
 

Lifetime-Aware Intrusion Detection under 
Safeguarding Constraints 

Ali Iranli, Hanif Fatemi, Massoud Pedram 
Dept. of Electrical Engineering 

University of Southern California 
{iranli, fatemi, pedram}@usc.edu 

 
 

Abstract: This paper addresses the problem of maximizing the 
service lifetime of a distributed battery-powered sensor 
network in the context of the network interdiction problem 
under user-specified initial energy and probability of detection 
constraints. We consider a version of this problem where the 
probability distribution of selecting paths by the intruder is 
known to the interdictor. A two-step solution technique is 
proposed in whereby first the safeguarding constraints are 
satisfied and then the scheduling problem is solved. 
Experimental results demonstrate the effectiveness of the 
proposed two-step approach.   

I. INTRODUCTION  
We consider the question of maximizing the sensor network 
lifetime in the context of the network interdiction problem. The 
network interdiction or network inhibition problem models the 
computation of a strategy to stop attacks on the capacity of a flow 
network. The simplest version of the network interdiction problem 
can be formulated as the minimization of the maximum achievable 
undesirable flow through a physical network subject to constraints 
on the interdiction resources. More precisely, consider a scenario 
whereby an adversary wishes to move as much of a single 
commodity from a source node s to a target node t in a directed 
physical network (representing all possible routes and stops 
between s and t). Each edge (i, j) has a capacity of cij units of 
commodity and requires from the interdictor an expenditure of rij 
units of some resource to stop the flow of undesirable commodity 
on the edge i.e., “break the edge.” The goal of the interdictor is thus 
to minimize the maximum amount of flow the enemy can push 
through the network subject to using no more than R units of 
resources. The interdictor achieves this goal by placing sensors on 
different edges of the network. Each sensor samples some portion 
of the traffic (depending on its sampling rate) traversing the 
designated edge and examining it to determine whether or not the 
intruder is passing through.  

An alternative formulation of the network interdiction problem 
is to find the minimum number of sensors (or the minimum sum of 
the sampling rates of all deployed sensors) needed to guarantee that 
the probability of detection of an intruder moving in the network is 
at least Lmin.  This version, called Intrusion Detection under 
Safeguarding constraint (IDS) is the version of the problem that we 
are interested to extend so as to account for the finite capacity of the 
batteries used as energy sources for the sensor nodes.  

The strategy adopted by the interdictor for edge inspection not 
only changes the intrusion detection probability, but also affects the 
overall sensor network lifetime. This is due to the fact that the 
system lifetime is a strong function of the energy consumption rates 

of the different sensors, which are in turn directly proportional to their 
sampling rates.   

Sensor placement (deployment) is a well researched problem [1]-
[6]. Wood [1], McMasters and Mustin [2], Steinrauf [3], and Phillips 
[4] have studied this problem for military settings and applications to 
the interdiction of illegal drugs and precursor chemicals. Game-
theoretic network interdiction models have also been studied by 
Wollmer [5], Washburn and Wood [6], and Kodialam et al. [7]. These 
techniques determine the optimal set of edges in the network for 
placing sensors so as to cost-efficiently detect an evader surreptitiously 
moving through a network. As a representative example, the authors of 
[7] solve the sensor placement problem under a sampling budget 
constraint in the context of security in communication networks. The 
authors consider the problem in a game-theoretic framework, where 
the intruder picks paths to minimize chances of being detected whereas 
the network operator chooses a sampling strategy to maximize the 
chances of detecting the intruder. Using min-max games, the authors 
propose a sampling scheme, which is optimal in this game theoretic 
setting. 

With the rapid increase in the required functionality and 
performance of sensors, and therefore, high levels of power 
consumption in the sensors, the lifetime of a sensor network has 
become a key concern of data gathering systems. This has influenced 
the design of sensor networks so as to be driven by probability of 
detection (i.e., the level of safeguarding or “protection” that can be 
provided against intrusion) as well as network lifetime (i.e., how long 
can the network be “protected” against enemy intrusion given a set of 
initial battery capacities for the sensor nodes) considerations. 
However, the primary focus of the research in network interdiction has 
been on sensor deployment to minimize the illegal flow in the 
network. To our knowledge, no researcher has considered network 
interdiction problem with the target of meeting a sensor network 
lifetime constraint or maximizing this same metric under a probability 
of detection constraint. 

