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Abstract

This paper presents algorithms for disjunctive and nondisjunctive decomposition of Boolean func-

tions and Boolean methods for identifying common subfunctions from multiple Boolean functions.

Ordered Binary Decision Diagrams are used to represent and manipulate Boolean functions so that

the proposed methods can be implemented concisely. These techniques are applied to the synthesis

of look-up table based field programmable gate arrays and results are presented.



1 Introduction

Most multilevel synthesis systems contain two steps: a technology-independent step that manipu-

lates and optimizes Boolean functions and a technology-mapping step that maps Boolean functions

into a set of gates in a specific target technology. The technology-independent phase is further

divided into two substeps: logic restructuring that identifies common sublogic to produce a near-

optimal structure and logic minimization that optimizes the logic with respect to the structure

obtained in the previous step. In this paper, we consider the problem of identifying common

sublogic.

There are two methods for identifying common sublogic: algebraic and Boolean. The algebraic

method is fast because the logic function is represented and manipulated as an algebraic expression.

Some optimality may however be lost because Boolean identities are not exploited by the algebraic

methods. In comparison, the Boolean method is slow, but tends to produce better results.

The algebraic approach is based on the division operation, namely, rewriting a function f as

qd � r where q, d, and r are the quotient, divisor and remainder, respectively. The theory of

division was studied by Brayton and McMullen [3] and well developed in the MIS package [4]. The

identification of common sublogic is to extract common subexpressions as divisors. Because the

number of divisors is huge, usually only a subset of the divisors are used. For example, kernels

(cube-free primary divisors) are used in [4] while double- and single-cube divisors are used in

[25]. Division can be also carried out by coalgebraic [13] and Boolean [4] methods.

The Boolean approach is based on the decomposition operation, namely, rewriting a function

f�X�Y � as f ��g�X�� Y � where the number of inputs of f � is smaller than that of f . The theory

of decomposition was pioneered by Ashenhurst [2], Curtis [8] and Roth and Karp [19]. For

representing functions, Karnaugh maps are used in [2, 8, 12], cubes are used in [14, 16, 19]

and ordered binary-decision diagrams (OBDDs) [5] are used in [6, 9, 21]. Most of these methods,

except [16] and [12], only address single output functions.

A Boolean method for extracting common subfunctions was proposed by Karp [16]. He

presented an algorithm for identifying a common subfunction between two functions based on

the partitioning of compatible classes [19]. This approach has two shortcomings: first, it does

not apply to more than two functions and second, it does not identify more than one shared

subfunction. A new Boolean extraction algorithm based on Karnaugh maps was recently proposed

in [12]. Because of the size complexity of the Karnaugh map representation, this approach is only

applicable to functions with small number of inputs.

In this paper, we describe OBDD-based algorithms for disjunctive and nondisjunctive decompo-
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sition of Boolean functions. We then propose two methods for identifying common subfunctions

of multiple-output functions. The first method is based on encoding of distinct columns in the

stacked decomposition charts of the individual outputs; the second method is based on encoding

all possible subfunctions that can be generated with respect to a given subset of input variables.

We use OBDDs to represent functions so that our methods can be effectively carried out. Compared

to [16], our proposed methods can identify multiple (� 2) shared functions from among multiple

(� 2) functions. Complexity of our methods depends on the size of the bound set while that of

the approach in [16] depends on the number of compatible classes. In practical applications, size

of the bound sets considered are much smaller than the number of compatible classes. Finally,

these methods are applied to Look-Up Table (LUT) based Field Programmable Gate Array (FPGA)

synthesis.

The remainder of the paper is organized as follows. Section 2.2 presents OBDD-based algorithms

for disjunctive and nondisjunctive decomposition of Boolean functions. Section 2 describes the

two methods for identifying common sublogic among multiple Boolean functions and presents

the corresponding OBDD-based algorithms. Section 4 shows the application of these ideas and

algorithms to the synthesis of LUT-based FPGA devices. Experimental results and concluding

remarks are given in section 5 and section 6.

2 OBDD-based Function Decomposition Algorithms

In this section, we first give the background for function decomposition theory. We then present

decomposition algorithms for disjunctive, nondisjunctive, and multiple-output decompositions

based on the OBDD representation of Boolean functions [5]. These algorithms are based on the

concept of cut set or cut vector in the OBDD representations.

2.1 Background

Definition 2.1 A function f�x0� � � � � xn�1� is said to be decomposable under bound set

fx0� � � � � xi�1g and free set fxi�s� � � � � xn�1g� 0 � i � n� 0 � s if f can be transformed to

f ��g0�x0� � � � � xi�1�� � � � � gj�1�x0� � � � � xi�1�� xi�s� � � � � xn�1�� where 0 � j � i � s. If s equals 0

then f is disjunctively decomposable; otherwise, f is nondisjunctively decomposable. If j equals

1 then it is simply decomposable. Function f� is referred as the f-function and each gi is referred as

a g-function. The reduction in variable support is equal to i � �j � s�. The above transformation

is referred as decomposition. If only some of the g-functions are formed, then f is partially
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decomposited.

The function decomposition theory has been studied by many researchers [2, 8, 19]. The

Ashenhurst-Curtis method [2, 8] is based on an arrangement of the Karnaugh map where the rows

correspond to the variables in the free set and the columns correspond to the variables in the bound

set. The arrangement is referred as a decomposition chart. The number of distinct column vectors

is referred as the column multiplicity.

The Roth-Karp algorithm [19] is based on the computation of compatible classes. Let f be a

Boolean function with a bound set A0 and a free set A1, with j A0 j� i and j A1 j� n � i. Let

Bb � Bi andBf � Bn�i whereB � f0� 1g. Two variables x1 and x2, x1 � Bb and x2 � Bb are said

to be compatible if, for all y � Bf � f�x1� y� � f�x2� y�; otherwise, they are said to be incompatible.

Roth and Karp show that a function has a simple disjunctive decomposition with respect to the given

bound and free sets if and only if Bb can be partitioned into k � 2 classes consisting of mutually

compatible elements. When a function is completely specified, compatibility is an equivalence

relation and k is simply the number of equivalence classes.

The relation between a distinct column of a decomposition chart and a compatible class is

bijective. The basic difference between these two methods is in the use of different function

representations. One uses the Karnaugh map to represent a function while the other uses covers of

the onset and offset for the function.

Theorem 2.1 [8] A function f�x0� � � � � xn�1� can be transformed to f ��g0�x0� � � � � xi�1�� � � � �

gj�1�x0� � � � � xi�1�� xi� � � � � xn�1� if and only if its decomposition chart has column multiplicity

� 2j .

Definition 2.2 Given a Boolean function f , a bound set B and the decomposition chart C of f and

B, the column vector V of f and B is defined as Vf � hv2jBj�1� � � � � v0i where v0 � 0 and vi � j if

vi is the jth (from the right) distinct column of V f . The column set Sf of f and B is f0� � � � � k�1g

if there are k distinct columns in the decomposition chart. The bit size of Vf or Sf is dlog2 j S je.

We use Vf
i�j to denote a column vector with bound set size i and bit size j and Sf

i�j to denote the

column set of Vf
i�j .

