OBDD-Based Function Decomposition: Algorithms and
|mplementation 1

Yung-TeLal, Kuo-Ruelh Ricky Pan, Massoud Pedram
University of Southern California
Dept. of EE-Systems
Los Angeles, CA 90089

1This research was supported in part by NSF under contract No. M1P-9457392.

List of Figures

1 A functionrepresentedin (a) oBDD and (b) decompositionchart. 32
2 Anexampleof digunctivedecomposition. 33
3 Anexample of nondigunctive decomposition. 34
4 Anexamplefor operator cut vector.. oo 35
5 Anexample of multiple-output decomposition in OBDD representation. 36
6 TheXilink XC4000CLB. 37
7 XCA000 patterns. e 38
8 Graphical representation of type | two-layer decomposition. 39
9 Graphical representation of type Il two-layer decomposition. 40
10 Conditionsfor type Il two-layer decomposition. 41
List of Tables
1 Experimental results of FGSynfor XC3000device 26
2 Comparison with other software programs (XC3000 device) 27
3 Experimental results of FGSyn optionsfor XC4000 device 28
4 Experimental resultsfor XC4000device 29

Abstract

This paper presents algorithmsfor disjunctive and nondisjunctive decomposition of Boolean func-
tions and Boolean methods for identifying common subfunctions from multiple Boolean functions.
Ordered Binary Decision Diagrams are used to represent and manipul ate Boolean functions so that
the proposed methods can be implemented concisely. These techniques are applied to the synthesis
of look-up table based field programmabl e gate arrays and results are presented.

1 Introduction

Most multilevel synthesis systems contain two steps. a technology-independent step that manipu-
lates and optimizes Boolean functions and a technol ogy-mapping step that maps Bool ean functions
into a set of gates in a specific target technology. The technology-independent phase is further
divided into two substeps: logic restructuring that identifies common sublogic to produce a near-
optimal structure and logic minimization that optimizes the logic with respect to the structure
obtained in the previous step. In this paper, we consider the problem of identifying common
sublogic.

There aretwo methods for identifying common sublogic: agebraic and Boolean. Thealgebraic
method is fast because the logic functionisrepresented and manipul ated as an algebrai c expression.
Some optimality may however be lost because Boolean identities are not exploited by the algebraic
methods. In comparison, the Boolean method is slow, but tends to produce better results.

The algebraic approach is based on the division operation, namely, rewriting a function f as
qd + r where ¢, d, and r are the quotient, divisor and remainder, respectively. The theory of
division was studied by Brayton and McMullen [3] and well developed in the Mis package[4]. The
identification of common sublogic is to extract common subexpressions as divisors. Because the
number of divisorsis huge, usually only a subset of the divisors are used. For example, kernels
(cube-free primary divisors) are used in [4] while double- and single-cube divisors are used in
[25]. Division can be also carried out by coalgebraic [13] and Boolean [4] methods.

The Boolean approach is based on the decomposition operation, namely, rewriting a function
F(X,Y) as f'(¢g(X),Y) where the number of inputs of f’ is smaller than that of f. The theory
of decomposition was pioneered by Ashenhurst [2], Curtis [8] and Roth and Karp [19]. For
representing functions, Karnaugh maps are used in [2, 8, 12], cubes are used in [14, 16, 19]
and ordered binary-decision diagrams (OBDDS) [5] are used in [6, 9, 21]. Most of these methods,
except [16] and [12], only address single output functions.

A Boolean method for extracting common subfunctions was proposed by Karp [16]. He
presented an algorithm for identifying a common subfunction between two functions based on
the partitioning of compatible classes [19]. This approach has two shortcomings: first, it does
not apply to more than two functions and second, it does not identify more than one shared
subfunction. A new Boolean extraction algorithm based on Karnaugh maps was recently proposed
in [12]. Because of the size complexity of the Karnaugh map representation, this approach isonly
applicable to functions with small number of inputs.

In this paper, we describe 0BDD-based algorithmsfor disjunctive and nondisjunctive decompo-

sition of Boolean functions. We then propose two methods for identifying common subfunctions
of multiple-output functions. The first method is based on encoding of distinct columns in the
stacked decomposition charts of the individual outputs; the second method is based on encoding
all possible subfunctions that can be generated with respect to a given subset of input variables.
We use 0BDDS to represent functions so that our methods can be effectively carried out. Compared
to [16], our proposed methods can identify multiple (> 2) shared functions from among multiple
(> 2) functions. Complexity of our methods depends on the size of the bound set while that of
the approach in [16] depends on the number of compatible classes. In practical applications, size
of the bound sets considered are much smaller than the number of compatible classes. Finally,
these methods are applied to Look-Up Table (LUT) based Field Programmable Gate Array (FPGA)
synthesis.

Theremainder of the paper isorganized asfollows. Section 2.2 presentsoBDD-based algorithms
for digunctive and nondisjunctive decomposition of Boolean functions. Section 2 describes the
two methods for identifying common sublogic among multiple Boolean functions and presents
the corresponding oBDD-based algorithms. Section 4 shows the application of these ideas and
algorithms to the synthesis of LUT-based FPGA devices. Experimenta results and concluding
remarks are given in section 5 and section 6.

2 OBDD-based Function Decomposition Algorithms

In this section, we first give the background for function decomposition theory. We then present
decomposition algorithms for digunctive, nondigunctive, and multiple-output decompositions
based on the oBDD representation of Boolean functions [5]. These algorithms are based on the
concept of cut_set or cut_vector in the OBDD representations.

2.1 Background

Definition 2.1 A function f(xo,...,x,-1) iSsaid to be decomposable under bound set

{zo,...,z;_1} and free set {z;_s,...,2,.1},0 < ¢ < n,0 < s if f can be transformed to
Flgo(xoy .- y@ica)y ooy gima(®oy e ooy ¥im1), Timsy v ooy no1), Where0 < j < ¢ —s. If s equals O
then f is digunctively decomposable; otherwise, f is nondisunctively decomposable. If ; equals
1 thenitis simply decomposable. Function f’ isreferred as the f-function and each ¢; isreferred as
ag-function. The reduction in variable support isequal to: — (5 + s). The above transformation
is referred as decomposition. If only some of the g-functions are formed, then f is partialy

decomposited.

The function decomposition theory has been studied by many researchers [2, 8, 19]. The
Ashenhurst-Curtis method [2, 8] is based on an arrangement of the Karnaugh map where the rows
correspond to the variablesin the free set and the columns correspond to the variablesin the bound
set. The arrangement isreferred as a decomposition chart. The number of distinct column vectors
is referred as the column multiplicity.

The Roth-Karp algorithm [19] is based on the computation of compatible classes. Let f bea
Boolean function with a bound set Ao and afree set A, with | Ag |= 7 and | A; |= n — . Let
B, = B'and By = B"~'where B = {0,1}. Twovariablesz;andz,, v; € B, andz, € B, aresaid
to becompatibleif, forall y € By, f(x1,y) = f(x2,y); otherwise, they aresaid to beincompatible.
Roth and Karp show that afunction has asimpledisjunctive decomposition with respect to the given
bound and free sets if and only if B, can be partitioned into £ < 2 classes consisting of mutually
compatible elements. When a function is completely specified, compatibility is an equivalence
relation and & is simply the number of equivalence classes.

The relation between a distinct column of a decomposition chart and a compatible class is
bijective. The basic difference between these two methods is in the use of different function
representations. One uses the Karnaugh map to represent a function while the other uses covers of
the onset and offset for the function.

Theorem 2.1 [8] A function f(xo,...,z,-1) can be transformed to f'(go(zo,...,xi—1), ..,
gi—1(xoy ... xi—1),24,...,2,-1) iIf @and only if its decomposition chart has column multiplicity
<2,

Definition 2.2 Given aBoolean function f, abound set B and the decomposition chart C' of f and
B, the column_vector V of f and B isdefined as V/ = (vyi51_y, . . ., vo) Wherevg = O and v; = j if
v; isthe 7' (fromtheright) distinct column of V/. The column_set S/ of f and Bis{0,...,k—1}
if there are k& distinct columnsin the decomposition chart. The bit_size of V/ or S/ is[log, | S |].

We use /. to denote a column_vector with bound set size i and bit_size j and S/, to denote the
column_set of V{ ..