In this paper, the energy capacity of each sensor is treated as a new 
type of network resource, and the effects of the finite energy capacity 
of each sensor node on the overall system lifetime and probability of 
detection is studied. More precisely, we address the problem of 
maximizing the sensor network lifetime subject to 1) initial energy 
levels for all sensor nodes, E0, and 2) a lower bound on the level of 
network “protection” or safeguarding, Lmin. This problem, which is 
called Lifetime-aware Intrusion Detection under Safeguarding 
constraints (LIDS), is solved in two steps. In the first step, we generate 
a set of distinct, non-dominated solutions such that minimum 
safeguarding constraint is satisfied. Next, we find an optimal 
scheduling policy to switch between these “sensor placement 
solutions” with the objective of maximizing the overall network 
lifetime by specifying which sensor placement solution to use and for 
how long.  



 

The remainder of this paper is as follows; section II provides 
necessary background and the problem formulation. Section III 
presents the proposed solution to the problem and sections IV and V 
present the experimental results and conclusions. 

II. BACKGROUND AND PROBLEM FORMULATION 
Consider a directed graph G(V,E), with node set V and edge set E. 
Let s and t denote the source and the target nodes, respectively. 
Furthermore, let ef  denote the flow rate of (legal and illegal) traffic 
on each edge e E∈ . Note that traffic values do not satisfy the flow 
conservation constraints because it is possible for a portion of traffic 
to be generated and/or consumed in an intermediate node. 
Furthermore, the larger ef  requires a larger sampling rate, se, for 
the sensor so that the illegal traffic can be separated from the legal 
traffic. For example G(V,E) can represent the corridors and 
walkways in a bank where s represents the entrance  door and t 
signifies the bank’s safe. Moreover, fe denotes the average number 
of people per unit of time who use corridor e to move between two 
points in the bank. 

A sensor with an initial energy level of E0 is placed on every 
edge. The probability of detecting the intruder on any edge e is a 
function of fe and the quality of detection on the edge. The latter in 
turn depends on the power consumption, powe, of the sensor placed 
on the edge. Therefore, we can write: 

( , )e e e ePoD g pow f=  (1) 
where ge is generally a non-decreasing function of powe and a non-
increasing function of fe capturing the characteristics of the sensors 
used on edge e (cf. Section IV.) Note that function, ge, takes into 
account the intruders’ speed as he/she is traversing an edge of 
known length. For example, one may adopt a simple function taken 
as the ratio of the sampling rate of the sensor, se to the traffic flow 
rate through the edge, that is,  

e e e
e

e e e

s powPoD
f f

γ
κ

−
≡ =  (1.a) 

where κe and γe denote regression coefficients, which are easily 
obtained from power profiling and regression analysis. From now 
on, for the sake of simplicity we will assume κe and γe to be equal 
for all edges in graph G. 

Let 1( )q π denote the probability that path π1 between s and t is 
chosen by the intruder. The probability that the intruder takes path 
π1

 and is subsequently detected on that path, PoD(π1), is given by: 

( )
1

1 1( ) ( ). 1 1 e
e

PoD q PoD
π

π π
∈

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∏
 

(2) 

The IDS problem is to find a subset of edges, S, and their 
corresponding sensor sampling rates (hence, their power 
consumptions) such that the probability of detecting an intruder 
moving from source s to target t along any arbitrary path is larger 
than or equal to some threshold value Lmin. The objective is to 
minimize the overall system power consumption. This can be 
written in mathematical form as: 

e
S E e S

argmin pow
⊂ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
∑  (3) 

such that 

( )( ). 1 1
s t

e min
e S

q PoD L
π π

π
→∈∏ ∈ ∩

⎡ ⎤
⎢ ⎥− − ≥
⎢ ⎥⎣ ⎦

∑ ∏  (3.a) 

where Πs→t denotes the set of all paths from source s to target t and 
the product term computes the probability that an intruder is not 
detected on any of the edges of path π  that have sensors on them. The 
implicit assumption is that PoDe=0 for any edge e such that 
e e Sπ∈ ∧ ∉ . This nonlinear mathematical formulation of the 
problem cannot be solved optimally and efficiently. In fact, it has been 
shown in [1] that this problem is NP-complete.  

