for the output arrival time ss tv = max {ti + ~, + RiCL } computed

over all i, i = 1 . . . p. This calculation for the arrival time requires
that the value of CL & known.

4.2 Output load capacitance

CL is the equivalent capacitive load at y. ‘Ilk capacitance is mod-

eled as CL = ~~= ~ Cj + CW where Cj denotes the capacitance at

the input of fanout gate gj, and n is the number of fanout nodes. CW

represents the capacitance due to the interconnections which con-

nect g to its fanout nodes. The wiring resistance is very small and

is therefore ignored.

Let g be the input of the fanout gate gj to which y is connected.
Since we have modeled the interconnections by a lumped capaci-

tance, tv = tq; i.e., we have assumed that output arrival time at y

and the input arrival time at g are identical.

In MIS, Cw is modeled as a function of the n. (A simple function

would be linear in n, with a user specified proportionality constant.)

In Lily, we estimate CW based on the wiring information and C.

is modeled as a lumped capacitance proportional to the estimated

output net length. If X and Y are the horizontal and vertical in-

terconnection lengths for the nets, the capacitance is calculated as

chx + CtiY, where ch and C. are the capacitance per unit length

of the horizontal and vertical interconnects respectively. X and Y

can be determined using models described in Section 3.3.

4.3 Updating the arrival time

During the mapping process, when we match m at node v, the

fanouts of v are not yet mapped. This implies that the load CL,

at the output of gate(m) cannot be determined exactly. This prob-

lem can be handled by assuming a constant fed, Le., all types of

gates are assumed to have the same input parasitic capacitance. This

assumption is also adopted in MIS2.I. (Most gates in the 3p MSU

standard cell library have an input capacitance of 0.25 pF [12]).

However, in order to calculate the wiring capacitance, we need to
know the position in addition to the type of gate at the fanout. This
is not possible and we instead use the nodes in the N inchoate as the

fanouts. This procedure gives rise to inaccuracies in the arrival time

calculation.

To prevent this inaccuracy from propagating through we make

the following observation The capacitrmce at the output of in-

puts(v~) is now known because we know the type and position of

their fanout gate which is gate(m), the current match. If we update

the output arrival times of inputs(v,m), then the input arrival time

of gate(m) is accurate. The splitting of the arrival time calculation

into load dependent and load dependent parts makes such an update
easy, This can be thought of as splitting the gate g into p load in-

dependent parts LIi and one load dependent part LD. Each input
i has an associated LIi. The .LI’s have zero output resistance and

LD has zero intrinsic delay. Corresponding to each input i, we de-
fine the block arrival time at g as bi = t, + 1,. The output arrival
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time cart now be defined in terms of the block arrival times and is

given by ty= ~a~{bi+ R;CL }. The advantage of this splitting

is that only the Ri CL part has to be redone for different loads - bi ‘S

remain the same.

4.4 Mapping for minimum delay

Consider the mapping at node v in Figure 3.1. We have already

calculated the block arrival times at vi. The mapping proceeds in

the following manne~

1.

2.

3.

4.

5.

5

For each vi E inprds(v, m), the output arrival time at

gate(v;) is recalculated. This computation uses the block ar-

rival times at vi and the currenl load at the output of vi. We

find the list of ‘tie fanout’ nodes for vi and add match m to

the list. The current load, seen at vi, is calculated from this

list. We use the input capacitance of gate(m) for calculat-

ing CL and its ?nopPosition for calculating CW. For a hawk

in the list, we use the input capacitance and the rnupPosition

for gai?e(hawk). For an egg or nestling in the list, we use the

input capacitance and the placeposition for its base function

gate.

The block arrival times at gate(m) and corresponding to each

input vi are computed.

Using the base function gates at the fanout of v, the output

capacitamx load of gate(m) is calculated.

The output arrival time at gate(m) is calculated using the

block arrival time and the output load.