Example 2.1 Let f = xov17273+ 2011727374+ ToT1T2T4+ TT1T2T4+ ToT1T2T3+ ToT1T2T4+
Tor1T2T3+ ToT1T2¥3+ Tor1v2T3T4+ Tor1xars. If the decomposition chart of f(xo, x1, x2, ¥3, 4)
with respect to the bound set { o, #1, 22} and the free set {x3, x4} is constructed, then there will
be three distinct columns, namely [1100]%, [1011]* and [1010]*. Thus, at least two g-functions are
needed, that is, V{, = (1,2,2,0,2,0,1,0), S, = {0, 1,2} and the bit_sizeis 2. O

3

2.2 Ordered Binary Decision Diagrams

Definition 2.3 [5] AnoBDD isadirected acyclic graph consisting of two types of nodes. A nonter-
minal node v is represented by a 3-tuple (variable(V), child)(V), child.(v)) where variable(V) €
{zo,...,xs—1}. A termina node v is either 0 or 1. There exist an index function index(x) €
{0,...,n — 1} such that for every nontermina node v, either child;(v) is a termina node or
index(variable(Vv)) < index(variable(child)(v))), and either child.(v) is a terminal node or
index(variable(Vv)) < index(variable(child,(v))). Thereis no nonterminal node v such that
child;(v) = child,.(v), and there are no two nontermina nodes u and v such that u = v. The
function denoted by (x,v;,v,) isz f; + = f, where f; and f, are the functionsdenoted by v; and v,
respectively. The functions denoted by 0 and 1 are the constant function 0 and 1, respectively.

We use the following notation.

1. The left edge of a node represent 1 or the true edge and the right edge represents O or the
false edge.

2. v represents both aBDD node and the BDD rooted by node v.

3. index(v) : theindex of the variable associated with node v. If v is aterminal node, then

index(v) =n.

child)(v) ifindex(v) =1,

-child(v,i) = {v otherwise.

rchild(v,) { child.(v) if index(v) =1,

v otherwise.

5 When B = {xq,...,x;_1} represents a bound set, index(xg) < ... < index(x;_1),
head(B) = xo, tail(B) = {x1,...,x;_1}, and last(B) = x;_1.

Definition 2.4 Given an OBDD node v representing f(xo, . . . , #,—1) and abit vector (bo, . .., b;_1),
the function eval is defined as

eval(V, () =V,
eval(v, <bo, ... ,bi_1>) = V/,

where V' isthe 0BDD representing function f(bo, . . ., b;—1, xi, . . ., x,—1). When i isknown, we also
use eval(Vv, p) for eval(v, (by, ..., b;i_1)) wherep = 271 + ... + 2°b;_;.

4

2.3 Digunctive Decomposition

Definition 2.5 Given an 0BDD V representing f(«o, . . ., x,-1) With variable ordering z, . . . , ;1
and bound set B = {xo,...,2;_1}, wedefine

cut_set(v, B) = {u|u=eval(v,p),0< p< 2.

In the above definition, each element in cut_set(v, B) corresponds to a distinct column in
Ashenhurst-Curtis decomposition charts [2, 8]. Furthermore, [log, | cut_set(v, B) || determines
the minimum number of G-functions required for adecomposition of f/ under 5.

Example 2.2 The 0oBDD representation and decomposition chart of the function in Ex. 2.1 are
shown in Fig. 1 (a) and (b), respectively. Here, cut_set(f, {xo, 1, 22}) = {a,b,c}. Nodes a, b,
and c correspond to distinct columns 1100, 1010, and 1011, respectively. Since there are three

distinct columns f is not simple decomposable under bound set { o, 21, x2} and free set {3, 24}.
0

Figure 1 goes here.

When the bound variables are on the top of the oBDDs, the computation of the cut_set is
straightforward as shown next. The time complexity of computing cut_sets depends on the size of
the OBDD representation.

cut_set(v, B) [* B ison the top of the oBDD */
{

if (index(v) > index(last(B))) return({ v });

elsereturn(cut _set(child)(v), B) U cut_set(child.(v), B));
}

To move a bound variable x to the top of an 0BDD, we create a new BDD node v such that
variable(v) = z, child(v) = fx and child,(v) = fx where fy and fx are the cofactors of f with
respect to = and 7, respectively.

We show how to perform the disjunctive decomposition of a function directly on its 0BDD
representation.

Algorithm decomp:

Given afunction f represented in an 0BDD v and abound set B, adisunctive decomposition with

respect to B iscarried out by the following steps:
1. Compute the cut_set with respect to B. Let cut_set(v

2. Encode each node in the cut_set by [log, £| = j bits.

,B) = {uo, .. .,uk_l}.

Let the encoding of uq begq.

3. Construct vy to represent function f’ by replacing the top part of v¢ by anew set of variables

9o, - - -» gj—1 such that eval(ve,q) = uq for 0 < ¢ < k — 1, eval(vg,q) = ug_; for

E—1<qg<2.

4. Congtruct vg,’s to represent g,'s, 0 < p < ; by replacing each node u with encoding

bo, ..., b;_1 inthe cut_set by terminal node b,.

Example 2.3 Asan example of how decomp works, consider the oBDDsshownin Fig. 2. Since ay-
nodein f has encoding 01, it has been replaced by terminal nodes O and 1in gy and g; respectively.
The evaluation of zg = 1, 21 = 0, and > = 1 inf ends at z4-node in the cut_set. The evaluation

of the same pattern 101 in gy and g; produce function values 0 and 1 for new variables ¢o and ¢g;.
Then, the evaluation of O1 in f’ also ends at the same x4-node.
Because there is no encoding 11 in the cut_set, variables ¢ and ¢; can never be 11. We can

assign arbitrary value for this pattern. In this example, we assign the left x:3-node so that the left

g1-node can be reduced inf'.

Figure 2 goes here.

Theorem 2.2 GivenanoBDD v; withvariableorderingzo <

... < xp_qrepresenting f(xo, - -

a

° xn—l)i

abound set B = {xq,...,zi_1}, the cut_set(vs, B) = {Uo,...,Ux_1} and the decomp agorithm

returning OBDDS Vy/, Vg, . . . , Vg _,, then
f(l‘o, Cee ,l’n_l) = f/(go(l'o, ceey l’i_l), Cee ,g]‘_l(l'o, ..

where f, go, . . ., gj—1 are the functions denoted by vy, vy, . .

. 7$i—1)7 Ligeooy l’n_l)

., Vg _,, respectively.

2.4 Nondigunctive Decomposition

Before describing how to perform nondisjunctive decomposition based on OBDD representation,
we extend the concept of cut_set in the following definition.

Definition 2.6 Let R = {l’o,. . .,l’s_l}, S = {1’5,. . .,l’i_l}, and 7T = {J}Z’,. . .,l’n_l}, 0< s <
¢ < n. Givenan OBDD V representing f(zo,...,x,-1), aboundset RU S5, and afreeset SU T, we
define

cut_set_nd(v, R, S, p) = {eval(w,p) | W € cut_set(v, R)},
where0 < p < 219,

With the above definition, cut_set(v, B) can be represented by cut_set_nd(v, B, ¢,0). Inthe
following, we present a pseudo code for computing cut_set_nd and an example of it.

cut_set_nd(v, R, S, p) /%0 < p< 25/
{
if (index(v) < index(head(5)))
return(cut _set _nd(child,(v), R, S, p) U cut _set_nd(child,(v), R, S, p));
eseif (index(head(S)) < index(v) < index(last(S))){

qg= 2indeac(last(5))—indeac(v) ;

if (¢4 <p) /+ then traverse down through | eft edge «/
return(cut _set nd(child,(v), R, S,p — q));
elsereturn(cut_set nd(child,.(v), R, S, p));

}
elsereturn({v});

}

Example 2.4 TheoBDD in Figure 1 (a) has

cut_set_nd(f, {xo, x1},{22},0) = {a, b},
cut_set_nd(f, {xo, x1},{22},1) = {b,c},
cut_set_nd(f, {xo}, {1, 22}, 0) = {a},
cut_set_nd(f, {xo}, {x1, 22}, 1) = {b,c},

cut _set_nd(f, {xo},{x1, 22},2) = {a, b}, and
cut_set_nd(f, {xo}, {x1, 22},3) = {b,c}.

7

Algorithm decomp_nd:

Given a function f represented in an 0BDD vy, abound set {zo, ..., x5, ..., 2;_1}, and afree set
{zsy...,2i_1,...,2,_1}, @anondigunctive decomposition with respect to the given bound set and
free set is carried out in the following steps:

1. Compute cut_set_nd(ve, R, S,r) for 0 < r < 215 where R = {zo,...,2,.1} and S =
{zs,...,xi_1}. Leteut_set nd(ve, R, S,r) = {urp, ..., up 1}, maz{| cut_set_nd(ve, R, S,r) |
} =Fk,andj = [log, k].