Simplifying the IDS problem, Wood et al. [1] add an additional 
constraint to the problem which limits the maximum number of 
sensors on any path from source s to target t to one. By using this 
additional constraint and assuming a linear characteristic function g for 
the sensors, one can rewrite constraint (3.a) as ( ). e minq PoD Lπ ≥∑ , 

thus transforming the problem into an integer linear programming 
problem.  

In this paper, we attempt to solve the LIDS problem with the 
objective of maximizing the overall system lifetime subject to a global 
safeguarding constraint. However, maximization of the system lifetime 
is not equivalent to minimization of the total power consumption. For 
example, consider the graph shown in Figure 1 with indicated traffic 
pattern and initial energy of 100 joules for each sensor. Cuts C1-1 and 
C1-2 are generated by using cost function 3 for this graph (cf. Table 
1). Using these solutions, one can activate solution C1-1 for 1610 
seconds before the sensor on edge (2,5) dies. Subsequently, solution 
C1-2 will be activated for 1,960 seconds before the sensor on edge 
(4,5) dies. Therefore, these solutions together can maintain the 
safeguarding constraints for approximately 3,570 seconds. Note that 
using C1-1 before C1-2 results in the consumption of a portion of the 
initial energy of the sensor on edge (4,5) in the first period, making it 
the bottleneck of the system lifetime in the next period. Now, consider 
another pair of cuts C2-1 and C2-2, which does not minimize cost 
function (3) but maintains the safeguarding constraints for a longer 
period of time by including edge (4,5) in C2-1 only. In fact C2-1 and 
C2-2 cuts can satisfy the safeguarding constraints for approximately 
4,000 seconds.  

Motivated by the aforementioned example, we seek to identify a 
revised cost function for the IDS problem so that we can generate a set 
of “good” cuts to choose from when solving the LIDS problem to 
achieve longer sensor network lifetime. In the following, we formulate 
the LIDS problem mathematically. Subsequently, we break the LIDS 
problem into two sub-problems, a) IDS problem with a revised cost 
function and b) a concurrent cut selection and scheduling problem.  

80

50

50

10

20

70

20

2

3

4

51

 

 

Path Probability 
{1,2,5} 1/21 
{1,3,5} 8/21 
{1,4,5} 3/21 

{1,3,4,5} 9/21 

Figure 1. Example for Lifetime aware Intrusion Detection 
 



 

Cuts Edges Total 
Power 

Max. Power 

C1-1 {(2,5), (3,5), (4,5)} 94mW 47mW 
C1-2 {(1,2), (3,5), (4,5)} 98mW 55mW 
C2-1 {(2,5), (3,5), (4,5)} 94mW 47mW 
C2-2 {(1,2), (3,5), (3,4), (1,4)} 155mW 50mW 

Table 1. Solution for example 1 

 
LIDS problem can be modeled as follows: 

LIDS Problem: Given a directed graph G(V,E) and initial 
energy E0 for each sensor on the edges of G, for a required 
minimum safeguarding level Lmin, find subsets of edges S1, S2, …, 
Sn and their corresponding time spans t1, t2, …, tn so that 

1

n

i
i

Max t
=
∑  (4) 

with 

( )( ). 1 1
s t i

e min
e S

q PoD L i
π π

π
→∈∏ ∈ ∩

⎡ ⎤
⎢ ⎥− − ≥ ∀⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏  (4.a) 

0
: i

i e
i e S

t pow E e E
∈

⋅ ≤ ∀ ∈∑  (4.b) 

Here, the first constraint (4.a) is the minimum required 
safeguarding constraint in each time period i, similar to constraint 
(3.a) whereas the second constraint (4.b) captures the effect of 
limited energy source of the sensor nodes.  

III. SOLUTION TECHNIQUE 
In this section an approach will be proposed to approximately, yet 
efficiently, solve the LIDS problem. Consider a generic solution to 
the LIDS problem, which we will call, the LIDS_Algorithm (Figure 
2). 

The LIDS_Algorithm has two steps. First, it generates all 
feasible subsets Si of E, which we will denote by ΣE (line 4-8). This 
is done by calculating the minimum total power consumption of all 
sensors that are placed on edges of Si so that inequality (4.a) 
becomes active (line 6). 