Example 2.1 Let f � x0x1x2x3� x0x1x2x̄3x̄4� x0x1x̄2x̄4� x0x̄1x2x̄4� x0x̄1x̄2x̄3� x̄0x1x2x̄4�

x̄0x1x̄2x̄3� x̄0x̄1x2x3� x̄0x̄1x2x̄3x4� x̄0x̄1x̄2x̄3. If the decomposition chart of f�x0� x1� x2� x3� x4�

with respect to the bound set fx0� x1� x2g and the free set fx3� x4g is constructed, then there will

be three distinct columns, namely �1100�t, �1011�t and �1010�t. Thus, at least two g-functions are

needed, that is, Vf
3�2 � h1� 2� 2� 0� 2� 0� 1� 0i, Sf

3�2 � f0� 1� 2g and the bit size is 2. �
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2.2 Ordered Binary Decision Diagrams

Definition 2.3 [5] An OBDD is a directed acyclic graph consisting of two types of nodes. A nonter-

minal node v is represented by a 3-tuple hvariable�v�� childl�v�� childr�v�i where variable�v� �

fx0� � � � � xn�1g. A terminal node v is either 0 or 1. There exist an index function index�x� �

f0� � � � � n � 1g such that for every nonterminal node v, either childl�v� is a terminal node or

index�variable�v�� � index�variable�childl�v���, and either childr�v� is a terminal node or

index�variable�v�� � index�variable�childr�v���. There is no nonterminal node v such that

childl�v� � childr�v�, and there are no two nonterminal nodes u and v such that u � v. The

function denoted by hx� vl� vri is xfl � x̄fr where fl and fr are the functions denoted by vl and vr,

respectively. The functions denoted by 0 and 1 are the constant function 0 and 1, respectively.

We use the following notation.

1. The left edge of a node represent 1 or the true edge and the right edge represents 0 or the

false edge.

2. v represents both a BDD node and the BDD rooted by node v.

3. index�v� : the index of the variable associated with node v. If v is a terminal node, then

index�v� � n.

4.

l child�v� i� �

�
childl�v� if index�v� � i,
v otherwise.

r child�v� i� �

�
childr�v� if index�v� � i,
v otherwise.

5. When B � fx0� � � � � xi�1g represents a bound set, index�x0� � � � � � index�xi�1�,

head�B� � x0, tail�B� � fx1� � � � � xi�1g, and last�B� � xi�1.

Definition 2.4 Given an OBDD node v representing f�x0� � � � � xn�1� and a bit vector hb0� � � � � bi�1i,

the function eval is defined as

eval�v� hi� � v�

eval�v� hb0� � � � � bi�1i� � v�,

where v� is the OBDD representing function f�b0� � � � � bi�1� xi� � � � � xn�1�. When i is known, we also

use eval�v� p� for eval�v� hb0� � � � � bi�1i� where p � 2i�1b0 � � � �� 20bi�1.
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2.3 Disjunctive Decomposition

Definition 2.5 Given an OBDD v representing f�x0� � � � � xn�1� with variable ordering x0� � � � � xn�1

and bound set B � fx0� � � � � xi�1g, we define

cut set�v� B� � fu j u � eval�v� p�� 0� p � 2ig�

In the above definition, each element in cut set�v� B� corresponds to a distinct column in

Ashenhurst-Curtis decomposition charts [2, 8]. Furthermore, dlog2 j cut set�v� B� je determines

the minimum number of G-functions required for a decomposition of f under B.

Example 2.2 The OBDD representation and decomposition chart of the function in Ex. 2.1 are

shown in Fig. 1 (a) and (b), respectively. Here, cut set�f� fx0� x1� x2g� � fa�b� cg. Nodes a, b,

and c correspond to distinct columns 1100, 1010, and 1011, respectively. Since there are three

distinct columns f is not simple decomposable under bound set fx0� x1� x2g and free set fx3� x4g.

�

Figure 1 goes here.

When the bound variables are on the top of the OBDDs, the computation of the cut set is

straightforward as shown next. The time complexity of computing cut sets depends on the size of

the OBDD representation.

cut set�v� B� /* B is on the top of the OBDD */

f

if �index�v� � index�last�B��� return(f v g);

else return( cut set�childl�v�� B� � cut set�childr�v�� B� );

g

To move a bound variable x to the top of an OBDD, we create a new BDD node v such that

variable�v� � x, childl�v� � fx and childr�v� � fx where fx and fx are the cofactors of f with

respect to x and x, respectively.

We show how to perform the disjunctive decomposition of a function directly on its OBDD

representation.
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Algorithm decomp:

Given a function f represented in an OBDD vf and a bound set B, a disjunctive decomposition with

respect to B is carried out by the following steps:

1. Compute the cut set with respect to B. Let cut set�v� B� � fu�� � � � �uk��g.

2. Encode each node in the cut set by dlog2 ke � j bits. Let the encoding of uq be q.

3. Construct vf � to represent function f � by replacing the top part of vf by a new set of variables

g0� � � � � gj�1 such that eval�vf �� q� � uq for 0 � q � k � 1, eval�vf �� q� � uk�� for

k � 1 � q � 2j .

4. Construct vgp’s to represent gp’s, 0 � p � j by replacing each node u with encoding

b0� � � � � bj�1 in the cut set by terminal node bp.

Example 2.3 As an example of how decomp works, consider the OBDDs shown in Fig. 2. Since x4-

node in f has encoding 01, it has been replaced by terminal nodes 0 and 1 in g0 and g1 respectively.

The evaluation of x0 � 1, x1 � 0, and x2 � 1 in f ends at x4-node in the cut set. The evaluation

of the same pattern 101 in g0 and g1 produce function values 0 and 1 for new variables g0 and g1.

Then, the evaluation of 01 in f� also ends at the same x4-node.

Because there is no encoding 11 in the cut set, variables g0 and g1 can never be 11. We can

assign arbitrary value for this pattern. In this example, we assign the left x3-node so that the left

g1-node can be reduced in f�. �

Figure 2 goes here.

Theorem 2.2 Given an OBDD vf with variable orderingx0 � � � � � xn�1 representingf�x0� � � � � xn�1�,

a bound set B � fx0� � � � � xi�1g, the cut set�vf� B� � fu0� � � � �uk�1g and the decomp algorithm

returning OBDDs vf�� vg0� � � � � vgj�1, then

f�x0� � � � � xn�1� � f ��g0�x0� � � � � xi�1�� � � � � gj�1�x0� � � � � xi�1�� xi� � � � � xn�1�

where f �� g0� � � � � gj�1 are the functions denoted by vf�� vg0� � � � � vgj�1, respectively.
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2.4 Nondisjunctive Decomposition

Before describing how to perform nondisjunctive decomposition based on OBDD representation,

we extend the concept of cut set in the following definition.

Definition 2.6 Let R � fx0� � � � � xs�1g, S � fxs� � � � � xi�1g, and T � fxi� � � � � xn�1g, 0 � s �

i � n. Given an OBDD v representing f�x0� � � � � xn�1�, a bound set R �S, and a free set S � T , we

define

cut set nd�v� R� S� p� � feval�w� p� j w � cut set�v� R�g,

where 0 � p � 2jSj.

With the above definition, cut set�v� B� can be represented by cut set nd�v� B� �� 0�. In the

following, we present a pseudo code for computing cut set nd and an example of it.

cut set nd�v� R� S� p� �� 0 � p � 2jSj ��

f

if �index�v� � index�head�S���

return(cut set nd�childl�v�� R� S� p� � cut set nd�childr�v�� R� S� p�);

else if �index�head�S�� � index�v� � index�last�S��� f

q � 2index�last�S���index�v�;

if (q � p) �� then traverse down through left edge ��

return(cut set nd�childl�v�� R� S� p� q�);

else return(cut set nd�childr�v�� R� S� p�);

g

else return(fvg);

g

Example 2.4 The OBDD in Figure 1 (a) has

cut set nd�f� fx0� x1g� fx2g� 0� � fa�bg,

cut set nd�f� fx0� x1g� fx2g� 1� � fb� cg,

cut set nd�f� fx0g� fx1� x2g� 0� � fag,

cut set nd�f� fx0g� fx1� x2g� 1� � fb� cg,

cut set nd�f� fx0g� fx1� x2g� 2� � fa�bg, and

cut set nd�f� fx0g� fx1� x2g� 3� � fb� cg.
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Algorithm decomp nd:

Given a function f represented in an OBDD vf , a bound set fx0� � � � � xs� � � � � xi�1g, and a free set

fxs� � � � � xi�1� � � � � xn�1g, a nondisjunctive decomposition with respect to the given bound set and

free set is carried out in the following steps:

1. Compute cut set nd�vf � R� S� r� for 0 � r � 2jSj where R � fx0� � � � � xs�1g and S �

fxs� � � � � xi�1g. Let cut set nd�vf � R� S� r� � fur��� � � � �ur�lg,maxfj cut set nd�vf � R� S� r� j

g � k, and j � dlog2 ke.