2. Construct v¢ to represent function f” in two steps:

(@ Construct v, 0 < ¢ < k, suchthat eval(vq, r) = uqr Whereuq » isthe ¢ element in
cut_set_nd(ve, R, S,r) orthelast element if ¢ >| cut_set_nd(vg, R, S,r) |.

(b) Construct v¢: such that eval(ve, q) = vq for0 < ¢ < k — 1and eval(vyr, ¢) = vik_1
fork—1<qg< 2,

3. Construct vg,,'sto represent g,'sfor 0 < p < j:
Replace each node uq » (¢ node of cut_set_nd(vy, R, S, r)) from v by the terminal node
whose valueisb,, where b, isthe p™ bit from the least significant bit of integer ¢.

Note that, a node u may be the i element of cut_set nd(ve, R, S,r1) and the ;™ element of
cut_set_nd(ve, R, S, r2) which requires different encodings for u. This does not cause a problem
because we can first duplicate the node u and then assign each copy a different encoding.

Example 2.5 One possible nondisjunctive decomposition of the oBDD in Fig. 1 (&) with respect to
the bound set {xo, 21, x2} and the free set {x,, 23, x4} is shown in Fig. 3. In this decomposition,
we use the following coding: {a = Ugo,b = U1} = cut_set_nd(vs, {xo, x1},{x2},0) and {c =
U11, b = U0} = cut_set_nd(vs, {xo, 21}, {22}, 1). O

Figure 3 goes here.

Theorem 2.3 Givenan 0BDD v; with variable ordering o, . . ., x,,—1 representing f(zo, . . ., n—1),
and k& = max{| cut_set nd(vs, {zo,..., x5 1}, {7, ..., xii1},7) |0 <0 < 2078}, 271 < |k <
2/, the algorithm decomp_nd returns j + 1 OBDDS Vi, Vg, . . . , Vg _, Such that

flzoy o ovan—1) = f'(go(@oy - oy Tica)y ooy Gj1(T0y ooy Tim)y Ty e ey Ty e e vy Tp1)

where f, go, . . ., g;—1 are the functions denoted by vy, vy, . . . , Vg _,, respectively.

3 Common Subfunction Extraction

In this section, we present two methods to extract common subfunctions from multiple Boolean
functions. The first method is based on the stacking of the decomposition charts of the individual
outputs; the second method is based on the examination of all possible g-functions that can
be generated. We first describe an algorithm for generating column_vectors using the oBDD
representation. We then present a multiple-output decomposition algorithm that is useful when
column encoding and shared subfunction encoding is used.

3.1 Column Encoding

Our first method is called column encoding which is carried out as follows: we first stack up the
decomposition charts for individual functions and then encode the distinct column patterns. This
is equivalent to finding a common encoding for all functions.

Example 3.1 Consider a multiple-output function F': fo = xox4 + x12224, f1 = vor3 + 123 +
ror174 AN f2 = Tow3T4 + T2w374 With bOUNd SEt B = {20, 71, 72}

If we stack the decomposition charts of F', then there will be four distinct column patterns. We
can thus use two bits to encode each column pattern (defining two g-functions ¢go and ¢;). The
f-functions are determined from combining identical columns of the stacked decomposition chart.
In particular,

go(zo, 21, x2) = xo + 21,
g1(xo, v1, ¥2) = 0 + X2,
f6(907 g1, 23, :1?4) = gog174,
f1(g0, 91, x3, 24)

B)

= gors + gora, and

490,91, 3, T4) = g1T324.

Note that the above method can identify common subexpressions that algebraic division based
methods cannot. After the above decomposition, the literal count of the resulting circuit is 14. On
the other hand, the best we could achieve by the algebraic method, is 16 as shown below:

Yo = xo + T1,

Y1 = xo+ T2

fo = zors + r17224,
J1 = yors + yora, and

fé = Y1T324.

Lemma 3.1 Given amultiple-output Boolean function /' = (f, ..., fi,—1) On variable set X and
bound set B C X, if the column multiplicity of the stacking of individual decomposition chartsis
k such that 271 < k& < 27, then F' can be transformed to the following:

<f(l)(90(B)7 SR 7gj—l(B)7X - B)v SRR frln—l(QO(B)v SR 7gj—l(B)7X - B)>
To perform column encoding, we use the following operator.

Definition 3.1 Given an OBDD V representing f(zo,...,x,—1) With variable ordering zo < ...
< z,-1andbound set B = {xo,...,2;_1}, we define

cut vector(V, B) = (eval(v,2' = 1),..., eval(v,0)).

Example 3.2 The oBDD representation of the multiple-output function in Example 3.1 isshownin
Fig. 4. With the bound set B = {x0, z1, x2}, we have the following cut_vectors:

cut_vector(fo, B) = (a,a,a,a,a,0,0,0),
cut vector(f1, B) = (b,b,b,b,b, b, c,c), and
cut_vector(fy, B) = (d,d,d,d,d,0,d,0).

Note that each node corresponds to a column in the decomposition chart. For example, node a
corresponds to column [1010]" while node b corresponds to column [1100]". 0

Figure 4 goes here.

10

In the following procedure for cut_vector(v, B), we assume that the bound variables B are
on top of the oBDD. In addition, if B = {xoq,...,z;_1}, then index(zo) < ... < index(z;_1),
head(B) = xo, and rest(B) = {x1,...,x;-1}.

cut_vector(v, B)

{
if (B == ¢) return((v));
if (index(v) == index(head(B)))
return(concatenate(cut wector(child)(v), rest(B)), cut vector(child,(v),rest(B)));
else [*index(v) > index(head(B)) */
return(concatenate(cut wector(v,rest(B)), cut wector(v, rest(B)));

Definition 3.2 Operator column_encode is defined as follows:

column_encode([voi_1,...,v00], - [Vm_12_1,- -3 Vm-10]) = [U2i_1, ..., Uo]

where ug = O and u, = q if [vo,, . .., vm_1,] iSthe ¢* distinct m-tuple of [vog, ..., Vm_10, - -,

[UO,Zi—lv Um—l,zi—l] .

Example 3.3 column_encode((1,1,1,1,1,0,0,0),(1,1,1,1,1,1,0,0),(2,2,2,2,2,1,0,0)) =
(2,2,2,2,2,1,0,0).

Definition 3.3 Operator select is defined as

select(J, (vo2i—1y > 000), -+ (Vm—12i-15 -+ s Vm=10)) = (V0ks - - - sm—1,k)
where (vo, . . ., V1) isthe ;7 distinct mrtupleof (vo, . . ., Vm—1.0)s -« + (V0,215 -+« s Vpm_1.2i_1)-
If j isgreater than the number of distinct m-tuples, then (vo, . . . , v—1.k) iSthelast distinct m-tuple.

Example3.4 Let Vo = (2,21.1,1,0,0,0) and V/* = (2,2,2,2 2 1,1,0), then we have the
following:

column_encode(V/0, V1) = (3,3,2,2,2,1,1,0)

select(0, Vo, V1) = (0,0),

select(1, Vo V1) = (0, 1),

select(2, Vo, V1) = (1,2), and

select(3, Vo, V1) = (2,2). O

11

Given amultiple output function (fo, . . ., f,—1) represented by avector of oBbDs and a bound
set {xo,...,x,_1}, &ter the computation of cut_vectors and column encoding, the ¢- and f- func-
tions are constructed as follows: For any input pattern b = by, . . ., b;_1, if theevaluation of b on f;,
0 < k < m,endsat nodev withencoding e, . . ., €;_1, thenwelet go(b), . . ., g;—1(b) producefunc-
tion values ey, ..., e;—1 and f,(go(b),...,g;-1(b), zi, ..., x,—1) result in node v. Consequently,
Ji(boy .. bica, @iy ooy xn_1) = fi(go(bo, ..., bic1), ...,
gi—1(bo, ..., bi—1), 24, ..., x,—1) fOr every input patternby, ..., b,_;and 0 < k& < m. Thefollowing
procedure gives the details of our algorithm.