Then, in the second step, for each subset Si from step 1, it 
calculates ti such that constraint (4.b) is satisfied (line 9-12) and the 
system lifetime as given in (4) is maximized. 

It is easy to see that a solution generated for the LIDS problem 
by using this two-step approach is optimal. This is due to the fact 
that in step 1, the algorithm generates all feasible subsets; whereas 
in step two, it calculates the best scheduling of all the feasible 
solutions. Obviously, the disadvantage of this two-step approach is 
that the cardinality of ΣE is an exponential function of the graph 
size. Therefore, the proposed brute-force solution is generally 
impractical. In the following, a method for generation of some 
promising Si’s will be described so that step one becomes 
computationally manageable. 

A. Generating feasible solutions 
To do this, we only generate subsets of E that satisfy the 
safeguarding constraints and simultaneously optimize some cost 
function. This cost function is chosen such that it results in 

generation of a small number of feasible subsets of E that are likely to 
be present in the optimal solution to the LIDS problem. The remaining 
questions are a) what this cost function is, and b) how to iteratively 
find next optimal solution. 

 
Algorithm LIDS_Algorithm (Graph G, E0, Lmin) 
begin 

1. ΣE  = Find_Feasible_Solutions (G, Lmin); 
2. Schedule = Find_Schedule (ΣE, E0 );  
3. return Schedule;  

end 
======================================
Algorithm Find_Feasible_Solutions (Graph G, Lmin) 
begin 

4. feasible_subsets=∅; 

5. foreach subset Si⊂E s.t. constraint (4.a) can be 
satisfied; 
      begin 

6.  Pmin=Find_minimum_power (Si); 

7.  feasible_subsets= feasible_subsets∪{( Si, P-

min)}; 
 end 

8. return feasible_subsets; 
end 
======================================
Algorithm Find_Schedule (ΣE, E0) 
begin 

9. Schedule=∅; 
10. foreach (Si, Pi)∈ ΣE 

      begin 

11.  Find ti s.t. (4) is maximized and constraint  
  (4.b) is satisfied; 

12.  Schedule= Schedule∪{(ti, Si, Pi)}; 
 end 

13. return Schedule; 
end 

Figure 2. LIDS_Alogorithm 

1) Choice of the Cost function 
In this section use of two different cost functions for step 1 of the 
LIDS algorithm is investigated.  

If we adopt the Min-Sum power cost function for the LIDS 
problem, then we basically have the IDS problem as stated in (3), 
where the total power consumption of the sensors in the solution is 
minimized. The solution to this problem is similar to that presented in 
[1]. The integer linear programming formulation can be written as,   

,
ij

i j

min pow
∀
∑  (5) 

such that 

1
0

{0,1}
0, 1

ij
ij

ij
ij i
ij j

i
s t

pow
PoD

f
PoD ij E
PoD

i V

γ
κ

α
α

α
α α

−
=

⋅
+ ≤ ∀ ∈
− ≤

∈ ∀ ∈
= =

 (5.a) 



 

( , )

( )
s t

ij min

i j

PoD q L
π

π

π
→∈∏

∈

× ≥∑
 

(5.b) 

In formulation (5), αi is a binary variable for each node i that 
show in which partition node i is located, αi=0 if node i is on source 
node’s side and αi=1 if node i is on target node side. Therefore, an 
s-t cut is identified with a set of edges (i, j) such that αi=0 and αj=1 
(eqn. 5.a). Powij denotes the power consumption of the sensor on 
edge (i, j) and the first constraint in (5.a) captures the characteristics 
of that sensor. Three remaining constraints in (5.a) guarantee that 
only edges (i, j) for which αi=0 and αj=1 can have active sensors 
that consume power, i.e., Powij≠0.  The minimum safeguarding 
constraint is rewritten in equation (5.b) and the total power 
consumption cost function is shown in equation (5).  

On the other hand if we adopt the Min-Max power cost 
function, then we obtain a version of the IDS problem where the 
objective is to minimize the maximum of power consumption of the 
sensors. Mathematical program formulation of this version of the 
problem can be written as: 

maxmin P  (6) 

With constraints (5.a) and (5.b) and the addition of: 

maxijpow P ij E≤ ∀ ∈  (6.a) 

The solution to this problem can be found using standard ILP 
solvers. 