2. Construct vf � to represent function f � in two steps:

(a) Construct vq, 0 � q � k, such that eval�vq� r� � uq�r where uq�r is the qth element in

cut set nd�vf � R� S� r� or the last element if q �j cut set nd�vf � R� S� r� j.

(b) Construct vf � such that eval�vf �� q� � vq for 0 � q � k � 1 and eval�vf �� q� � vk��

for k � 1 � q � 2j .

3. Construct vgp’s to represent gp’s for 0 � p � j:

Replace each node uq�r (qth node of cut set nd�vf � R� S� r�) from vf by the terminal node

whose value is bqp where bqp is the pth bit from the least significant bit of integer q.

Note that, a node u may be the ith element of cut set nd�vf � R� S� r1� and the jth element of

cut set nd�vf � R� S� r2� which requires different encodings for u. This does not cause a problem

because we can first duplicate the node u and then assign each copy a different encoding.

Example 2.5 One possible nondisjunctive decomposition of the OBDD in Fig. 1 (a) with respect to

the bound set fx0� x1� x2g and the free set fx2� x3� x4g is shown in Fig. 3. In this decomposition,

we use the following coding: fa � u0�0�b � u0�1g � cut set nd�vf� fx0� x1g� fx2g� 0� and fc �

u1�1�b � u1�0g � cut set nd�vf� fx0� x1g� fx2g� 1�. �

Figure 3 goes here.
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Theorem 2.3 Given an OBDD vf with variable ordering x0� � � � � xn�1 representing f�x0� � � � � xn�1�,

and k � maxfj cut set nd�vf � fx0� � � � � xs�1g� fxs� � � � � xi�1g� r� j 0 � r � 2i�sg� 2j�1 � k �

2j , the algorithm decomp nd returns j � 1 OBDDs vf�� vg0� � � � � vgj�1 such that

f�x0� � � � � xn�1� � f ��g0�x0� � � � � xi�1�� � � � � gj�1�x0� � � � � xi�1�� xs�1� � � � � xi�1� � � � � xn�1�

where f �� g0� � � � � gj�1 are the functions denoted by vf�� vg0� � � � � vgj�1, respectively.

3 Common Subfunction Extraction

In this section, we present two methods to extract common subfunctions from multiple Boolean

functions. The first method is based on the stacking of the decomposition charts of the individual

outputs; the second method is based on the examination of all possible g-functions that can

be generated. We first describe an algorithm for generating column vectors using the OBDD

representation. We then present a multiple-output decomposition algorithm that is useful when

column encoding and shared subfunction encoding is used.

3.1 Column Encoding

Our first method is called column encoding which is carried out as follows: we first stack up the

decomposition charts for individual functions and then encode the distinct column patterns. This

is equivalent to finding a common encoding for all functions.

Example 3.1 Consider a multiple-output function F : f0 � x0x4 � x1x2x4, f1 � x0x3 � x1x3 �

x̄0x̄1x̄4 and f2 � x0x3x4 � x2x3x4 with bound set B � fx0� x1� x2g.

If we stack the decomposition charts of F , then there will be four distinct column patterns. We

can thus use two bits to encode each column pattern (defining two g-functions g0 and g1). The

f -functions are determined from combining identical columns of the stacked decomposition chart.

In particular,

g0�x0� x1� x2� � x0 � x1,

g1�x0� x1� x2� � x0 � x2,

f �0�g0� g1� x3� x4� � g0g1x4,

f �1�g0� g1� x3� x4� � g0x3 � ḡ0x̄4, and

f �2�g0� g1� x3� x4� � g1x3x4.

�
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Note that the above method can identify common subexpressions that algebraic division based

methods cannot. After the above decomposition, the literal count of the resulting circuit is 14. On

the other hand, the best we could achieve by the algebraic method, is 16 as shown below:

y0 � x0 � x1,

y1 � x0 � x2,

f �0 � x0x4 � x1x2x4,

f �1 � y0x3 � ȳ0x̄4, and

f �2 � y1x3x4.

Lemma 3.1 Given a multiple-output Boolean function F � hf0� � � � � fm�1i on variable set X and

bound set B � X , if the column multiplicity of the stacking of individual decomposition charts is

k such that 2j�1 � k � 2j , then F can be transformed to the following:

hf �0�g0�B�� � � � � gj�1�B��X �B�� � � � � f �m�1�g0�B�� � � � � gj�1�B��X �B�i.

To perform column encoding, we use the following operator.

Definition 3.1 Given an OBDD v representing f�x0� � � � � xn�1� with variable ordering x0 � � � �

� xn�1 and bound set B � fx0� � � � � xi�1g, we define

cut vector�v� B� � heval�v� 2i� 1�� � � � � eval�v� 0�i�

Example 3.2 The OBDD representation of the multiple-output function in Example 3.1 is shown in

Fig. 4. With the bound set B � fx0� x1� x2g, we have the following cut vectors:

cut vector�f0� B� � ha� a� a� a� a� 0� 0� 0i,

cut vector�f1� B� � hb�b�b�b�b�b� c� ci, and

cut vector�f2� B� � hd�d�d�d�d� 0�d� 0i.

Note that each node corresponds to a column in the decomposition chart. For example, node a

corresponds to column �1010�t while node b corresponds to column �1100�t. �

Figure 4 goes here.
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In the following procedure for cut vector�v� B�, we assume that the bound variables B are

on top of the OBDD. In addition, if B � fx0� � � � � xi�1g, then index�x0� � � � � � index�xi�1�,

head�B� � x0, and rest�B� � fx1� � � � � xi�1g.

cut vector�v� B�

f

if (B �� �) return(hvi);

if (index�v� �� index�head�B��)

return(concatenate�cut vector�childl�v�� rest�B��� cut vector�childr�v�� rest�B��);

else �� index�v� � index�head�B�� ��

return(concatenate�cut vector�v� rest�B��� cut vector�v� rest�B��);

g

Definition 3.2 Operator column encode is defined as follows:

column encode��v0�2i�1� � � � � v0�0�� � � � �vm�1�2i�1� � � � � vm�1�0�� � �u2i�1� � � � � u0�

where u0 � 0 and up � q if �v0�p� � � � � vm�1�p� is the qth distinct m-tuple of �v0�0� � � � � vm�1�0�� � � � �

�v0�2i�1� vm�1�2i�1�.

Example 3.3 column encode�h1� 1� 1� 1� 1� 0� 0� 0i� h1� 1� 1� 1� 1� 1� 0� 0i� h2� 2� 2� 2� 2�1� 0� 0i� �

h2� 2� 2� 2� 2� 1� 0� 0i.

Definition 3.3 Operator select is defined as

select�j� hv0�2i�1� � � � � v0�0i� � � � � hvm�1�2i�1� � � � � vm�1�0i� � hv0�k� � � � �m�1�k i

where hv0�k� � � � � vm�1�ki is the jth distinct m-tuple of hv0�0� � � � � vm�1�0i, � � �, hv0�2i�1� � � � � vm�1�2i�1i.

If j is greater than the number of distinctm-tuples, then hv0�k� � � � � vm�1�ki is the last distinctm-tuple.