The output arrival time at gate(m) is compared with the out-

put arrival time of other possible matches at v. The matching

with the lowest output arrival time is chosen. The match and

its block arrivrd times are stored at v.

Experimental Results and Discussions

Consider using the traditional mapping schemes on a given design

but with two different target libraries. Both libraries implement the

same functions. However, the ‘tiny’ library has gates up to 3 inputs

while the ‘big’ library has gates up to 6 inputs. Clearly, mapping
with ‘tiny’ library contains many more gates and nets. Its active

cell area and total chip area are, in general, larger. The ‘big’ li-

brary has much smaller active cell sxea, but its routing complexity is

high. Consequently, the finai chip area after placement and routing

can be as large m that obtained using the ‘tiny’ libr~. bt A tinY
and A big denote the chip area obtained by traditional mappers us-

ing ‘tiny’ or ‘big’ libraries. Similarly, let Wtinv ~d wbi~ detto~

the total interconnection length. Now, if we use a mapping tech-

nique such as presented in this paper along with the ‘big’ library,

we will find a mapping solution with number of gates in between

those of “tiny’ and ‘big’ libraries but With ~ < min(Ati~Y, Abig)

ad@ < min(wtinv, Wbig).

We wanted to show that by integrating technology mapping and

gate placement, one can improve the quality of mapping both in

terms of layout area and circuit performance. In order to provide

a fair basis for compariso~ we went through two pipelines to pro-

duce results: 1) Read in the optimized circui~ run MIS technol-

ogy mapper in area and timiig mode, write mapped circuit to the

database, assign locations to I/O pads, do detailed placement and

routing. 2) Read in the optimized circuit, assign locations to I/O

pads, run Lily in area and timing mode, write mapped circuit to the

database, do detailed placement and routing. In both cases we use

Ex.

9symml

C1908

C3540

C432

C499

C5315

C880

apex6

apex7

b9

apex3

duke2

e64

misexl
misex3

MIS2.1

7EF
mm2

0.27

0.69

1.74

0.34

0.66

2.16

0.62

0.98

0.34

0.19

2.17

0.67

0.41

0.083
0.87

Y@
mm=

0.68

2.23

6.90

0.95

1.85

10.92

2.11

3.99

0.94

0.41

20.86

2.47

1.24

0.16
3.68

-YiiR-
mm

76.1

245.6

874.1

105.7

192.3

1303.0

236.8

474.7

107.7

38.9

2880.3

293.7

137.4

15.5
484.9

. ..

7iim

mm=

0.29

0.71

1.85

0.37

0.65

2.20

0.64

1.00

0.35

0.20

2.24

0.69

0.41

0.088

0.86

Lily

75F@-

mm2

0.69

2.15

6.52

0.93

1.88

10.48

1.81

3.81

0.88

0.38

19.90

2.31

1.13

16.9
3.37

3
mm

74.1

233.5

813.7
101.2

189.3

1275.7

193.9

454.5

96.1

36.8

2685.2

265.3

129.7

16.1
424.4

Table 1: Comparison of the total instance area, final chip area and

interconnection length after detailed routing between MIS2. 1 and

Lily.

Ex.

9symrnl

C1908

C432

C499

C5315

C880

apex7

b9

duke2

e64

misex 1

misex3

MIS2.1

-Eiz-
mm2

0.44

1.48

0.59

1.20

4.61

0.98

0.48

0.29

1.15

0.56

0.14

1.43

delay

10.2

26.04

24.11

15.79

29.81

21.46

8.85

5.04

22.29

22.80

7.30

22.21

1

-3iz
mm2

0.42

1.57

0.62

1.38

4.79

1.12

0.57

0.28

1.16

0.71

0.15

Y
delay

9;

24.26

21.59

17.27

25.98
18.63

8.64

4.74

17.81

20.37

6.72

-

Table 2: Comparison of the total instance ~ea and longest path de-

lay results between MIS2.1 and Lily (1 p technology).

the same placemenq pin assignment and routing tools. Note that the

first option which is the standard MIS pipeline cannot make use of

the location of pads during the technology mapping process.