2) Finding the next optimal solution iteratively 
To generate the next optimal solution after finding the current 

solution, we must modify the underlying network graph by 
prohibiting the use of a subset of edges. This is necessary to make 
sure that a new solution can be generated and that the effect of 
previously generated solutions is taken into account. Two different 
heuristics for the modification of the network is considered: the 
maximum power threshold heuristic, and the number of repetitions 
heuristic.  

In maximum power threshold heuristic, network edges in the 
previous solution with sensors that have power consumption more 
than h percent of the maximum power sensor in that solution, are 
eliminated from the network and thus will not be considered as part 
of any solution generated in a subsequent solution. The rationale is 
that high power consuming sensors are less likely to be present in 
the optimal solution of the subsequent LIDS problem formulations 
since they are more likely to result in lower system lifetime. 

In the number of repetitions heuristic, If a sensor has been used 
in at most Nmax previously generated solutions then this sensor 
cannot be present in a subsequent solution, and hence, it is removed 
from the network. This constraint basically helps to increase the 
utilization of the sensors in the network in generation of solution 
set. Now, we turn our attention to solving step two of the 
LIDS_Algorithm.   

B. Scheduling Algorithm 
In step two of LIDS_Algorithm we are required to solve the 
following problem, 

Scheduling Problem: Given a set of k solutions to the IDS 
problem S1, …, Sk , solve the following: 

1

n

i
i

T Max t
=

≡ ∑  (7) 

Such that 

0

i

i e
i e S

t pow E e E
∈

⋅ ≤ ∀ ∈∑  (7.a) 

It is easy to see that Problem 2 is a linear programming problem, 
and hence, it can optimally be solved in polynomial time. To further 
increase the efficiency, one can introduce a dominance relation 
between different sensors and thus consider constraint (7.a) only for 
those sensors that are most likely to exhaust their energy first as 
described below.  

Definition: Let SPS(ei) denote the set of parent sets of edge ei, i.e.,  

{ }( )i j i jSPS e S e S= ∈  (8) 

We say edge ej is dominated by edge ei , denoted by ej ⊂ ei, if 
SPS(ej) ⊂ SPS(ei) and ∀ Sk∈SPS(ej), k k

j i

S S
e epow pow≤  where 

S
epow denotes the power consumption of the sensor on edge e when 

solution S is active. 

Definition: Given a collection of sets Sk, k=1…m, set Θ  is a 
minimal dominating set if 

1
:

m
j k i j ik

e S e e e
=

∀ ∈ ∃ ∈Θ ∧ ⊂U  (9) 

and Θ is minimum.  

Theorem: To satisfy constraint (7.a) for all edges in the network, 
it is sufficient to satisfy it only for edges in Θ .  

Proof: If edge ej is dominated by edge ei then the system lifetime 
T is determined by the lifetime of edge ei and not ej. This is due to the 
fact that not only for every time instance, t where ej is active ei is 
active (because SPS of ej is subset of SPS of ei), but also ei is 
consuming more power than ej when it is active because ∀ Sk∈SPS(ej), 

k k
j i

S S
e epow pow≤ . Knowing that both ei and ej had same initial energies 

would result that for all t remaining energy of ei is less than or equal to 
that of ej and hence when ei satisfies (7.a) implies that ej would satisfy 
the same condition.  

To find the minimal dominating set Θ of the selected solutions S1, 
…, Sm, one can construct a directed graph H in which each edge ei in E 
is a node ui, and there is a directed edge from uj to ui exactly if edge ei 
dominates edge ej. Then, all directed cycles in the resulting graph will 
be removed by using the operation shown in Figure 3. Note that due to 
the definition of dominance relation, a directed cycle represents an 

U3

W1U2 U1

U4

U5
U6 U1

U3

U2

Directed cycle

 
Figure 3.Cycle removal operation 



 

equivalence class; therefore, one can remove all the nodes (which 
are the edges on the actual underlying network) in a cycle and 
collapse them into one node. Of course, all edges connecting the 
original cycle to other nodes must now be incident to the collapsed 
node. (See Figure 3). After removing the cycles in graph H, the 
resulting graph will be a forest of rooted, directed trees. The set of 
leaf nodes of all trees in H is the minimal dominating set Θ. 
Therefore, linear program (7) can be solved with constraints written 
only for the members of the minimal dominating set, further 
reducing the size of the problem.   