Example 3.4 Let Vf0 � h2� 2� 1� 1� 1� 0� 0� 0i and Vf1 � h2� 2� 2� 2� 2� 1� 1� 0i, then we have the

following:

column encode�Vf0�Vf1� � h3� 3� 2� 2� 2� 1� 1� 0i,

select�0�Vf0�Vf1� � h0� 0i,

select�1�Vf0�Vf1� � h0� 1i,

select�2�Vf0�Vf1� � h1� 2i, and

select�3�Vf0�Vf1� � h2� 2i. �
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Given a multiple output function hf0� � � � � fm�1i represented by a vector of OBDDs and a bound

set fx0� � � � � xi�1g, after the computation of cut vectors and column encoding, the g- and f - func-

tions are constructed as follows: For any input pattern b � b0� � � � � bi�1, if the evaluation of b on fk ,

0 � k � m, ends at node v with encoding e0� � � � � ej�1, then we let g0�b�� � � � � gj�1�b� produce func-

tion values e0� � � � � ej�1 and f �k�g0�b�� � � � � gj�1�b�� xi� � � � � xn�1� result in node v. Consequently,

fk�b0� � � � � bi�1� xi� � � � � xn�1� � f �k�g0�b0� � � � � bi�1�� � � � �

gj�1�b0� � � � � bi�1�� xi� � � � � xn�1� for every input pattern b0� � � � � bi�1 and 0 � k � m. The following

procedure gives the details of our algorithm.

Algorithm decomp mo ce:

Given a vector of OBDDs hv0� � � � �vm�1i representing hf0�x0� � � � � xn�1�� � � � � fm�1�x0� � � � � xn�1�i

with variable ordering x0� � � � � xn�1 and a bound set B � fx0� � � � � xi�1g.

1. Compute Vk � cut vector�vk� B� � huk�2i�1� � � � �uk�0i, 0 � k � m.

2. Compute Vi�j � column encode�V0� � � � �Vm�1�. Encode each element vp, (0 � p � 2i) of

Vi�j by j bits dp�0 � � � dp�j�1 such that vp � 2j�1dp�0 � � � �� 20dp�j�1.

3. Construct each g-function gq�x0� � � � � xi�1�, 0 � q � j, as

gq�x0� � � � � xi�1� � �d2i�1�q � � � d0�q� (truth table of gq)

where gq�b0� � � � � bi�1� � dp�q if 2i�1b0 � � � �� 20bi�1 � p.

4. Compute select�r�V0� � � � �Vm�1� � hu0�sr � � � � �um�1�sr i, 0 � r � 2j , 0 � sr � 2i, sr is

any l such that vl � r.

5. Construct each f -function f �k�g0� � � � � gj�1� xi� � � � � xn�1�, 0 � k � m, as

f �k�b0� � � � � bj�1� xi� � � � � xn�1� � �uk�s2j�1
� � �uk�s0 ��

where f �k�b0� � � � � bj�1� xi� � � � � xn�1� � usr �k if 2j�1b0 � � � �� 20bj�1 � r.

Example 3.5 The application of decomp mo ce on the multiple-output function in Example 3.1

is summarized as follows:

1. cut vector�f0� B� � ha� a� a� a� a� 0� 0� 0i � V0
3�1,

cut vector�f1� B� � hb�b�b�b�b�b� c� ci � V1
3�1,

cut vector�f2� B� � hd�d�d�d�d� 0�d� 0i � V 2
3�1 (see Fig. 4),

2. column encode�V0
3�1�V

1
3�1�V

2
3�1� � h3� 3� 3� 3� 3� 2� 1� 0i � h11� 11� 11� 11� 11� 10� 01� 00i,
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3. g0�x0� x1� x2� � �11111100��

g1�x0� x1� x2� � �11111010��

4. select�0�V0
3�1�V

1
3�1�V

2
3�1� � h0� c� 0i,

select�1�V0
3�1�V

1
3�1�V

2
3�1� � h0� c�di,

select�2�V0
3�1�V

1
3�1�V

2
3�1� � h0�b� 0i,

select�3�V0
3�1�V

1
3�1�V

2
3�1� � ha�b�di,

5. f �0�g0� g1� x3� x4� � �a000�,

f �1�g0� g1� x3� x4� � �bbcc�, and

f �2�g0� g1� x3� x4� � �d0d0�.

The resulting g- andf -functions are shown in Fig. 5 (a) and (b), respectively. To seefk�x0� x1� x2� x3� x4� �

f �k�g0�x0� x1� x2�� g1�x0� x1� x2�� x3� x4�, consider the evaluation of x0 � 0, x1 � 1, and x2 � 0 on

f1, g0, g1, and f �1 as an example:

f1�0� 1� 0� x3� x4� � b � x3,

g0�0� 1� 0� � 1,

g1�0� 1� 0� � 0, and

f �1�1� 0� x3� x4� � b � x3.

�

Figure 5 goes here.

The following theorem proves the correctness of decomp mo ce.

Theorem 3.1 The decomp mo ce algorithm performs the following transformation

fk�x0� � � � � xn�1� � f �k�g0�x0� � � � � xi�1�� � � � � gj�1�x0� � � � � xi�1�� xi� � � � � xn�1�,

where 0 � k � m� 0 � i � n.

In practice, it is unlikely that a multiple-output function is decomposable. For example, if

we directly apply column encoding to every output, then the resulting column vector for the

stacked decomposition chart will often be Vi�i. Output partitioning is thus useful to improve

decomposability. We partition the outputs into groups such that the column vector of the stacked

13



decomposition chart for each group corresponds to a decomposable function (i.e., the number of

required g-functions required is less than size of the bound set) and the total number of g-functions

required to implement all groups is minimum. This problem is formulated as follows.

Definition 3.4 Given a set of column vectors Vfk
i�jk

’s with respect tom Boolean functions F � hf0�

� � � � fm�1i and bound setB, partition this set intoP0� � � � � P��1 such that the resulting column vector

Vq
i�jq

of each Pq satisfies i � jq and
Pl�1

q�0 jq is minimum.

We use the following greedy algorithm to solve this problem.

Algorithm output grouping:

Assume every column vector Vfk
i�jk

satisfies i � jk .

1. Order Vfk
i�jk

in nonincreasing order of j Sfk
i�jk

j. Initialize V0
i�j0

to the null set.

2. Starting from the first element of the above list, merge as many column vectors Vfk
i�jk

’s as

possible into V0
i�j0

as long as column encode�V0
i�j0
�Vfk

i�jk
� � Vi�jr satisfies i � jr. As soon as

i � jr, initiate a new group of outputs. Repeat until all column vectors are processed.

The above algorithm is based on the following observation: AVfk
i�jk

with largerSfk
i�jk

has better chance

to contain anotherVfl
i�kl

with smallerSfl
i�kl

. For example, if we have column encode(h2� 2� 2� 1� 1� 0� 0� 0i�

h3� 3� 3� 2� 2� 1� 1� 0i� = h3� 3� 3� 2� 2� 1� 1� 0i, then all the g-functions required for the first V3�2 are

contained in those for the second V3�2. Thus, by putting these two column vectors into the same

set, we only need two g-functions for both functions.

Example 3.6 Given a set of column vectors as following:

Vf0 � h2� 2� 2� 2� 1� 1� 0� 0i,

Vf1 � h3� 3� 2� 2� 2� 2� 1� 0i,

Vf2 � h2� 2� 1� 1� 1� 1� 0� 0i,

Vf3 � h2� 2� 2� 1� 1� 0� 0� 0i,

Vf4 � h2� 2� 2� 2� 2� 2� 1� 0i,

Vf5 � h2� 2� 2� 1� 1� 1� 0� 0i.

If we apply column encode on every outputs without using output grouping algorithm, then

column encode(Vf0� � � � �Vf5) = h6� 6� 5� 4� 3� 2� 1� 0i which is V3�3.