Table 1 depicts comparisons between our results and those of

MIS2. 1 in terms of active cell are% total chip area and total inter-

connection length (in area mode). In general, our mapper tends to

use smaller gates, larger active cell area (avg. 19ZO)but smaller to-

tal chip area (avg. 5%) and interconnection length (avg. 7%) due to
reduced routing complexity.

Table 2 shows our delay optimized mapping results and those

obtained using MIS2. 1 (in timing mode). The delays are in mbitrsry
units, and are based on a 1p standard cell library. Since imforrnation

on a real 1p library was not available, we scaled the delay, gate

capacitance and wiring capacitance of 3P technology [12]. Both
MIS2. 1 snd Lily delays are computed after detailed placemen~ and

the wiring delays are included during the delay calculation. Lily

shows an average delay improvement of 8~0 compared to MIS2.1.

Note that our dynamic wire length estimation procedure is not

always accurate (as seen by poor results for misexl in Table 1 and

C499 in Table 2). This indicates that our procedure does not capture
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the full effects of layout during synthesis. In such cases, we could

repeat the mapping with reduced wire cost weight to obtain better

solutions.

We used GORDIAN [21] package for global placement, CM-o~

Fans option for dynamic placement update, half perimeter length

of the net enclosing rectangle for wire length estimatio~ pad place-

ment program described in [20], TimberWolf 4.2 [6] global router

and YACR [5] detailed router. The placement package generates a

global placement for the pre-mapped inchoate network of C53 15,

with 1892 gates in about 3 minutes on a DEC3 100. The Lily run

time - including premapping, pad placemen~ global placement of

the inchoate network, mapping, detailed placement of the mapped

circuit with 713 gates for this example is akmt 10 minutes.

We have observed that Lily yields better mapping solutions (e.g.,

compared to MIS2. 1 mapper) when the routing complexity for the

logic circuit is high and the target library contains large gates (mtm-

ber of ftmin nodes > 4). In additio~ the initial pad placement -

prior to technology mapping - influences the degree of wire length

reduction that is achievable by Lily.

Currently, Lily does not perform fanout optimization. In addi-

tio~ its delay model is a load independent delay model which tries

to overcome some of the shortcomings of a load independent delay

calculation by using information about the mapped portion of the

inchoate network. As in MIS2.2 [17], we could perform a prepro-

cessing paas during which we record for each node all possible load

values at that node by ex amining every possible match or perform

a postprocessing pass to derive fanout trwx.

We believe that layout driven technology mapping (and in gen-

eral, layout driven logic synthesis) is a promising duection for re-

search in coming years and that there are still many issues which

must be addressed. We hope to improve and extend our model. A

logical extension would be to consider layout effects during kernel

extraction and node decomposition. Work presented in [18] seems

relevant.

6 Conclusions

In this paper we have described Lily, a technology mapper imple-

mented on top of MIS2. 1, which integrates layout area rmd delay

into the technology dependent phase of logic synthesis. We have

shown tectilques and ideas to incorporate the estimated wiring in-

formation into the dynamic progr amming algorithm used for the

tree matching. The key idea in our work is to do a fast global place-

ment of the logic network in its inchoate form. This initial global

placement guides the wiring estimation. Aa the mapping proceeds

along, the irthial placement is dynamically updated so that nodes

in the network which rue processed later, can use more accurate in-

formation. Other techniques such as optimal pad placement and or-

dering of the logic cones also help in arriving at a mapping solution

which has better performance after placement and routing. Both de-

lay and area optimization techniques have been implemented and

the prefimirtary results rwe encouraging. our work is a first step

towards fusing layout considerations into logic synthesis, and we

hope to build on this work and extend it to consider layout issues

during the technology independent optimization phase as well.
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