IV. EXPERIMENTAL RESULTS 
To generate our experimental results we used the web-server based 
camera from STARDOT Technologies as the sensor [9]. This 
camera can take up to 35 snap shots per second from its area of 
coverage. Probability of detection for this sensor is proportional to 
the number of frames per second taken from the coverage area. This 
number is in turn related to the sensor’s power consumption. Based 
on actual current measurements, the probability of detection was 
related to the camera’s power consumption as follows: 

( 100 ) 1.
9

e mW
e

mW e

pow
PoD

f
−

=  (10) 

Initial energy values are assumed to be 100 Joules.  

The underlying network graphs considered are two graphs from 
Wood et al. [6] depicted in Figure 6 and Figure 7, and five other 
randomly-generated graphs from graph benchmark database of 
Rutgers University [8]. Key information about these graphs is 
provided in Table 2. The traffic values (flow rates) for the edges in 
these five networks are generated using a random number generator 
(i.e., the random(seed) function of the linux kernel.) Furthermore, a 
preprocessing program is used to generate all paths starting from the 
source node s and ending in target node t and assigning a randomly 
generated probability of intrusion to each path. All random 
generators are assumed to be uniformly distributed. Using this 
information as input data, we proceed to solve the LIDS problem. 
Figure 5 presents the flow used for generation of experimental 
results. 

 There are three phases for generating experimental results. In 
the first phase, the input networks, their traffic values, and path 
probability values are generated as described above. In the second 
phase, two cost functions of Section 3.1 are used to generate the 
solutions to the IDS problem. In this phase, an attempt to generate a 
solution that satisfies the safeguarding constraints is made. If any 
feasible solution is found, then the input graph is modified by using 
one of heuristics of Section 3.2 and a new iteration is initiated. This 
procedure continues until there are no more possible solutions left. 
In the third and final phase, three different schedules are generated 
based on three different solution sets available: the solution set from 

the min-sum power cost function, the solution set from the min-max 
power function, and the solution set generated by creating the 
conjunction of the min-sum and min-max power solutions. In each 
case, we solve the linear programming problem of (5), which results in 
an optimal schedule for the given set of solutions of IDS problem. 

In order to evaluate our heuristics, the exact solution is also 
obtained by generating the complete set of feasible subsets of E in step 
1 of the LIDS-Algorithm. Different solutions are compared in Figure 4. 
For example, in case of MANN_a9 graph when Lmin=95% the system 
lifetime is 10.80, 9.75, and 10.85 seconds for Min-Sum, Min-Max, and 
hybrid cost functions, respectively; whereas the optimal solution for 
this case was 11.83 seconds. Note that all of different heuristics are 
within 10% of the optimal solution. 

Moreover, a closer look at the graphs shown in Figure 4 reveals that 
as the safeguarding constraint is lowered the lifetime of the system is 
increase as expected. Moreover, for tighter requirements on the 
safeguarding constraint the Min-Sum heuristic seems to follow the 
optimal solution very closely. This is due to the fact that for higher 
minimum required safeguarding limit, i.e., larger Lmin, different 
solutions have very similar power consumption characteristics and 
therefore, the optimal solution set is very similar to the solution set 
from the Min-Sum heuristic.  

The relative degradation of lifetime of the network based on 
hybrid heuristic and relative runtime normalized to runtime of optimal 
solution, i.e., the optimal solution’s runtime is assumed to be 100 units 
of time, is also reported in Table 3. Note that the overall error in 
network lifetime due to application of heuristic approach is upper-
bounded by less than 10% while the time required to generate the 
solution is reduced by 300%. 