If we apply output grouping algorithm, then three groups will be produced.

group 1: column encode(Vf1�Vf4) = h3� 3� 2� 2� 2� 2� 1� 0i = V3�2.
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group 2: column encode(Vf0�Vf2) = h3� 3� 2� 2� 1� 1� 0� 0i = V3�2.

group 3: column encode(Vf3�Vf5) = h3� 3� 3� 2� 2� 1� 0� 0i = V3�2. �

3.2 Shared Subfunction Encoding

After computing the column vectors of a multiple output function with respect to a bound set B, it

is possible to develop a decomposition scheme that minimizes the number of required g-functions

by sharing these functions among the original functions as described next.

Example 3.7 Let Vf1
3�2 � h2� 3� 2� 0� 1� 2� 1� 0i and Vf2

3�2 � h1� 0� 1� 3� 2� 1� 1� 0i, then

column encode�Vf1
3�2�V

f2
3�2� � h2� 5� 2� 4� 3� 2� 1� 0i � V3�3. If we encode 0 as 00, 1 as 01, 2 as 10,

and 3 as 11 for both Vf1
3�2 and Vf2

3�2, then we have

23201210 10132110
�11100100� �00011000�
�01001010� �10110110�

which requires four g-functions: �11100100�, �01001010�, �00011000�, and �10110000�.

If we encode 0 as 00, 1 as 11, 2 as 01, and 3 as 10 for Vf1
3�2, and 0 as 00, 1 as 01, 2 as 11, and 3

as 10 for Vf2
3�2, then we have

23201210 10132110
�01001010� �00011000�
�10101110� �10101110�

which requires only three g-functions: �01001010�, �00011000�, and �10101110�. �

To achieve the above type of subfunction sharing, we present a shared subfunction encoding

scheme as follows: For each output function, we compute all g-functions which can be produced

from every possible encoding. We then identify the minimum number of g-functions which produce

valid encodings for every function with respect to the given bound set.

The optimum g-function sharing can only be found if we allow the assignment of multiple

function values (codes) to the same pattern (multi-coding). This is, however, very expensive. We

trade some optimality for computational efficiency by requiring that a unique function value (code)

be assigned to each pattern (uni-coding). In this case, for Si�j with set size k, there will be C2j
k k!

different encodings. In the remaining of this paper, we only consider uni-coding.

Although there are many different encodings, the number of different g-functions which can be

generated from these encodings is small as described next.
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Definition 3.5 Given cut vectorVi�j and cut setSi�j for some decomposition, letSi�j be partitioned

into S0 and S1 such that 0 � S0, j S0 j� 2j�1 and j S1 j� 2j�1. A permissible g-function of Vi�j

with respect to S0 and S1, denoted by pgVi�j �S0�S1, is defined as:

pgVi�j �S0�S1 � �b2i�1 � � � b0�,

where bp � 0 if vp � S0 and bp � 1 otherwise, 0 � p � 2i.

The pg-set of Vi�j is the set of all pg’s of Vi�j obtained by enumerating all two-block partitions

of Si�j into S0 and S1 satisfying the conditions stated above. The restrictions on j S0 j and j S1 j

are needed to ensure that a valid j-bit encoding of the nodes in the cut set of f with respect to B

can be found.

Example 3.8 Let V3�2 � h2� 2� 1� 1� 1� 1� 0� 0i, then

pgV3�2�f0g�f1�2g = �11111100�,
pgV3�2�f0�1g�f2g = �11000000� and
pgV3�2�f0�2g�f1g = �00111100�.

The pg-set of V3�2 is f�11111100�� �11000000�� �00111100�g. Note that we need not consider

pgV3�2�f1g�f0�2g because it is equal to pgV3�2�f0�2g�f1g and that is why we force 0 � S0 at Si�j partition in

definition 3.5. �

The cardinality of the pg-set of Vi�j is given by the following equation:

j pg set j � Ck�1
k�2j�1�1 � � � �� Ck�1

2j�1�1 �
2j�1X

l�k�2j�1

Ck�1
l�1

where 2j�1 �j Si�j j� k � 2j . Because neither j S0 j nor j S1 j can exceed 2j�1, the minimum and

maximum sizes of S0 are k� 2j�1 and 2j�1, respectively. k� 1 and l� 1 are used because 0 � S0.

Example 3.9 For j Si�3 j� k � 3� 4� 6, and 8, the cardinalities of their pg-sets are computed as

follows:

k � 3: C2
0 � C2

1 � 1 � 2 � 3�
k � 4: C3

1 � 3�
k � 6: C5

1 � C5
2 � C5

3 � 5 � 10 � 10 � 25, and
k � 8: C7

3 � 35�

�
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Note that there are C2j
k k! � 40� 320 different encodings for j Si�3 j� 8 while only 35 different

pg-functions can be generated.

Because each pg function defines a partial (1-bit) encoding, a complete encoding of Si�j is

determined by selecting exactly j pg’s. However, not every subset of a pg-set, forms a valid partial

encoding. This leads to the following definition of compatibility of pg’s.

Definition 3.6 A k-bit partition P k of Si�j is defined as a partitioning of Si�j into P k � fS0� � � � �

S2k�1g, k � j such that 	Sq � P k� j Sq j� 2j�k .

Definition 3.7 A partial k-bit encoding of P k is defined as follows:

if s � Sp, then s is encoded as b0 � � � bk�1xk � � � xj�1

where 2k�1b0 � � � �� 20bk�1 � p and xk� � � � � xj�1 are unassigned bits.

Thus, a k-bit partition defines a k-bit encoding of the Si�j . Note that if there is a Sq such that

j Sq j� 2j�k , then we cannot find a j � k bit encoding of Sq and, therefore, cannot generate a valid

j bit encoding of Si�j .

Definition 3.8 Given k- and l-bit partitions P k = fS0� � � � � S2k�1g and Ql = fT0� � � � � T2l�1g of Si�j

and assuming k � l � j, we define a merge operator M as follows:

M�P k� Ql� � fR0� � � � � R2k�l�1g,

where R2lp�q � Sp 
 Tq� Sp � P k� Tq � Ql. IfM�Sk� T l� is a �k � l�-bit-partition of Si�j , then P k

and Ql are compatible. That is, if every Rz � M�P k� Ql� satisfies j Rz j� 2k�l, then P k and Ql

are compatible.

In other words, if P k and Ql are compatible, then they can be used together to produce a

�k � l�-bit encoding of Si�j .

Example 3.10 Let S5�4 � f0� 1� 2� 3� 4� 5� 6� 7� 8� 9g. some of 1-bit partitions of S5�4 are:

P 1 = ff0� 1� 2� 3� 4g� f5� 6� 7� 8� 9gg,
Q1 = ff0� 1� 2� 5� 6� 7g� f3� 4� 8� 9gg,
U1 = ff0� 1� 2� 3� 4� 5g� f6� 7� 8� 9gg,
V 1 = ff0� 2� 4� 6� 8g� f1� 3� 5� 7� 9gg.

We have:
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M�P 1� Q1� = ff0� 1� 2g� f3� 4g� f5� 6� 7g� f8� 9gg� P 2,
M�Q1� U 1� = ff0� 1� 2� 5g� f6� 7g� f3� 4g� f8� 9gg,
M�P 1� U 1� = ff0� 1� 2� 3� 4g� fg� f5g� f6� 7� 8� 9gg,
M�P 2� V 1� = ff0� 2g� f1g� f4g� f3g� f6g� f5� 7g� f8g�f9gg,
M�P 2� U 1� = ff0� 1� 2g� fg� f3� 4g� fg� f5g� f6� 7g�fg� f8� 9gg.

P 1 and Q1, Q1 and U1, and P 2 and V 1 are compatible, but P 1 and U1, and P 2 and U1 are not

compatible. Note that this example shows that compatibility relation is not transitive.

P 1 defines the following encoding:

0� 1� 2� 3 and 4 are encoded by 0g1g2g3,

5� 6� 7� 8 and 9 are encoded by 1g1g2g3.

