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Abstract 

Integrating residential photovoltaic (PV) power generation and energy storage systems into the Smart Grid is an 

effective way of utilizing renewable power and reducing the consumption of fossil fuels. This has become a 

particularly interesting problem with the introduction of dynamic electricity energy pricing models, since 

electricity consumers can utilize their PV-based energy generation and controllable energy storage devices for 

peak shaving on their power demand profile from the Smart Grid, and thereby, minimize their electricity bill cost. 

A realistic electricity pricing function is considered in this chapter with the billing period of a month, which is 

comprised of both an energy price component and a demand price component. Due to the characteristics of the 

realistic electricity price function and the energy storage capacity limitation, the residential storage control 

algorithm should (i) effectively take into account the PV power generation and load power consumption 

prediction results and mitigate the inevitable inaccuracy in these predictions, and (ii) properly account for 

various energy loss components during system operation, including the energy loss components due to rate 

capacity effect in the storage system as well as power dissipation in the power conversion circuitries. A near-

optimal storage control algorithm is proposed accounting for these aspects, based on the PV power generation 

and load power consumption prediction methods in the previous papers. The near-optimal control algorithm, 

which controls the charging/discharging schemes of the storage system, is effectively implemented by solving a 

convex optimization problem at the beginning of each day with polynomial time complexity. The optimal size of 

the energy storage system is determined in order to minimize the break-even time of the initial investment in the 
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PV and storage systems. Experimental results demonstrate the effectiveness of the proposed near-optimal 

residential storage control algorithm in electricity cost reduction compared with the baseline control algorithm. 

 
Keywords: Residential user; photovoltaic system; energy storage; adaptive control; component model; prediction 

error. 

 

1. Introduction 

The traditional (static and centrally controlled) structure of power grid is comprised of a transmission network, 

which transmits electricity power generated at remote power plants to substations through long-distance and 

high-voltage transmission lines, and a distribution network, which delivers electrical power from substations to 

local end users/consumers. In this infrastructure, the local distribution network is often statically adjusted to 

match the load profile of its end users. Since the end user profiles often change phenomenally according to the 

day of week and time of day, the Power Grid must be able to support the worst-case power demands of all the 

end users at all times in order to avoid potential power delivery failure (blackout or brownout) [2]. 

The decentralized Smart Grid infrastructure is being designed to avoid expending a large amount of capital 

for increasing the power generation capacity of utility companies in order to meet the expected growth of end 

user energy consumptions in the worst case [3], [4]. The Smart Grid is also being equipped with smart meters, 

which can monitor and control the power flow in the power grid to match the amount of power generation to that 

of power consumption, and to minimize the overall cost of electrical energy delivered to end users. 

In the Smart Grid infrastructure, utility companies can employ dynamic electricity pricing strategies, that is, 

they employ different electricity prices at different time periods in a day or at different locations. This policy will 

incentivize energy consumers to perform demand side management, also known as demand response, by 

adjusting their power demand from the Grid to match the power generation capacity of the Grid. There are 

several ways to perform such a demand side management, including the integration of intermittent energy 

sources such as photovoltaic (PV) power or wind power at the residential level, demand shaping (i.e., consumers 

shift their tasks to the off-peak periods), household task scheduling, etc. [5]. In this paper, we focus on the 
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former solution, or more specifically, integrating PV power generation facilities with the Smart Grid for 

residential usage. 

Although integrating residential renewable energy sources into the Smart Grid proves to be an effective way 

of utilizing renewable power and reducing the usage of fossil fuels, several problems need to be addressed for 

these benefits to be realized. First, there exists a mismatch between the peak PV power generation time (usually 

around noon) and the peak load power consumption time for residential users (usually in the evening) in each 

day [6]. This timing skew results in cases where the generated PV power cannot be optimally utilized for peak 

power shaving. Moreover, at each time instance, the PV output power is fixed depending on the solar irradiance 

level, when employing the MPPT or MPTT control methods [8], [9]. Hence, the ability of the residential user for 

peak load shaving is also restricted by the PV output power. 

One effective solution to the above-mentioned problems is to incorporate energy storage systems, either 

homogeneous or hybrid, for houses equipped with PV systems [1], [6]. The proposed residential energy storage 

system shall store power from the Smart Grid during off-peak periods of each day and (or) from the PV system, 

and provide power for the end users during the peak periods of that day for peak power shaving and energy cost 

reduction (since electrical energy tends to be the most expensive during these peak hours.) Therefore, the design 

of energy pricing-aware control algorithms for the residential storage system, which controls the charging and 

discharging of the energy storage bank(s) and the magnitude of the charging/discharging current, is an important 

task in order for the Smart Grid technology to deliver on its promises. 