Algorithm decomp_mo_ce:
Given avector of OBDDS (vo, . .., V.,—1) representing (fo(zo, - - - » @n-1)y -« » frm—1(20, . - -, Tn1))
with variable ordering zo, . . ., z,_1 and abound set B = {xq,...,z;_1}.

1. Compute V* = cut vector(vy, B) = (Upgi_1,...,uk0), 0 <k < m.

2. Compute V; ; = column_encode(V°, ..., V™~1). Encode each element v,, (0 < p < 2') of
VZ'J‘ by] bitSdpp e dp,j—l such that vy, = 2j_ldp7o + ...+ 2°dp7j_1.

3. Construct each g-function g, (o, ...,2,-1),0< ¢ < j,8as
gq(l'o, RN wi—l) = [dZi—l,q R do7q] (truth table of gq)
Wheregq(bo, RN bi—l) = dp7q if Zi_lbo + ...+ 2062»_1 = p.

4. Compute select(r, V0 V"™ 1) = (ugs,. o Upi15), 0< 7 < 2,0< 5, < 2, s, is
any [such that v; = r.

5. Construct each f-function f/(go, .., gj-1, 2., Tn-1), 0 < k < m, a&s

f]/g(bo, ceey b]‘_l, Tigeuny l’n_l) = [u;wy_l e u;wo],

Wheref]/g(bo, RN b]‘_l, Ligenns l’n_l) = Uy, & if 2j_lbo + ...+ 20[)]‘_1 =r.

Example 3.5 The application of decomp_mo_ce on the multiple-output function in Example 3.1
is summarized as follows:

1. cutwvector(fo, B) =(a,a,a,aa,0,0,0) = V3?71,
cut_vector(f1,B) = (b,b,b,b,b,b,c,c) = Vél,
cut_vector(f2, B) =(d,d,d,d,d,0,d,0) = V?il (seeFig. 4),

2. column_encode(Vgl, Vél, Vél) =(3,3,3,3,3,2,1,0) = (11,11,11, 11, 11, 10, 01, 00,

12

3. go(wo, 71, 22) = [11111100],
g1(zo, ¥1, ¥2) = [11111010],

4. select(0, Vgl, Vél, V?il) = (0,c,0)
(1, V??,lv V%,lv V%,l) (0,c,d)
()=
()=

select

select

27 Vg,lv V%,lv V\’il 07 b7 0
select (3, Vgl, Vél, Vél = (a,b,d

)3

)

5. f&(go; g1, v3, v4) = [a000],
f1(g0, g1, x3, 24) = [bbed], and

f3(90, 91, w3, 74) = [dOdO].

Theresulting g- and f-functionsareshowninFig. 5(a) and (b), respectively. Tosee fi.(xo, x1, €2, 3, T4) =
fi(go(wo, 1, 22), g1(x0, T1, ¥2), 23, ¥4), CONsider the evaluation of xp = 0, z; = 1, and z2 = 0 on
f1, 90, 91, and f] as an example:

f1(0,1,0, 23, 24) = b = a3,
90(0,1,0) = 1,

¢91(0,1,0) = 0, and
f1(1,0,23,24) = b = x3.

Figure 5 goeshere.

The following theorem proves the correctness of decomp_mo_ce.

Theorem 3.1 The decomp_mo_ce agorithm performs the following transformation

fk(l'o, ceey l’n_l) = f]/g(go(l'o, ceey l’i_l), Ce ,g]‘_l(l'o, Ce 7$i—1)7 Ligeooy l’n_l),

where0 <k <m,0< 1 < n.

In practice, it is unlikely that a multiple-output function is decomposable. For example, if
we directly apply column encoding to every output, then the resulting column_vector for the
stacked decomposition chart will often be V; ;. Output partitioning is thus useful to improve
decomposability. We partition the outputs into groups such that the column_vector of the stacked

13

decomposition chart for each group corresponds to a decomposable function (i.e., the number of
required g-functionsrequired is less than size of the bound set) and the total number of g-functions
required to implement all groups is minimum. This problem is formulated as follows.

Definition 3.4 Given aset of column_vectors V{f " "swith respect to » Boolean functions /' = (fo,
..., Jm—1) @ndbound set B, partitionthissetinto /%, . . ., P,—1 such that theresulting column_vector
Vi, of each P, satisfiesi > j, and Y/ j, is minimum.

i7]q

We use the following greedy algorithm to solve this problem.

Algorithm output_grouping:
Assume every column.vector V/: satisfiesi > jj.

1. Order V% innonincreasing order of | S/ |. Initiaize V?; to the null set.

2. Starting from the first element of the above list, merge as many column_vectors V/* 's as

©Jk

ossibleinto 1?. aslong as column_encode(V?. V/%) =V, . satisfiesi > j,. Assoon as
p 2,70 2J

,J0° 1.k

1 < j,, initiate anew group of outputs. Repeat until all column_vectors are processed.

Theabovea gorithmisbased onthefollowing observation: A V{ % withlarger S{ % hasbetter chance

to containanother V{ %, Withsmaller S{ 1,- Forexample, if wehavecolumn_encode((2, 2,2, 1, 1,0, 0, 0),
(3,3,3,2,2,1,1,0)) = (3,3,3,2,2,1,1,0), then all the g-functions required for the first Vs, are
contained in those for the second V3,. Thus, by putting these two column_vectors into the same
set, we only need two g-functions for both functions.

Example 3.6 Given aset of column_vectors as following:
Vio=(2222110,0),

3,3,2,2,2,2,1,0),

2,2,1,1,1,1,0,0),

Vi =)
Vi = ()
Vi = (2,2,2,1,1,0,0,0),
{)
{)

-
2 —
Vi =(2,2,2,2,2,2,1,0),
Vis = (2,2,2,1,1,1,0,0).

If we apply column_encode on every outputs without using output_grouping algorithm, then
column_encode(V/, ... V/5) =(6,6,5,4,3,2,1,0) whichis V3.
If we apply output_grouping algorithm, then three groups will be produced.
group 1: column_encode(V/1, V/4) = (3,3,2,2,2,2,1,0) = V3.

14

group 2: column_encode(V7/, V/2) = (3,3,2,2,1,1,0,0) = V3.
group 3: column_encode(V/3, V) = (3,3,3,2,2,1,0,0) = V3. O

3.2 Shared Subfunction Encoding

After computing the column vectors of a multiple output function with respect to abound set B, it
is possible to develop a decomposition scheme that minimizes the number of required ¢g-functions
by sharing these functions among the original functions as described next.

Example3.7 Let V{3 = (2,3,2,0,1,2,1,0) and V{3 = (1,0,1,3,2,1,1,0), then
col umn_encode(V{ 5 V{%) =(2,5,2,4,3,2,1,0) = V33. If weencode 0 as 00, 1 as 01, 2 as 10,
and 3 as 11 for both V13 and V43, then we have

23201210 10132110
(11100100} [00011000
(01001010 [10110110

which requires four ¢g-functions: [11100100], [01001010], [00011000], and [10110000].
If we encode 0 as 00, 1 as 11, 2 as 01, and 3 as 10 for V{3, and 0 as 00, 1 as 01, 2 as 11, and 3
as 10 for V43, then we have

23201210 10132110
(01001010] [00011000
[10101110] [10101110

which requires only three g-functions: [01001010], [00011000], and [10101110). 0

To achieve the above type of subfunction sharing, we present a shared subfunction encoding
scheme as follows: For each output function, we compute all g-functions which can be produced
from every possible encoding. Wethenidentify the minimum number of ¢g-functionswhich produce
valid encodings for every function with respect to the given bound set.

The optimum g-function sharing can only be found if we alow the assignment of multiple
function values (codes) to the same pattern (multi-coding). Thisis, however, very expensive. We
trade some optimality for computational efficiency by requiring that a unique function value (code)
be assigned to each pattern (uni-coding). In this case, for S; ; with set size k, there will be C?' k!
different encodings. In the remaining of this paper, we only consider uni-coding.

Although there are many different encodings, the number of different g-functionswhich can be
generated from these encodings is small as described next.

15

Definition 3.5 Givencut_vector V; jandcut _set S; ; for somedecomposition, let S; ; bepartitioned
into Sp and S; such that 0 € Sp, | So |< 27t and | S; |< 2771, A permissible g-function of V; ;
with respect to S and 51, denoted by pgy, ; s,,s,, iS defined as:

Pav; ;80,81 — [bZi—l ce bo],

whereb, = 0if v, € Spand b, = 1 otherwise, 0 < p < 2.