P 2 defines the following encoding:

0, 1 and 2 are encoded by 00g2g3,

3 and 4 are encoded by 01g2g3,

5, 6 and 7 are encoded by 10g2g3,

8 and 9 are encoded by 11g2g3.

�

After generating the pg-sets for individual Boolean functions, we select a minimum number of

pg-functions which produce valid, complete encoding of each function. This problem is formulated

as follows:

Definition 3.9 Minimum subfunction covering problem: Given a collection PGS of pg-sets fpgs1�

pgs2� � � � � pgsng and G = �n
i�1pgsi, find a subset G� � G with minimum cost such that for each

pg-set pgsz with bit size j, there is a subset of G� with size j which induces a j-bit-partition of

pgsz .

To see the complexity of the above problem, consider a restricted version of it as follows:

Definition 3.10 Reduced minimum subfunction covering problem: Given a collection PGS of

pg-sets, find a minimum cardinality subset G� � G such that G� contains at least one element from

each pg-set in PGSn.

This is the hitting set problem which is NP-complete [11].

We use the following greedy algorithm for solving the minimum subfunction covering problem.
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Algorithm decomp mo sse:

Given a vector of OBDDs hv0� � � � � vm�1i representing hf0�x0� � � � � xn�1�� � � � � fm�1�x0� � � � � xn�1�i

with variable ordering x0� � � � � xn�1 and a bound set B = fx0� � � � � xi�1g.

1. Compute Vk � cut vector�vk� B� � huk�2i�1� � � � �uk�0i, 0 � k � m.

2. Compute Vi�j � column encode�V0� � � � �Vm�1�.

3. Compute the pg-set corresponding to each Vi�j . Annotate each pg-set with a value count

initialized to its bit size (this is for indicating when a function has a complete encoding) and

a 0-bit-partition bp initialized to its column set (this is for checking compatibility).

4. Find a pg g that occurs in the pg-sets most frequently.

5. For each pg-set that contains g, decrease its count by 1. If count � 0, remove this set.

6. For each pg-set that contains g, perform bp � M�bp� g� and remove any pg that is not

compatible with M�bp� g�.

7. Repeat steps 1-3 until every pg-set is removed. Then, return the set of bp’s, which defines

the encoding for each pg-set.

4 Application to LUT-Based FPGA Synthesis

FPGAs are ASICs that can be configured by the user. They combine the logic integration benefits

of custom VLSI with the design, production, and time-to-market advantages of standard logic ICs.

One important class of FPGAs is Look-Up-Table (LUT) based FPGAs. In a LUT-based FPGA device

(e.g., XC3000 device from Xilinx Inc [26]), the basic programmable logic block is a K-input lookup

table (K-LUT) which can implement any Boolean function of up to K variables.

The technology mapping problem for LUT-based FPGA designs is to transform a Boolean

network into a functionally equivalent network of K-LUTs. There are several different approaches

for solving the FPGA mapping problem [10, 17, 18]. All of these works are based on the algebraic

decomposition method.

4.1 Mapping for XC3000 Device

Based on the theory presented in the previous sections, we have developed Boolean methods for LUT-

based FPGA synthesis. We describe an OBDD-based decomposition program, called FGSyn, that
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integrates the technology-independent and technology-mapping processes for LUT-based FPGAs.

FGSyn is based on the multiple-output function decomposition theory and is carried out recursively

as follows:

Algorithm fg synthesis:

1. For each bound set B of size k (for k-input LUT’s);

2. Compute the column vector Vfi of each output fi;

3. Perform output grouping using Vfi’s;

4. Perform subfunction extraction on each group of outputs;

5. Compute gain for performing the decomposition;

6. Choose bound set with the maximum gain and perform decomposition to

generate F � for next iteration.

In step 1, we choose the bound set size as the input size k of a LUT so that each g-function can be

directly mapped to a single LUT. Steps 2 and 3 are carried out as described in Sec. 3.1 while step 4

is carried out by column encoding or shared subfunction encoding as described in Sec. 3.2. In step

6, the bound set with maximum gain is chosen where the gain is defined as:P
fi�F �supp�fi� 
 B�� the number of g-functions required.

An important issue is how to come up with the input F � hf0� � � � � fm�1i to the fg synthesis

algorithm. One option is to use the whole Boolean network as F . This is not an attractive solution

as size of the OBDD representing F may become too large. In addition, the output partitioning

performed in step 3 may lead to a large number of output groups, and thus, a lot of logic may

be duplicated among various output groups. A better option is to run the rugged script [22]

on the network, and then do some node clustering where each cluster is a complex multi-input,

multi-output Boolean function. Each such node then constitutes an input to the fg synthesis

algorithm.

Node clustering is currently performed by the following greedy algorithm (this problem is

obviously NP-hard):

Algorithm node clustering:

1. Start with a seed node Ns and insert it into the first cluster C0.

2. Find a new nodeNi that maximizes the j supp�Ni�
supp�Ns� j and minimizes j supp�Ni��

supp�Ns� j.
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3. If j supp�Ni� � supp�C0� j� � and 1� j C0 j� � for some specified parameters �� �, then

merge Ni with C0; otherwise pick a new seed node and initialize C1;

4. Repeat the above until all nodes are assigned to some node cluster.

Example 4.1 Given a Boolean network

f1 � ab� x;

f2 � b� gx;

x � c� ad;

f3 � uv � wy;

f4 � uy � v;

y � cd� ae;

The node clustering algorithm leads to the following clusters for � � 5� � � 5.

C0 � ff1� f2g,

C1 � fx� yg and

C3 � ff3� f4g. �

4.2 Mapping for XC4000 Device

The latest generation of the Xilinx FPGA devices, i.e., XC4000, contains a number of architectural

and technological improvements that allows densities up to 20K equivalent gates and support clock

rates up to 60MHz. Among the important architectural improvements that contribute to the XC4000

family’s increased logic density and performance is a more powerful and flexible configurable logic

block (CLB). A simplified block diagram of the combinational logic part of this CLB is shown in

Figure 6. One key issue in synthesis for XC4000 device is to obtain maximal utilization of the

CLBs provided on the device.

Figure 6 goes here.

Nine different patterns of XC4000 device are recognized for mapping to diffenert types of

functions (Figure 7). Among these patterns, the first two patterns are the most interesting and

cost effective. Note that the part enclosed by dotted box in the second pattern of Figure ?? can
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be interpreted as an instance of non-disjunctive decomposition. To have such an interpretation,

consider the following decompositions:

Figure 7 goes here.

f�Xf �Xg� xh� � � �� = f1�F �Xf�� G�Xg�� xh� � � ��
= f1�xf � xg� xh� � � ��

= f2�H�xf � xg� xh�� xf � � � ��

In the first decomposition (f to f1), variables Xf and Xg are bound variables with respect to the

functions F and G. In the second line of the above equation, we replace F �Xf � and G�Xg� by

variables xf and xg. Then, in the second decomposition (f1 to f2), variable xf is both a bound

variable and free variable.

Techniques introduced in the previous sections can be used to map Boolean functions to various

patterns of Figure 7. This mapping can however be performed more efficiently (viz. for patterns

(b) and (d)) as described next.

4.2.1 Two-Layer Decomposition

Definition 4.1 Given a function f�X�Y�Z� and a decomposition f ��g�X�� Y� Z�, if f � is simply

decomposable under bound set fg�X�� Y g and free set fg�X�� Zg (e.g., f� = f ���h�g�X�� Y ��

g�X�� Z�), then f is type I two-layer decomposable.

The graphical representation of type I two-layer decomposition is shown in Fig. 8 and is also

the pattern (d) in Fig. 7.

Figure 8 goes here.

Theorem 4.1 Given a function f represented by OBDD vf and two bound sets X and Y , the

necessary and sufficient conditions for f to be type I two-layer decomposable with respect to X

and Y are:
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1. j cut set�vf�X� j� 2 (let cut set�vf�X� � fu� vg), and

2. j cut set�u� Y � j� 2 and j cut set�v� Y � j� 2.