Effective storage control algorithms should take into account the realistic electricity pricing function, such as 

[10], [11]. It is comprised of both an energy price component which is a time of usage (TOU) dependent 

function indicating the unit energy price during each time periods of the billing period (a day, or a month, etc.), 

and a demand price component, which is an additional charge due to the peak power consumption in the billing 

period. The latter component is required in order to prevent a case whereby all the customers utilize their PV 

power generation and energy storage systems and/or schedule their loads such that a very large amount of power 

is demanded from the Smart Grid during low-cost (off peak) time slots, which can subsequently result in power 

delivery failures. 
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The capacity/size of the storage system is limited due to the relatively high cost of electrical energy storage 

elements. Therefore, the following three requirements need to be satisfied so that the storage controller can 

perform optimization of the total cost induced by both the energy price and the demand price. First, at each 

decision epoch of a billing period, it is important for the controller to forecast the PV power generation and load 

power consumption profiles. Second, the storage control algorithm should effectively mitigate the inevitable 

prediction error in PV and load power predictions. Third, the storage control algorithm should accurately account 

for the energy loss in the storage charging/discharging process and in power conversion circuitry to achieve 

optimality in the total cost saving. This requirement implies taking into account accurate energy loss in the 

storage charging/discharging process and in power conversion circuitry to achieve optimality in total cost saving. 

This requirement implies taking into account accurate energy loss models for storage and power conversion 

circuitry in the controller's optimization framework. To satisfy the first requirement, references [12], [13], and 

[14] are representatives of general PV power generation and load power consumption predictions by either 

forecasting the complete power profiles, or certain statistical characteristics of the power profiles. Prediction 

techniques include (but are not limited to): machine learning-based, ant colony clustering-based, and residential 

activity-based methods. In [6], we have presented PV and load power profiles prediction algorithms specifically 

designed for the Smart Grid residence. On the other hand, few research papers have focused on addressing the 

second and third requirements. 

In this paper, we consider the case of a Smart Grid residential user equipped with local PV power generation 

and an energy storage system. We consider a realistic electricity price function comprised of both energy and 

demand prices, with system architecture and the storage power loss model used in the paper. Based on the PV 

power generation and load power consumption prediction results from previous papers, we present a near-

optimal storage control algorithm that mitigates the inevitable prediction errors and properly accounts for the 

energy loss components due to power dissipation in the power conversion circuitries, as well as the rate capacity 

effect, which is the most significant portion of energy loss in the storage system. The proposed near-optimal 

storage control algorithm is effectively implemented by solving a convex optimization problem with polynomial 

time complexity at the beginning of each day in a billing period. Experimental results demonstrate that the 
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proposed residential storage control algorithm achieves up to 2.62X enhancement in electricity cost reduction 

compared with the baseline storage control algorithm. 

The remainder of this chapter is organized as follows. We describe the system modeling, price function, and 

overall cost function in Section 2. Section 3 presents the power loss modeling of the storage system. Section 4 

presents the residential storage control algorithm to compensate prediction error and minimize the total energy 

cost over a billing period. Experimental results and conclusion are presented in Section 5 and Section 6, 

respectively. 

2. System Modeling and Cost Function 

In this paper, we consider an individual Smart Grid residential user that is equipped with PV power 

generation and energy storage systems, as shown in Fig. 1. The PV system and storage system are connected to a 

residential DC bus, via unidirectional and bidirectional DC-DC converters, respectively. An AC bus, which is 

further connected to the Smart Grid, is connected via an AC/DC interface (e.g., inverter, rectifier, and 

transformer circuitry) to the residential DC bus. The residential AC load (e.g. household appliances, lighting and 

heating equipments) is connected to the AC bus. In this chapter, we consider the power losses in the above-

mentioned power conversion circuitry for the realistic concern. 

 

Fig. 1. Block diagram illustrating the interface between the PV module, storage system, residential load, and the 

Smart Grid. 

We adopt a slotted time modeling approach, i.e., all system constraints as well as decisions are provided for 

discrete time intervals of equal and constant length. More specifically, each day is divided into 𝑇 time slots, each 

with a duration of 𝐷. We use 𝑇 = 96 and 𝐷 = 15 minutes. Let set 𝑺 denote the set of all 𝑇 time slots in each day. 
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We adopt a realistic electricity price function comprised of both the energy price component and the demand 

price component as discussed before, with a billing period of a month [10]. Consider a specific day i of a billing 

period. The residential load power consumption at the jth time slot of that day is denoted by 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗]. The output 

power levels of PV and storage systems at the jth time slot are denoted by 𝑃𝑝𝑣,𝑖[𝑗] and 𝑃𝑠𝑡,𝑖[𝑗], respectively. 