The pg-set of V; ; isthe set of al pg’sof V; ; obtained by enumerating all two-block partitions
of S;; into Sp and S; satisfying the conditions stated above. The restrictionson | S | and | Sy |
are needed to ensure that a valid ;-bit encoding of the nodes in the cut_set of f with respect to B
can be found.

Example3.8 Let V3, =(2,2,1,1,1,1,0,0), then

PYvsaforq12y = [11111100],
P9vs,f01r{2y = [11000000] and
PGvs.(02y,(1y = [00111100].

The pg-set of V3, is {[11111100], [11000000], [00111100]}. Note that we need not consider
PYvs..(1},{0,2) because itisequa to pagy,, (02;,(1y and that iswhy weforce 0 € So at S; ; partitionin
definition 3.5. O

The cardinality of the pg-set of V; ; is given by the following equation:
271
| pg_set | = 05:21]_1_1 + ...+ ng__%_l = Z Clk__ll

I=k—2i—1
where2-1 <| S;; |= k < 2/. Because neither | Sp | nor | S | can exceed 271, the minimum and
maximum sizes of Sp arek — 2~ and 21, respectively. £ — 1and/ — 1 are used because 0 € S.
Example 3.9 For | S;3 |= k£ = 3,4,6, and 8, the cardinalities of their pg-sets are computed as
follows:

k=3 C2+(02=1+4+2=3,

k=4 (C3=3
k=6 C3+C5+C5=51410+10= 25 and
k=8 (I=35

16

Note that there are C? k! = 40, 320 different encodings for | S; 3 |= 8 while only 35 different
pg-functions can be generated.

Because each pg function defines a partia (1-bit) encoding, a complete encoding of S ; is
determined by selecting exactly 5 pg’s. However, not every subset of a pg-set, formsavalid partia
encoding. This leads to the following definition of compatibility of pg’s.

Definition 3.6 A k-bit partition P* of S; ; is defined as a partitioning of S, ; into P* = {Sy, ..
Sor_1}, k < jsuchthat Vs, € P* | S, |< 27F,

)

Definition 3.7 A partial k-bit encoding of P* isdefined asfollows:
if s € Sp, then s is encoded asby...by_17) ... Tj_1

where 28=1bg + ... + 2%, _; = pand x4, ..., z;_; are unassigned bits.

Thus, a k-bit partition defines a k-bit encoding of the S; ;. Note that if thereisa S, such that
| S, |> 2=%, then we cannot find aj — & bit encoding of 5, and, therefore, cannot generate avalid
J bitencoding of S, ;.

Definition 3.8 Given k- and [-bit partitions P* = {So, ..., Sox_1} ad Q' ={To, ..., Tu_1} Of S; ;
and assuming k£ + [< j, we define amerge operator M as follows:

M(PF, Q") = {Ro, ..., Rarri_a},

where Ry, , = S, N T,, 5, € P*, T, € Q". If M(S*,T") isa(k + {)-bit-partitionof S, ;, then P*
and Q' are compatible. That is, if every k., € M(P*, Q') satisfies | R, |< 2¥, then P* and Q"
are compatible.

In other words, if P* and ' are compatible, then they can be used together to produce a
(k 4 1)-bit encoding of S; ;.

Example 3.10 Let Ss4 =1{0,1,2, 3,4,5,6,7,8,9}. some of 1-bit partitions of Ss 4 are:

Pt = {{0,1,2,34},{56,7,8,9}},
Q' = {{0,1,256,7},{3,4,8,9}},
Ut = {{0,1,2,34,5},{6,7,8,9}},
vl = {{0,2,4,6,8},{1,357,9}}.

We have:

17

M(PLQY = {{0,1,2},{3,4},{5,6,7},{8.9}} = I’2,
M(@QLUY) = {{0,1,2,5},{6,7},{3 4}, {8,9}},
M(PLUY = {{0,1,2,3,4},{},{5}.{6,7.8,9}},
M2 VY = {{0,2},{1},{4},{3},{6}, {5, 7}, {8}.{9}},
M(P2 U = {{0,1,2},{},{3,4},{},{5},{6,7}.{}. {8, 9}}.

Pland @, Q' and U?, and P? and V! are compatible, but P! and U, and P2 and U* are not
compatible. Note that this example shows that compatibility relation is not transitive.
P defines the following encoding:

0,1, 2,3 and 4 are encoded by 0¢1¢293,
5,6,7,8and 9 are encoded by 1¢;¢293.

P2 defines the following encoding:

0, 1 and 2 are encoded by 00¢.¢3,
3 and 4 are encoded by 01¢.¢3,
5, 6 and 7 are encoded by 104,43,
8 and 9 are encoded by 11¢,¢s.

a

After generating the pg-sets for individual Boolean functions, we select a minimum number of
pg-functionswhich producevalid, complete encoding of each function. Thisproblemisformulated
asfollows:

Definition 3.9 Minimum subfunction covering problem: Givenacollection PGS of pg-sets {pgsi,
Pgs2, ..., pgs,} and G = U pgs;, find a subset ¢ C G with minimum cost such that for each
pg-Set pgs. with bit_size j, thereis a subset of ' with size 5 which induces a j-bit-partition of
pPgs;.

To see the complexity of the above problem, consider arestricted version of it as follows:

Definition 3.10 Reduced minimum subfunction covering problem: Given a collection PGS of
pg-sets, find aminimum cardinality subset ' C G such that ¢ contains at |east one element from
each pg-setin PGS,

Thisisthe hitting set problem which is NP-complete[11].
We use the following greedy algorithm for solving the minimum subfunction covering problem.

18

Algorithm decomp_mo_sse:
Given avector of OBDDS (vo, . . ., V,,—1) representing (fo(zo, - - -, Tn-1) -« -y fm—1(Z0, -« ., Tn-1))
with variable ordering o, . .., z,_1 and abound set B = {zq, ..., 2;_1}.

1. Compute V¥ = cut_vector(vy, B) = (ugzi_1,...,ugo), 0 < k < m.
2. ComputeV; ; = column_encode(V°, ... V™71).

3. Compute the pg-set corresponding to each V; ;. Annotate each pg-set with a value count
initialized to its bit_size (thisis for indicating when a function has a complete encoding) and
a O-bit-partition bp initialized to its column_set (thisisfor checking compatibility).

4. Find apg ¢ that occurs in the pg-sets most frequently.
5. For each pg-set that contains g, decrease its count by 1. If count = 0, remove this set.

6. For each pg-set that contains ¢, perform bp = M (bp, g) and remove any pg that is not
compatible with M (bp, g).

7. Repeat steps 1-3 until every pg-set is removed. Then, return the set of bp's, which defines
the encoding for each pg-set.

4 Application to LUT-Based FPGA Synthesis

FPGAS are ASICs that can be configured by the user. They combine the logic integration benefits
of custom vLsI with the design, production, and time-to-market advantages of standard logic ICs.
One important class of FPGAS is Look-Up-Table (LUT) based FPGAS. In a LUT-based FPGA device
(e.g., XC3000 devicefrom Xilinx Inc[26]), the basic programmablelogic block isak-input lookup
table (K-LuT) which can implement any Boolean function of up to K variables.

The technology mapping problem for LUT-based FPGA designs is to transform a Boolean
network into a functionally equivalent network of K-LUTS. There are several different approaches
for solving the FPGA mapping problem [10, 17, 18]. All of these works are based on the algebraic
decomposition method.

4.1 Mapping for XC3000 Device

Based onthetheory presented in the previous sections, we have devel oped Bool ean methodsfor LUT-
based FPGA synthesis. We describe an oBDD-based decomposition program, called FGSyn, that

19

integrates the technology-independent and technol ogy-mapping processes for LUT-based FPGAS.
FGSynisbased on the multiple-output function decomposition theory and is carried out recursively
asfollows:

Algorithm fg_synthesis:

1. For each bound set B of size & (for k-input LUT’S);

2 Compute the column_vector V¢ of each output f;;

3 Perform output grouping using V/:’s;

4, Perform subfunction extraction on each group of outputs;

5 Compute gain for performing the decomposition;

6. Choose bound set with the maximum gain and perform decomposition to
generate [for next iteration.

In step 1, we choose the bound set size as the input size k& of a LUT so that each g-function can be
directly mapped to asingle LUT. Steps 2 and 3 are carried out as described in Sec. 3.1 while step 4
is carried out by column encoding or shared subfunction encoding as described in Sec. 3.2. In step
6, the bound set with maximum gain is chosen where the gain is defined as:

> rer(supp(f;) N B)— the number of g-functions required.