Definition 4.2 Given a function f�X�Y�Z� and a decomposition

f ��g0�X�� � � � � gi�1�X�� h0�Y �� � � � � hj�1�Y �� Z�, if f � is simply decomposable under bound set

fgk�X�� hl�Y �g, 0 � k � i, 0 � l � j, and free set consisting of Z and all g and h functions

except for gk and hl, then f is type II two-layer decomposable.

The graphical representation of type II two-layer decomposition is shown in Fig. 9 and is also

the pattern (c) in Fig. 7.

Figure 9 goes here.

One way to see if a functionvf is type II two-layer decomposable under the bound setX�Y is the

following: If dlog2 j cut set�vf�X� je�dlog2 j cut set�vf � Y � je� dlog2 j cut set�vf �X �Y � je

and there exists an encoding of cut set�vf�X�Y � such that each g-function g satisfies the following

conditions:

1. g is a function of variables X , or

2. g is a function of variables Y , or

3. g is simply decomposable under bound sets X and Y .

Therefore, to detect type II two-layer decomposition under bound sets X and Y , one must first

compute:

CX = cut set�vf�X� � fu�� � � � �uk��g�

Vi = cut vector�ui� Y � � hvi��� � � � �vi��jYj��
i�ui � CX ,

CY = column encode�V0� � � � � Vk�1�, and
CXY = cut set�vf�X � Y � � fw�� � � � �wl��g.

If dlog2 j CX je � bit size�CY � � dlog2 j CXY je, then type II two-layer decomposition is

possible. We then compute a set of compatible bit-partitions ofCXY such that for each bit-partition

S1 � fS0� S1g and associated permissable g-function g satisfies one of the following conditions:

Let Wi � hbi�0� � � � � bi�2jY j�1i where
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bi�j � 0 if vi�j � S0 and
bi�j � 1 if vi�j � S1,

1. Wi � h0� � � � � 0i orWi � h1� � � � � 1i, 0 � i � k. Then, g is a function of variablesX (Fig. 10

(a)).

2. Wi � Wj , 0 � i� j � k. Then, g is a function of variables Y (Fig. 10 (b)).

3. There exist only two distinctW ’s, sayWi andWj , and bit size�coding�Wi�Wj�� � 1. Then,

g is a function of variables X � Y and is simple decomposable under bound sets X and Y

(Fig. 10 (c)). The former condition ensures that it is simple decomposable under X and the

latter condition ensures that it is simple decomposable under Y .

Figure 10 goes here.

A straightforward way to detect type II two-layer decomposability under two bound sets X and

Y is the following: We start with the decomposition of f given by f � f ��g0�X�, � � � � gi�1�X�,

h0�Y �� � � � hj�1�Y �� � � �� � f ��y0� � � � � yi�1� z0� � � � � zj�1� � � ��. We then test if f � satisfies simple

decompositions under bound set fyk� zl� Vfg, for 0 � k � i and 0 � l � j. The result of this

test depends on the binary encodings for yk and zl. Using a wrong encoding causes the test to fail

when indeed type II two-layer decomposition was possible. Trying all possible encodings is clearly

nonviable. On the other hand, using an arbitrary encoding may cause too many false failures.

Given a function f and a bound set j B j� 4, we can use j decomp g�f�B� j LUTs to map

the g-functions. However, this may not be the best results we can achieve. For example, let

j decomp g�f�B� j� 2, under one encoding we may have two g-functions g0 and g1 such that the

true support of each function is 4 and 2. In this case, it is possible that we can map g1 and two

other free variables to a single LUT. Furthermore, the new LUT may be combined with the one of

g0 to match the first two patterns. The effect of this process has two different interpretations. First,

it is viewed as the size of bound set is 6 and the number of g-functions for this bound set is 2 or 1.

Second, it is viewed as a case of nondisjunctive decomposition: supporting variables in g1 are both

in bound set B and in free set.
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5 Experimental Results

The OBDD-based decomposition procedure described in Section 2 has been implemented and

compared with the Roth Karp decomposition algorithm implemented in SIS [24]. In particular,

we used “xl k decomp -n 4 -e -d -f 100” which for every node in the Boolean network finds the

best bound set of size � 4 that reduces the node’s variable support after decomposition, and then

decomposes the node and modifies the network to reflect the change.

Our OBDD-based decomposition approach obtains significant speed-up over Roth Karp ap-

proach by an average factor of 28.5.

The LUT-based FPGA synthesis algorithm described in Sections 3 and 4, called FGSyn, has been

implemented in C and incorporated into the SIS environment. We used FGSyn to synthesize and

map a number of benchmark circuits to the XC3000 device. In Table 1, we present the results

obtained by using different options of FGSyn [15]: column encoding (-g), shared subfunction

encoding (-s), non-disjunctive decompositions (-n) and node clustering (-c). The best results are

obtained with the -csn option.

In Table 2, we compare FGSyn with Chortle-crf [10], ASYL [1] and mis-pga (new) [18]. We

do not compare our results with those of FlowMap [7] as that program focuses on generating a

set of mapping solutions with area and depth trade-off while our program (as well as Chortle-crf,

ASYL and mis-pga (new)) targets minimum area with no depth constraints. FGSyn and mis-pga

(new) were run under SPARC station II (28.5 MIPS) with 64 MB of memory.

As seen in Table 2, FGSyn does 20�6% better than Chortle-crf, 16�8% better than ASYL and

13�0% better than mis-pga (new). The memory requirement of FGSyn is only 30% more than that

of the mis-pga (new). while its run time is about 2 times less than that of the mis-pga (new).

In Table 3, we present the results obtained by using direct decomposition, type I two-layer

decomposition (-T 1) and type II two-layer decomposition (-T 2). In general, type I decomposition

produces somewhat better results.

In Table 4, we compare FGSyn results on XC4000 with ASYL [1] and PPR [26]. For these

benchmarks, we achieved 13.4% CLB reduction over PPR and 12.4% CLB reduction over ASYL.
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in out bx bx-cg bx-csn
CLB Time CLB % Red. Time CLB % Red. Time

5xp1 7 10 16 3.8 10 37.5 3.8 9 43.8 13.0
9symml 9 1 6 6.4 6 0.0 6.3 7 -16.7 25.0
alu2 10 6 65 90.0 59 9.2 96.2 55 15.4 123.3
alu4 14 8 59 29.2 59 0.0 30.1 56 5.1 108.1
apex2 39 3 60 42.3 60 0.0 41.8 60 0.0 167.9
apex6 135 99 189 170.7 182 3.7 212.4 181 4.2 509.7
apex7 49 37 55 21.1 47 14.5 27.9 43 21.8 65.5
b9 41 21 28 1.9 28 0.0 1.9 28 0.0 2.0
bw 5 28 27 2.2 27 0.0 2.1 27 0.0 2.1
C499 41 32 54 3.9 54 0.0 3.7 54 0.0 3.8
C880 60 26 93 47.8 91 2.2 53.1 87 6.5 149.6
C1908 33 25 75 17.9 74 1.3 17.9 73 2.7 31.2
C2670 233 140 136 132.0 128 5.9 149.5 122 10.3 394.0
C5315 178 123 364 341.1 335 8.0 488.4 316 13.2 977.1
C7552 207 108 348 450.5 346 0.6 523.5 317 8.9 1263.1
clip 9 5 23 39.6 20 13.0 46.5 18 21.7 180.7
cm162a 14 5 9 1.0 9 0.0 0.9 9 0.0 1.5
count 35 16 29 4.8 29 0.0 6.9 23 20.7 14.6
duke2 22 29 87 48.2 86 1.1 49.1 85 2.3 162.7
e64 65 65 44 2.7 44 0.0 2.6 44 0.0 2.6
f51m 8 8 12 4.8 9 25.0 5.7 8 33.3 26.7
misex1 8 7 9 1.6 10 -11.1 7.1 8 11.1 21.9
misex2 25 18 22 4.0 22 0.0 4.2 22 0.0 6.4
rd73 7 3 7 2.5 6 14.3 2.3 5 28.6 2.4
rd84 8 4 12 7.1 9 25.0 6.4 8 33.3 15.0
rot 135 107 150 187.7 161 -7.3 227.9 136 9.3 689.3
sao2 10 4 26 40.2 33 -26.9 62.2 25 4.0 263.5
vg2 25 8 27 19.0 23 14.8 19.1 17 37.0 83.4
z4ml 7 4 5 2.0 4 20.0 1.7 4 20.0 4.7
Total – – 2037 1726.0 1971 2101.2 1847 5310.8
Average – – 5.2 11.6