Notice that, 𝑃𝑠𝑡,𝑖[𝑗] may be positive (discharging from the storage), negative (charging the storage), or zero. 

We assume that the PV power generation 𝑃𝑝𝑣,𝑖[𝑗] can be accurately predicted at the beginning of the ith day 

based on the PV power generation characteristics. On the other hand, the residential load power consumption 

𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] cannot be accurately predicted, and let 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] denote the predicted value of 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] in the jth time 

slot in the ith day. We use 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] to denote the power required from the Smart Grid, i.e., the grid power, at the 

jth time slot of the ith day, where 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] can be positive (if the Smart Grid provides power for the residential 

usage), negative (if the residential system sells power back into the Smart Grid), or zero. Similarly, we use 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] to denote the predicted value of 𝑃𝑔𝑟𝑖𝑑 ,𝑖[𝑗]. 

We consider realistic power conversion circuitry (i.e., their power conversion efficiency is less than 100%) in 

the proposed optimization framework. Accordingly, we use 𝜂1 , 𝜂2 , and 𝜂3  to denote the power conversion 

efficiencies of the DC-DC converter between the PV system and the DC bus, the DC-DC converter connecting 

between the storage system and the DC bus, and the AC/DC power conversion interface, respectively. Those 

power conversion efficiency values are typically in the range of 85% to 95%. 

There are three operating modes in the system. In the first mode, both the PV system and the storage system 

are providing power for the residential load (i.e., the storage system is being discharged.) For the jth time slot of 

the ith day, the condition that the residential system is in the first mode is given by 𝑃𝑠𝑡,𝑖[𝑗] ≥ 0. In this mode, the 

actual grid power 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] can be calculated by: 

𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] − 𝜂1 ⋅ 𝜂3 ⋅ 𝑃𝑝𝑣,𝑖[𝑗] − 𝜂2 ⋅ 𝜂3 ⋅ 𝑃𝑠𝑡,𝑖[𝑗]                   (1) 

whereas the predicted grid power 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] is given by: 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] − 𝜂1 ⋅ 𝜂3 ⋅ 𝑃𝑝𝑣,𝑖[𝑗] − 𝜂2 ⋅ 𝜂3 ⋅ 𝑃𝑠𝑡,𝑖[𝑗]                   (2) 
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In the second mode, the storage system is being charged, and the PV system is sufficient for charging the 

storage. For the jth time slot of the ith day, the condition that the residential system is in the second mode is given 

by 𝑃𝑠𝑡,𝑖[𝑗] < 0 and 𝜂1𝑃𝑝𝑣,𝑖[𝑗] + 1
𝜂2
𝑃𝑠𝑡,𝑖[𝑗] ≥ 0. In this mode, there is power flowing from the DC bus to the AC 

bus, and the actual grid power can be calculated by: 

𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] − 𝜂1𝜂3 ⋅ 𝑃𝑝𝑣,𝑖[𝑗] −
𝜂3
𝜂2
⋅ 𝑃𝑠𝑡,𝑖[𝑗]                   (3) 

whereas the predicted grid power 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] is given by: 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] − 𝜂1𝜂3 ⋅ 𝑃𝑝𝑣,𝑖[𝑗] −
𝜂3
𝜂2
⋅ 𝑃𝑠𝑡,𝑖[𝑗]                   (4) 

In the third mode, the storage system is being charged, and the PV system is insufficient for charging the 

storage. In other words, the storage is simultaneously charged by the PV system and the Grid. For the jth time 

slot of the ith day, the condition that the residential system is in the third mode is given by 𝑃𝑠𝑡,𝑖[𝑗] < 0 and 

𝜂1𝑃𝑝𝑣,𝑖[𝑗] + 1
𝜂2
𝑃𝑠𝑡,𝑖[𝑗] < 0. In this mode, there is power flowing from the AC bus to the DC bus, and the actual 

grid power is given by: 

𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] −
1
𝜂3
⋅ �𝜂1𝑃𝑝𝑣,𝑖[𝑗] + 1

𝜂2
𝑃𝑠𝑡,𝑖[𝑗]�                   (5) 

whereas the predicted grid power 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] is given by: 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] −
1
𝜂3
⋅ �𝜂1𝑃𝑝𝑣,𝑖[𝑗] + 1

𝜂2
𝑃𝑠𝑡,𝑖[𝑗]�                   (6) 

It can be observed from the above equations (1) - (6) that 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] (or 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]) is a piecewise linear 

(continuous) and monotonically decreasing function of 𝑃𝑠𝑡,𝑖[𝑗], when 𝑃𝑝𝑣,𝑖[𝑗] and 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] (or 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗]) values 

are given. 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] (or 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]) is also a convex function of 𝑃𝑠𝑡,𝑖[𝑗]. 