Animportant issue is how to come up with theinput ' = (fo, ..., f—1) tothe fg_synthesis
algorithm. One option isto use the whole Boolean network as F'. Thisis not an attractive solution
as size of the oBDD representing ' may become too large. In addition, the output partitioning
performed in step 3 may lead to a large number of output groups, and thus, a lot of logic may
be duplicated among various output groups. A better option is to run the rugged script [22]
on the network, and then do some node clustering where each cluster is a complex multi-input,
multi-output Boolean function. Each such node then constitutes an input to the fg_synthesis
algorithm.

Node clustering is currently performed by the following greedy algorithm (this problem is
obviously NP-hard):

Algorithm node_clustering:

1. Start with aseed node N, and insert it into the first cluster C°.

2. Find anew node N; that maximizesthe | supp(N;) Nsupp(N,) | and minimizes| supp(N;)U
supp(Ns) |-

20

3. If | supp(N;) U supp(C°) |< e and 1+ | C° |< 3 for some specified parameters o, 3, then
merge N; with C'%; otherwise pick a new seed node and initialize C*;

4. Repeat the above until all nodes are assigned to some node cluster.

Example 4.1 Given aBoolean network

Ji=ab+x;
J2="b+ gx;
r=c+ ad,
f3 = uv 4+ wy;
Ja=uy +v;
y = cd + ae;

The node_clustering algorithm leads to the following clustersfor o« = 5, 5 = 5.
C° = {f1, f2},
Cl={z,y}and
C® = {fa, fa}. O

4.2 Mapping for XC4000 Device

The latest generation of the Xilinx FPGA devices, i.e., XC4000, contains a number of architectural
and technol ogical improvements that allows densities up to 20K equivalent gates and support clock
ratesup to 60MHz. Among theimportant architectural improvementsthat contributeto the X C4000
family’sincreased | ogic density and performanceisamore powerful and flexible configurablelogic
block (cLB). A simplified block diagram of the combinational logic part of this CLB is shown in
Figure 6. One key issue in synthesis for XC4000 device is to obtain maximal utilization of the
cLBs provided on the device.

Figure 6 goes here.

Nine different patterns of XC4000 device are recognized for mapping to diffenert types of
functions (Figure 7). Among these patterns, the first two patterns are the most interesting and
cost effective. Note that the part enclosed by dotted box in the second pattern of Figure ?? can

21

be interpreted as an instance of non-digunctive decomposition. To have such an interpretation,
consider the following decompositions:

Figure 7 goes here.

f(Xf,Xg,l'h,...) = fl(F(Xf),G(Xg),l'h,...)
fl(l'f, LgyLhyo-)
fz(H(l’f,J}g,J}h),J}f, ..)

In the first decomposition (f to f1), variables X; and X, are bound variables with respect to the
functions F' and (7. In the second line of the above equation, we replace F'(X;) and G/(X,) by
variables =, and x,. Then, in the second decomposition (f; to f,), variable = is both a bound
variable and free variable.

Techniquesintroduced in the previous sections can be used to map Boolean functionsto various
patterns of Figure 7. This mapping can however be performed more efficiently (viz. for patterns
(b) and (d)) as described next.

421 Two-Layer Decomposition

Definition 4.1 Given afunction f(X,Y, 7) and a decomposition f'(¢(X), Y, Z), if f"issmply
decomposable under bound set {¢(X),Y'} and free set {¢(X),Z} (eg., f' = f"(h(g(X),Y),
9(X), 7)), then f istype | two-layer decomposable.

The graphical representation of type | two-layer decomposition is shown in Fig. 8 and is aso
the pattern (d) in Fig. 7.

Figure 8 goes here.

Theorem 4.1 Given a function f represented by oBDD v¢ and two bound sets X and Y/, the
necessary and sufficient conditions for f to be type | two-layer decomposable with respect to X
andY are:

22

1. | cut_set(vi, X) |< 2 (let cut _set(vs, X)) = {u,v}), and

2. | cut_set(u,Y) |< 2and | cut_set(v,Y) |< 2.

Definition 4.2 Given afunction f(X, Y, Z) and a decomposition

Fgo(X), .., gi—1(X), ho(Y), ... hj—a(Y), Z), if f' is simply decomposable under bound set
{gp(X),hi(Y)}, 0 < k <1,0 <[< 7, and free set consisting of Z and al ¢ and ~ functions
except for ¢, and h;, then f istype Il two-layer decomposable.

The graphical representation of type Il two-layer decomposition is shown in Fig. 9 and is also
the pattern (c) in Fig. 7.

Figure 9 goes here.

Oneway to seeif afunction v¢istypell two-layer decomposableunder theboundset X UY isthe
following: If [log, | cut_set(ve, X) |] +[l0g, | cut_set(ve,Y) || > [log, | cut_set(ve, XUY) |]
andthereexistsan encoding of cut_set(ve, X UY') suchthat each g-function g satisfiesthefollowing
conditions:

1. g isafunction of variables X, or
2. gisafunction of variablesY’, or
3. g issimply decomposable under bound sets X and Y.

Therefore, to detect type 11 two-layer decomposition under bound sets X and Y, one must first

compute:
Cx = cutset(ve, X) ={uo,...,ux_1},
Vi = cutwector(u;,Y) = (vio,- .. ,Vi72|Y|_1>, u; € Cy,
Cy = column_encode(Vy, ..., Vi_1),and
Cxy = cutset(ve,XUY)={wo,...,wi_1}.

If [log, | Cx || + bit_size(Cy) > [log, | Cxy |], then type Il two-layer decomposition is
possible. We then compute aset of compatible bit-partitionsof C'xy- such that for each bit-partition
St = {5y, 51} and associated permissable g-function ¢ satisfies one of the following conditions:
Let Wi = (bio, ..., b; 5vi_1) Where

23

bm:O ifVi’jESoand
bi,j =1 IfVI’J € Sl,

1. W;=(0,...,00orW; =(1,...,1),0 < i < k. Then, g isafunction of variables X (Fig. 10
().

2. Wy =W,;,0<1,5 < k. Then, g isafunction of variables Y (Fig. 10 (b)).

3. Thereexistonly twodistinct W's, say W; and W;, and bit_size(coding(W;, W;)) = 1. Then,
g isafunction of variables X U Y and is simple decomposable under bound sets X and Y
(Fig. 10 (c)). The former condition ensures that it is ssmple decomposable under X and the
latter condition ensures that it is simple decomposable under Y.

Figure 10 goes here.

A straightforward way to detect type Il two-layer decomposability under two bound sets X and
Y isthe following: We start with the decomposition of f givenby f = f'(go(X), ..., gi—1(X),
ho(Y), ..o hia(Y),.o) = f'(yo,- -+ Yiz1, 205 - - -5 Zj—1,...). We then test if [satisfies simple
decompositions under bound set {y,z;, Vi}, for 0 < k < 7and 0 < [< j. The result of this
test depends on the binary encodings for v, and z;. Using a wrong encoding causes the test to fail
when indeed typel 1 two-layer decomposition was possible. Trying all possible encodingsisclearly
nonviable. On the other hand, using an arbitrary encoding may cause too many false failures.

Given a function f and abound set | B |< 4, we can use | decomp_g(f, B) | LUTS to map
the g-functions. However, this may not be the best results we can achieve. For example, let
| decomp_g(f, B) |= 2, under one encoding we may have two g-functions go and ¢, such that the
true support of each function is 4 and 2. In this case, it is possible that we can map ¢ and two
other free variables to a single LUT. Furthermore, the new LUT may be combined with the one of
go to match the first two patterns. The effect of this process has two different interpretations. First,
itisviewed as the size of bound set is 6 and the number of g-functions for this bound set is2 or 1.
Second, it isviewed as a case of nondigjunctive decomposition: supporting variablesin ¢ are both
inbound set B and in free set.

24

5 Experimental Results

The oBDD-based decomposition procedure described in Section 2 has been implemented and
compared with the Roth_Karp decomposition algorithm implemented in Sis [24]. In particular,
we used “xl|_k_decomp -n 4 -e -d -f 100" which for every node in the Boolean network finds the
best bound set of size < 4 that reduces the node’s variable support after decomposition, and then
decomposes the node and modifies the network to reflect the change.

Our oBDD-based decomposition approach obtains significant speed-up over Roth Karp ap-
proach by an average factor of 28.5.