Graph No. Graph Name # nodes # edges 

1 Wood-1 37 58 
2 Wood-2 38 51 
3 Johnson8-4-4 70 1855 
4 Johnson8-2-4 28 210 
5 MANN_a9 45 918 
6 Mulsol-i-5 186 3973 
7 DSJC125-1 125 1472 

Table 2. Some statistics about benchmarks  

Min-Sum Solution Optimal SolutionMin-Max Solution Hybrid Solution

25

0

5

10

15

20

Lmin=%99
E0   =100 J

Wood-1 Wood-2 Johnson8-4-4 Johnson8-2-4 MANN_a9 mulsol-i-5 DSJC125-1

25

0

5

10

15

20

Lmin=%95
E0   =100 J

Wood-1 Wood-2 Johnson8-4-4 Johnson8-2-4 MANN_a9 mulsol-i-5 DSJC125-1

25

0

5

10

15

20

Lmin=%90
E0   =100 J

Wood-1 Wood-2 Johnson8-4-4 Johnson8-2-4 MANN_a9 mulsol-i-5 DSJC125-1

Li
fe

tim
e 

( x
10

0 
S

ec
.)

Li
fe

tim
e 

( x
10

0 
S

ec
.)

Li
fe

tim
e 

( x
10

0 
S

ec
.)

 

Figure 4. Lifetime vs. Safeguarding Level (Lmin) 



 

 

 Relative degradation 
in network lifetime Runtime 

Optimal Solution 0.00% 100.00 

Hybrid Heuristic 
(Lmin=99%) 4.89% 30.26 

Hybrid Heuristic 
(Lmin=95%) 8.62% 31.51 

Hybrid Heuristic 
(Lmin=90%) 8.98% 33.58 

Table 3. Relative error and runtime of hybrid heuristic 

 
 

 
 

20

30

20

30

20

60

20

20

30

20

30

40

90

20

20

30

50

70

40

80

50

20

40

20

40

40

70

60

s T

20

60

40

20

20

20

30

40

10

40

30

20

30

30

40

60

60

20

 

Figure 6. 7×5 example from Wood et al. [6] 

 
 
 
 

20

60

20

10

20

70

20

10

20

80

10

10

20

80

30

10

20

30

40

10

20

30

50

10

20

50

50

10

20

70

40

10

20

20

10

20

20

10

20

20

10

20

50

10

20

20

10

20

50

10

20

20

10

s T

 
Figure 7. 4×9 example from Wood et al. [6] 

 

V. CONCLUSIONS 
The problem of maximizing the service lifetime of a distributed sensor 
network in the context of the network interdiction problem under user-
specified initial energy and probability of detection constraints is 
addressed. The offline version of this problem is considered. Different 
heuristic solutions based on partitioning of problem in two parts, i.e., 
placement and scheduling, are proposed. Experimental results to show 
the effectiveness of the approach are presented. 

 

REFERENCES: 
[1] K.J. Cormican, D.P. Morton, R.K. Wood, “Deterministic 

Network Interdiction,” Journal of Mathematical and Computer 
Modeling, Vol.17, No.2, 1993. 

[2] A.W. McMasters and T.M. Mustin, “Optimal Interdiction of a 
Supply Network,” Naval Research Logist. Vol.17, 1970. 

[3] R.L. Steinruf, “A Network Interdiction Model,“ M.S. Thesis, 
Naval Postgraduate School, Monterey, CA, 1991. 

[4] C.A. Phillips, “The Network Destruction Problem,” Sandia 
National Lab. Albuquerque, NM, 1992. 

[5] R.D. Wollmer, “Two-Stage linear programming Under 
Uncertainty with 0-1 Integer First-Stage Variables,” Journal of 
Mathematical Prog., Vol.19. 

[6] A.R. Washburn, R.K. Wood, “Stochastic Network 
Interdiction,” Operations Research, Vol.46. No.2, Mar. 1998. 

[7] M. Kodialam and T.V. Lakshman, “Detecting Network 
Intrusion via Sampling: A Game Theoretic Approach,” Proc. of 
Infocom, Apr. 2003. 

[8] ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/ 
[9] http://www.stardot-tech.com/ 
 

Generate network
graph

Assign Random
Traffic values

&
Edge probabilities

Generate a solution for
IDS problem with

Min-Sum cost

Generate a solution for
IDS problem with

Min-Max cost

Combine two
solution sets

Find Schedule
for

Min-Max

Find Schedule
for

Hybrid

Find Schedule
for

Min-Sum

Get
Lmin and E0

Any
feasible
solution

left ?

Any
feasible
solution

left ?

Modify the
Input graph

Modify the
Input graph

YesYes

Phase I

Phase II

Phase III

 
Figure 5. Flow of solution generation for LIDS problem 