As specified in [10] and [11], the electricity price function is pre-announced by the utility company just 

before the start of each billing period, and it will not change until possibly the start of the next billing period. We 

use a general electricity price function as follows. We use 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] to denote the unit energy price at the jth time 

slot of a day. Then the cost we actually pay in a billing period due to the energy price component is given by: 
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𝐶𝑜𝑠𝑡𝐸 =  ∑ ∑ 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] ⋅ 𝑃𝑔𝑟𝑖𝑑 ,𝑖[𝑗]96
𝑗=1 ⋅ 𝐷30

𝑖=1                     (7) 

The demand price component, on the other hand, is charged for the peak power drawn from the Grid over certain 

time periods in a billing period. A generic definition of the demand price is given as follows. Let 𝑺1, 𝑺2, ..., 𝑺𝑁 

be 𝑁 different non-empty subsets of the original set 𝑺 of time slots, each of which corresponds to a specific time 

period, named by the term price periods, in a day. A price period does not necessarily need to be continuous in 

time. For example, a price period can span from 10:00 to 12:59 and then from 17:00 to 19:59, as shown in [10]. 

Also those price periods in a day do not need to be mutually exclusive. We use 𝑗 ∈ 𝑺𝑘 to denote the statement 

that the jth time slot in a day belongs to the kth price period. Let 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 denote the demand price charged over 

each kth price period 𝑺𝑘. Then the cost we have to pay in a billing period due to the demand price component is 

given by 

𝐶𝑜𝑠𝑡𝐷 = ∑ 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 ⋅ max1≤𝑖≤30,𝑗∈𝑺𝑘 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗]𝑁
𝑘=1      (8) 

Obviously, the actual total cost for the residential user in a billing period (i.e., a month) is the summation of the 

two aforesaid cost components. 

3. The Storage Power Modeling 

The most significant cause of power losses in the storage system, which is typically made of lead-acid 

batteries or Li-ion batteries, is the rate capacity effect of batteries [15]. To be more specific, high discharging 

current of the battery will reduce the amount of available energy that can be extracted from the battery, thereby 

reducing the battery's service life between fully charged and fully discharged states [15]. In other words, high-

peak pulsed discharging current will deplete much more of the battery's stored energy than a smooth workload 

with the same total energy demand. We use discharging efficiency of a battery to denote the ratio of the battery's 

output current to the degradation rate of its stored charge. Then the rate capacity effect specifies the fact that the 

discharging efficiency of a battery decreases with the increase of the battery's discharging current. The rate 

capacity effect also affects the energy loss in the battery during the charging process in a similar way. 

The rate capacity effect can be captured using the Peukert's formula, an empirical formula specifying the 

battery charging and discharging efficiencies as functions of the charging current 𝐼𝑐 and discharging current 𝐼𝑑, 

respectively: 
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𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐) = 1

�𝐼𝑐/𝐼𝑟𝑒𝑓�
𝛼𝑐  ,   𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑) = 1

�𝐼𝑑/𝐼𝑟𝑒𝑓�
𝛼𝑑      (9) 

where 𝛼𝑐 and 𝛼𝑑 are peukert's coefficients, and their values are typically in the range of 0.1 - 0.3; 𝐼𝑟𝑒𝑓  denotes 

the reference current of the battery, which is proportional to the battery's nominal capacity 𝐶𝑛𝑜𝑚. Typically, 𝐼𝑟𝑒𝑓  

is set to 𝐶𝑛𝑜𝑚/20, indicating that it takes 20 hours to fully discharge the battery using discharging current 𝐼𝑟𝑒𝑓 . 

We name 𝐼𝑐/𝐼𝑟𝑒𝑓  and 𝐼𝑑/𝐼𝑟𝑒𝑓 the battery's normalized charging current and normalized discharging current, 

respectively. Notice that the efficiency values 𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐) and 𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑) in Eqn. (9) are greater than 100% if the 

magnitude of the normalized charging or discharging current is less than one, which implies that the above-

mentioned Peukert's formula is not accurate in this case. We modify the Peukert's formula such that the 

efficiency values 𝜂𝑟𝑎𝑡𝑒,𝑐(𝐼𝑐)  and 𝜂𝑟𝑎𝑡𝑒,𝑑(𝐼𝑑)  become equal to 100% if the magnitude of the normalized 

charging/discharging current is less than one. In other words, the battery suffers from no rate capacity effect in 

this case. 