Table 1: Experimental results of FGSyn for XC3000 device
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in out Chortle-crf ASYL mis-pga(new) FGSyn (bx -csn)
CLB CLB CLB Time CLB Time

5xp1 7 10 20 13 17 16.6 9 13.0
9symml 9 1 41 8 7 207.6 7 25.0
alu2 10 6 83 60 84 304.1 55 123.3
alu4 14 8 138 254 149 2381.8 56 108.1
apex2 39 3 93 69 54 491.1 60 167.9
apex6 135 99 161 156 147 144.3 181 509.7
apex7 49 37 42 44 43 16.0 43 65.5
b9 41 21 – 18 27 10.5 28 2.0
bw 5 28 – 27 27 3.3 27 2.1
C499 41 32 50 – 66 738.0 54 3.8
C880 60 26 69 – 78 648.8 87 149.6
C1908 33 25 – – 85 264.8 73 31.2
C2670 233 140 – – 111 796.9 122 394.0
C5315 178 123 – – 306 1285.7 316 977.1
C7552 207 108 – – 340 2288.0 317 1263.1
clip 9 5 – 33 23 86.6 18 180.7
cm162a 14 5 – – 10 3.0 9 1.5
count 35 16 27 28 28 8.5 23 14.6
duke2 22 29 89 82 108 325.0 85 162.7
e64 65 65 54 54 55 12.7 44 2.6
f51m 8 8 – 14 11 14.5 8 26.7
misex1 8 7 14 13 9 1.7 8 21.9
misex2 25 18 – 24 23 3.2 22 6.4
rd73 7 3 – 8 7 19.6 5 2.4
rd84 8 4 53 14 12 119.5 8 15.0
rot 135 107 131 – 139 175.6 136 689.3
sao2 10 4 – 30 28 58.8 25 263.5
vg2 25 8 18 20 20 5.7 17 83.4
z4ml 7 4 3 4 6 6.0 4 4.7
Total – – 2020 10437.9 1847 5310.8

Table 2: Comparison with other software programs (XC3000 device)
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in out bx4 bx4 -T 1 bx4 -T 2
CLB Time CLB % Red. Time CLB % Red. Time

5xp1 7 10 15 1.5 15 0.0 1.5 15 0.0 1.5
9sym 9 1 6 2.3 6 0.0 2.8 6 0.0 2.2
9symml 9 1 6 2.3 6 0.0 2.7 6 0.0 2.3
alu2 10 6 55 38.3 53 3.6 43.9 53 3.6 38.8
alu4 14 8 52 7.2 51 1.9 6.5 51 1.9 6.6
apex2 39 3 55 13.8 55 0.0 13.6 53 3.6 13.1
apex6 135 99 136 157.9 138 -7.0 150.2 128 0.8 153.2
apex7 49 37 39 3.5 37 5.1 3.0 39 0.0 3.5
b9 41 21 25 3.0 24 4.0 2.6 24 4.0 2.9
C880 60 26 75 13.7 78 -4.0 12.7 72 4.0 12.3
C1355 41 32 49 1.6 47 4.1 1.6 47 4.1 1.6
C1908 33 25 68 10.6 67 1.5 10.2 67 1.5 10.0
c8 28 18 20 1.9 20 0.0 1.7 18 10.0 1.6
clip 9 5 26 10.0 24 7.7 10.9 25 3.8 9.7
comp 32 3 18 6.9 18 0.0 6.6 17 0.0 6.8
count 35 16 21 1.3 19 9.5 1.2 19 9.5 1.3
decod 5 16 9 0.2 9 0.0 0.2 9 0.0 0.2
duke2 22 29 84 825.6 77 8.3 806.7 76 9.5 825.9
e64 65 65 43 0.8 43 0.0 0.9 43 0.0 0.7
f51m 8 8 11 1.7 10 9.1 1.7 10 9.1 1.6
misex1 8 7 8 0.4 8 0.0 0.5 9 -12.5 0.5
misex2 25 18 20 1.4 20 0.0 1.5 19 5.0 1.3
mux 21 1 6 0.7 5 16.7 0.7 5 16.7 0.7
rd73 7 3 6 1.2 6 0.0 1.2 7 -16.7 1.1
rd84 8 4 10 2.9 10 0.0 3.0 10 0.0 2.4
rot 135 107 127 205.0 119 6.3 189.5 120 5.5 194.9
sao2 10 4 31 15.3 29 6.5 21.4 31 0.0 16.3
vda 17 39 121 2785.0 116 4.1 2481.7 111 8.3 2267.7
vg2 25 8 16 2.9 15 6.3 3.3 16 0.0 2.7
z4ml 7 4 6 0.7 6 0.0 0.7 7 0.0 0.6
Average – – 3.3 2.4

Table 3: Experimental results of FGSyn options for XC4000 device
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in out ASYL PPR FGSyn % Red.
CLB CLB CLB ASYL PPR

5xp1 7 10 13 – 15 -15.4 –
9sym 9 1 9 – 6 33.3 –
9symml 9 1 – 36 6 – 83.3
alu2 10 6 51 71 52 -2.0 26.8
alu4 14 8 211 – 51 75.8 –
apex6 135 99 140 – 128 8.6 –
apex7 49 37 38 38 37 2.6 2.6
b9 41 21 – 20 23 – -15.0
C1355 41 32 – 91 47 – 48.4
c8 28 18 – 17 18 – -5.9
clip 9 5 29 – 23 20.7 –
comp 32 3 – 17 17 – 0.0
count 35 16 22 21 19 13.6 9.5
decod 5 16 – 10 9 – 10.0
duke2 22 29 73 – 70 4.1 –
e64 65 65 52 – 43 17.3 –
f51m 8 8 12 – 10 16.7 –
misex1 8 7 9 – 9 0.0 –
misex2 25 18 21 – 19 9.5 –
mux 21 1 – 5 5 – 0.0
rd73 7 3 10 – 7 30.0 –
rd84 8 4 14 – 10 28.6 –
sao2 10 4 23 – 29 -26.1 –
vda 17 39 – 97 109 – -12.4
vg2 25 8 15 – 16 -6.7 –
Average 12.4 13.4

Table 4: Experimental results for XC4000 device
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6 Conclusion

We described techniques for OBDD-based decomposition of Boolean function and presented two

Boolean methods for extracting common subfunctions from multiple-output functions. Application

of these methods to the synthesis of LUT-based FPGAs was discussed.

It is useful to extend the shared subfunction encoding to include mutli-coding and input variable

negation in order to improve the effectiveness of the Boolean extraction methods. Indeed, a

hybrid approach where algebraic operations are interleaved with the Boolean extraction operations

described here is a promising approach to logic synthesis.
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Figure 1: A function represented in (a) OBDD and (b) decomposition chart.
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Figure 5: An example of multiple-output decomposition in OBDD representation.
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Figure 7: XC4000 patterns.
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Figure 8: Graphical representation of type I two-layer decomposition.
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Figure 9: Graphical representation of type II two-layer decomposition.
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Figure 10: Conditions for type II two-layer decomposition.
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