The LuT-based FPGA synthesis algorithm described in Sections 3 and 4, called FGSyn, has been
implemented in C and incorporated into the sIs environment. We used FGSyn to synthesize and
map a number of benchmark circuits to the XC3000 device. In Table 1, we present the results
obtained by using different options of FGSyn [15]: column encoding (-g), shared subfunction
encoding (-s), non-disjunctive decompositions (-n) and node clustering (-c). The best results are
obtained with the -csn option.

In Table 2, we compare FGSyn with Chortle-crf [10], ASYL [1] and mis-pga (new) [18]. We
do not compare our results with those of FlowMap [7] as that program focuses on generating a
set of mapping solutions with area and depth trade-off while our program (as well as Chortle-crf,
ASYL and mis-pga (new)) targets minimum area with no depth constraints. FGSyn and mis-pga
(new) were run under SPARC station 11 (28.5 MIPS) with 64 MB of memory.

As seen in Table 2, FGSyn does 20.6% better than Chortle-crf, 16.8% better than ASYL and
13.0% better than mis-pga (new). The memory requirement of FGSyn is only 30% more than that
of the mis-pga (new). whileits run timeis about 2 times less than that of the mis-pga (new).

In Table 3, we present the results obtained by using direct decomposition, type | two-layer
decomposition (-T 1) and type Il two-layer decomposition (-T 2). Ingeneral, type | decomposition
produces somewhat better results.

In Table 4, we compare FGSyn results on XC4000 with ASYL [1] and PPR [26]. For these
benchmarks, we achieved 13.4% cLB reduction over PPR and 12.4% CLB reduction over ASYL.

25

in | out bx bx-cg bx-csn

CLB | Time | CLB | %Red. | Time | CLB | % Red. | Time
5xpl 7 10 16 3.8 10 375 38 9 43.8 13.0
9symml 9 1 6 6.4 6 0.0 6.3 7 -16.7 25.0
alu2 10 6 65 90.0 59 9.2 96.2 55 154 123.3
aud 14 8 59 29.2 59 0.0 30.1 56 51 108.1
apex2 39 3 60 42.3 60 0.0 41.8 60 0.0 167.9
apex6 135 99 | 189 | 170.7 | 182 37 2124 | 181 4.2 509.7
apex7’ 49 37 55 21.1 47 145 279 43 21.8 65.5
b9 41 | 21 28 19 28 0.0 19 28 0.0 20
bw 5 28 27 22 27 0.0 21 27 0.0 21
C499 41 | 32 54 39 54 0.0 3.7 54 0.0 38
C880 60 | 26 93 47.8 91 2.2 53.1 87 6.5 149.6
C1908 33 | 25 75 17.9 74 13 17.9 73 2.7 31.2
C2670 | 233 | 140 | 136 | 1320 | 128 59 1495 | 122 10.3 394.0
Ch315 | 178 | 123 | 364 | 3411 | 335 8.0 488.4 | 316 13.2 977.1
C7552 | 207 | 108 | 348 | 4505 | 346 0.6 5235 | 317 8.9 1263.1
clip 9 5 23 39.6 20 13.0 46.5 18 21.7 180.7
cml62a | 14 5 9 1.0 9 0.0 0.9 9 0.0 15
count 35 | 16 29 4.8 29 0.0 6.9 23 20.7 14.6
duke2 22 | 29 87 48.2 86 11 49.1 85 2.3 162.7
€64 65 | 65 44 2.7 44 0.0 2.6 44 0.0 2.6
f51m 8 8 12 4.8 9 25.0 5.7 8 333 26.7
misex1 8 7 9 1.6 10 -11.1 7.1 8 111 219
misex2 | 25 | 18 22 4.0 22 0.0 4.2 22 0.0 6.4
rd73 7 3 7 25 6 14.3 2.3 5 28.6 24
rds4 8 4 12 7.1 9 25.0 6.4 8 333 15.0
rot 135 | 107 | 150 187.7 161 -7.3 227.9 136 9.3 689.3
sao2 10 4 26 40.2 33 -26.9 62.2 25 4.0 263.5
vg2 25 8 27 19.0 23 14.8 191 17 37.0 83.4
z4ml 7 4 5 2.0 4 20.0 1.7 4 20.0 4.7
Total - — | 2037 | 1726.0 | 1971 2101.2 | 1847 5310.8
Average | — - 52 11.6

Table 1. Experimental results of FGSyn for XC3000 device

26

in | out | Chortle-crf | ASYL | mis-pga(new) | FGSyn (bx -csn)
CLB CLB | CLB Time | CLB Time
5xpl 7 10 20 13 17 16.6 9 13.0
9symml | 9 1 41 8 7 207.6 7 25.0
alu2 10 6 83 60 84 304.1 55 123.3
alu4 14 | 8 138 254 149 | 23818 56 108.1
apex2 39 3 93 69 54 491.1 60 167.9
apex6 135 | 99 161 156 147 144.3 181 509.7
apex7 49 | 37 42 14 43 16.0 43 65.5
b9 41 | 21 - 18 27 10.5 28 2.0
bw 5 28 - 27 27 33 27 21
C499 41 | 32 50 - 66 738.0 54 38
C880 60 | 26 69 - 78 648.8 87 149.6
C1908 33 | 25 - - 85 264.8 73 31.2
C2670 | 233 | 140 - - 111 796.9 122 394.0
C5315 | 178 | 123 - - 306 | 12857 | 316 977.1
C7552 | 207 | 108 - - 340 | 2288.0 | 317 | 1263.1
clip 9 5 - 33 23 86.6 18 180.7
cml62a | 14 5 - - 10 3.0 9 15
count 35 | 16 27 28 28 8.5 23 14.6
duke2 22 | 29 89 82 108 325.0 85 162.7
€64 65 | 65 54 54 55 12.7 14 2.6
f51m 8 8 - 14 11 145 8 26.7
misex1 8 7 14 13 9 17 8 219
misex2 | 25 | 18 - 24 23 32 22 6.4
rd7z3 7 3 - 8 7 19.6 5 24
rds4 8 4 53 14 12 1195 8 15.0
rot 135 | 107 131 - 139 175.6 136 689.3
sa02 10 | 4 - 30 28 58.8 25 263.5
vg2 25 8 18 20 20 5.7 17 834
zAml 7 4 3 4 6 6.0 4 4.7
Tota - - 2020 | 104379 | 1847 | 5310.8

Table 2: Comparison with other software programs (XC3000 device)

27

in | out bx4 bx4 -T 1 bx4 -T 2

CLB | Time | CLB | %Red. | Time | CLB | %Red. | Time
5xpl 7 10 15 15 15 0.0 15 15 0.0 15
9sym 9 1 6 2.3 6 0.0 2.8 6 0.0 2.2
9symml 9 1 6 2.3 6 0.0 2.7 6 0.0 2.3
au2 10 6 55 38.3 53 3.6 439 53 3.6 38.8
au4 14 8 52 7.2 51 1.9 6.5 51 1.9 6.6
apex2 39 3 55 13.8 55 0.0 13.6 53 3.6 13.1
apex6 135 | 99 | 136 | 1579 | 138 -7.0 150.2 | 128 0.8 153.2
apex7 49 | 37 39 35 37 51 3.0 39 0.0 35
b9 41 | 21 25 3.0 24 40 2.6 24 4.0 2.9
C880 60 | 26 75 13.7 78 -4.0 12.7 72 40 12.3
C1355 41 32 49 1.6 47 4.1 1.6 47 4.1 1.6
C1908 33| 25 68 10.6 67 15 10.2 67 15 10.0
c8 28 | 18 20 19 20 0.0 17 18 10.0 16
clip 9 5 26 10.0 24 7.7 10.9 25 3.8 9.7
comp 32 3 18 6.9 18 0.0 6.6 17 0.0 6.8
count 35 | 16 21 13 19 9.5 12 19 9.5 13
decod 5 16 9 0.2 9 0.0 0.2 9 0.0 0.2
duke2 22 | 29 84 825.6 77 8.3 806.7 76 9.5 825.9
€64 65 | 65 43 0.8 43 0.0 0.9 43 0.0 0.7
f51m 8 8 11 1.7 10 9.1 1.7 10 9.1 1.6
misex1 8 7 8 0.4 8 0.0 0.5 9 -125 0.5
misex2 25 | 18 20 14 20 0.0 15 19 5.0 13
mux 21 1 6 0.7 5 16.7 0.7 5 16.7 0.7
rd73 7 3 6 12 6 0.0 1.2 7 -16.7 11
rdd4 8 4 10 29 10 0.0 3.0 10 0.0 24
rot 135 | 107 | 127 205.0 119 6.3 189.5 120 55 194.9
san2 10 4 31 15.3 29 6.5 21.4 31 0.0 16.3
vda 17 39 121 | 2785.0 | 116 4.1 2481.7 | 111 8.3 2267.7
vg2 25 8 16 29 15 6.3 3.3 16 0.0 2.7
z4ml 7 4 6 0.7 6 0.0 0.7 7 0.0 0.6
Average | — - 33 24

Table 3: Experimental results of FGSyn options for XC4000 device

28

in | out | ASYL | PPR | FGSyn % Red.
CLB CLB CLB ASYL | PPR
5xpl 7 10 13 - 15 -15.4 -
9sym 9 1 9 - 6 333 -
9symml 9 1 - 36 6 - 833
au2 10 6 51 71 52 -20 | 26.8
aud 14 | 8 211 - 51 75.8 -
apex6 135 | 99 140 - 128 8.6 -
apex7 49 | 37 38 38 37 2.6 2.6
b9 41 | 21 - 20 23 - -15.0
C1355 41 | 32 - 91 47 - 48.4
c8 28 | 18 - 17 18 - -5.9
clip 9 5 29 - 23 20.7 -
comp 32 3 - 17 17 - 0.0
count 35 | 16 22 21 19 136 | 95
decod 5 16 - 10 9 - 10.0
duke2 22 | 29 73 - 70 41 -
e64 65 | 65 52 - 43 17.3 -
f51m 8 8 12 - 10 16.7 -
misex1 8 7 9 - 9 0.0 -
misex2 25 | 18 21 - 19 95 -
mux 21 1 - 5 5 - 0.0
rd73 7 3 10 - 7 30.0 -
rds4 8 4 14 - 10 28.6 -
sao2 10 | 4 23 - 29 -26.1 -
vda 17 | 39 - 97 109 - -12.4
vg2 25 8 15 - 16 -6.7 -
Average 124 | 134

Table 4: Experimental results for X C4000 device

29

6 Conclusion

We described techniques for oBDD-based decomposition of Boolean function and presented two
Boolean methods for extracting common subfunctionsfrom multiple-output functions. Application
of these methods to the synthesis of LUT-based FPGAS was discussed.

It isuseful to extend the shared subfunction encoding to include mutli-coding and input variable
negation in order to improve the effectiveness of the Boolean extraction methods. Indeed, a
hybrid approach where algebraic operations are interleaved with the Boolean extraction operations
described here is a promising approach to logic synthesis.

References

[1] P. Abouzeid, B. Babba, M. C. de Paulet and G. Saucier, “Input-Driven Partitioning Methods
and Application to Synthesison Table-L ookup-Based FPGA's,” |EEE Trans. Computer Aided
Design, vol. 12, no. 7, pp. 913-925, July 1993.

[2] R.L.Ashenhurst, “ The Decomposition of Switching Functions,” Proc. of theInt’| Symposium
on Theory of Switching Functions, pp. 74-116, 1959.

[3] R. Brayton and C. McMullen, “The Decomposition and Factorization of Boolean Expres-
sions,” Proc. Int’l Sym. on Circuit and System, pp. 49-54, May 1982.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS: Multiple-Level
Interactive Logic Optimization System,” |EEE Trans. Computer Aided Design, vol. CAD-6,
no. 6, pp. 1062-1081, November 1987.

[5] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE Trans. on
Computers, C-35(8): 677-691, August 1986.

[6] S-C.Changand M. Marek-Sadowska, “ Technology Mapping via Transformationsof Function
Graph,” Proc. Int’| Conf. on Computer Design, pp. 159-162, October 1992.

[7] J. Cong and Y. Ding, “FlowMap: An Optima Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Design,” |EEE Trans. Computer Aided Design,
vol. 13, no. 1, pp. 1-12, January 1994.

[8] H. A. Curtis, “A New Approach to the Design of Switching Circuits,” Princeton, N.J., Van
Nostrand, 1962.

[9] Y-T. Lai, M. Pedram and S. Sastry, “BDD Based Decomposition of Logic Functions with
Application to FPGA Synthesis,” Proc. of 30th Design Automation Conf., pp. 642-647, June
1993.

[10] R.J. Francis, J. Rose and Z. Vranesic, “Chortle-crf: Fast Technology Mapping for Lookup
Table-Based FPGAS,”, Proc. of 28th Design Automation Conf., pp. 227-233, June 1991.

30

[11] M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of
NP-Completeness,” Freeman, San Francisco, 1979.

[12] S. Heand M. Torkelson, “Disjoint Decomposition with Partial Vertex Chart,” Int’| Workshop
on Logic Synthesis, pp. p2a 1-5, May 1993.

[13] W-J. Hsu and W-Z. Shen, “Coalgebraic Division for Multilevel Logic Synthesis,” Proc. of
29th Design Automation Conf., pp. 438-442, June 1992.

[14] T-T. Hwang, R. M. Owens, and M. J. Irwin, “Efficiently Computing Communication Com-
plexity for Multilevel Logic Synthesis,” IEEE Trans. on Computer Aided Design, Vol. 11, No.
5, pp. 545-554, May 1992.

[15] Y-T. Lai, K-R. R. Pan and M. Pedram, “FPGA synthesis using Function Decomposition,”
Proc. Int’| Conf. on Computer Design, pp. 30-35, October 1994.

[16] R. M. Karp, “Functional Decomposition and Switching Circuit Design,” J. Soc. Indust. Appl.
Math., Vol. 11, No. 2, pp. 291-335, June, 1963.

[17] K.Karplus, “Xmap: a Technology Mapper for Table-lookup Field-Programmable Gate Ar-
rays,” Proc. of 28th Design Automation Conf., pp. 240-243, June 1991.

[18] R. Murgai, N. Shenoy, R.K. Brayton and A. Sangiovanni-Vincentelli, “Improved Logic Syn-
thesis Algorithms for Table Look Up Architectures,” Proc. Int'l Conf. on Computer Aided
Design, November 1991.

[19] J.P. Roth and R.M. Karp, “Minimization Over Boolean Graphs,” IBM Journal, pp. 227-238,
April 1962.

[20] R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,” Int’| Work-
shop on Logic Synthesis, pp. 3a1-12, May 1993.

[21] T. Sasao, “FPGA Design by Generalized Functional Decomposition,” in Logic Synthesis and
Optimization, Sasao ed., Kluwer Academic Publisher, pp. 233-258, 1993.

[22] H. Savoj and H. Y. Wang, “Improved Scriptsin MI1S-11 for Logic Minimization of Combina-
tional Circuits,” Proc. of Int’'| Workshop on Logic Synthesis, May 1991.

[23] V.Y.Shenand A.C. McKélar, “An Algorithmfor the Digjunctive Decomposition of Switching
Functions,” |EEE Transaction on Computers, C-19(3): 239-248, March 1970.

[24] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “ Sequential Circuit Design Using Synthesis and Optimization,” Proc. Int’| Conf.
on Computer Design, October 1992.

[25] J. Vasudevamurthy and J. Rajski, “A Method for Concurrent Decomposition and Factorization
of Boolean Expressions,” Proc. Int’| Conf. on Computer Aided Design, pp. 510-513, November
1990.

[26] Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124.

31

@0

K

(@)

X
1
X

11111111
10101000
01010111
01000001

X

x

a b c

(b)

]

Figure 1. A function represented in (a) oBDD and (b) decomposition chart.

Figure 2: An example of digunctive decomposition.

33

Figure 3: An example of nondisunctive decomposition.

Figure4: An examplefor operator cut vector.

35

(b)

Figure 5: An example of multiple-output decomposition in OBDD representation.

36

|11
®

F

111
-

Sy
T

Figure 6: The Xilinx XC4000 CLB.

37

(d)

©)

S PR Gy
EFL iFI
T

(€ ()

111
®

L]
-

L[]
-

(h) 0)

Figure 7: XC4000 patterns.

38

Figure 8. Graphical representation of type | two-layer decomposition.

39

Figure 9: Graphical representation of type Il two-layer decomposition.

40

X
| |
I I
.. o 1
0°0 1°1

@

A&

b)

b T A

©

Figure 10: Conditionsfor type Il two-layer decomposition.

41