We denote the increase/degradation rate of storage energy in the jth time slot of the ith day by 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗], which 

may be positive (i.e., discharging from the storage, and the amount of stored energy decreases), negative (i.e., 

charging the storage, and the amount of stored energy increases), or zero. Based on the modified Peukert's 

formula, the relationship between 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] and the storage output power 𝑃𝑠𝑡,𝑖[𝑗] is given by: 

𝑃𝑠𝑡,𝑖[𝑗] =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑉𝑠𝑡 ⋅ 𝐼𝑠𝑡,𝑟𝑒𝑓 ⋅ �

𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]

𝑉𝑠𝑡⋅𝐼𝑠𝑡,𝑟𝑒𝑓
�
𝛽1

, if 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]

𝑉𝑠𝑡⋅𝐼𝑠𝑡,𝑟𝑒𝑓
> 1

𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗],   if − 1 ≤ 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]

𝑉𝑠𝑡⋅𝐼𝑠𝑡,𝑟𝑒𝑓
≤ 1

−𝑉𝑠𝑡 ⋅ 𝐼𝑠𝑡,𝑟𝑒𝑓 ⋅ �
�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]�
𝑉𝑠𝑡⋅𝐼𝑠𝑡,𝑟𝑒𝑓

�
𝛽2

, if 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]

𝑉𝑠𝑡⋅𝐼𝑠𝑡,𝑟𝑒𝑓
< −1

      (10) 

where 𝑉𝑠𝑡 is the storage terminal voltage and is supposed to be (near-) constant; 𝐼𝑠𝑡,𝑟𝑒𝑓 is the reference current of 

the storage system, which is proportional to its nominal capacity 𝐶𝑠𝑡,𝑛𝑜𝑚  given in Ampere-Hour (Ahr); 

coefficient 𝛽1 is in the range of 0.8 - 0.9, whereas coefficient 𝛽2 is in the range of 1.1 - 1.3. 

One can observe that when the storage discharging (or charging) current is the same, the discharging (or 

charging) efficiency becomes higher (i.e., the rate capacity effect becomes less significant) when the nominal 

capacity of the storage system is larger. 
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We use the function 𝑃𝑠𝑡,𝑖[𝑗] = 𝑓𝑠𝑡�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]� to denote the relationship between 𝑃𝑠𝑡,𝑖[𝑗]  and 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]. An 

important observation is that such a function is a concave and monotonically increasing function over the input 

domain −∞ < 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] < ∞ , as shown in Fig. 2. Due to the monotonicity property, 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]  is also a 

monotonically increasing function of 𝑃𝑠𝑡,𝑖[𝑗], denoted by 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] = 𝑓𝑠𝑡−1�𝑃𝑠𝑡,𝑖[𝑗]�. We can see from Fig. 2 that a 

lead-acid battery-based storage system has more significant energy loss due to rate capacity effect than a Li-ion 

battery-based storage system. However, the lead-acid battery-based storage system is more often deployed in 

real household scenarios due to cost considerations (the capital cost of lead-acid battery is only 100 - 200 $/kWh, 

whereas that of Li-ion battery is > 600 $/kWh [16].) 

 

Fig. 2. Relationship between 𝑃𝑠𝑡,𝑖[𝑗] and 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] in two types in two types of batteries. 

4. Optimal Control Algorithm of Residential Storage System 

In this section, we introduce in details the proposed near-optimal residential storage control algorithm 

accounting for prediction inaccuracy, which could effectively utilize the combination of PV power generation 

and load power consumption prediction results to minimize the total electricity cost, including both the energy 

price and the demand price, over each billing period (i.e., a month.) 

The storage control optimization problem is performed at time 00:00 (i.e., at the beginning) of each day in the 

billing period. To be more realistic, we assume that the prediction results of PV power generation and load 

power consumption profiles of each ith day are not available before time 00:00 of that day. We further assume 

that the PV power generation profile at each day, i.e., 𝑃𝑝𝑣,𝑖[𝑗] for 1 ≤ 𝑗 ≤ 96, can be accurately predicted from 
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the weather forecast and prediction algorithms presented in our previous work [6]. On the other hand, the load 

power consumption profile 𝑃�𝑙𝑜𝑎𝑑 ,𝑖[𝑗] for 1 ≤ 𝑗 ≤ 96 is not perfectly accurate. We assume that 𝑃�𝑙𝑜𝑎𝑑 ,𝑖[𝑗] follows 

a uniform distribution over the range of �𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] − 𝛿,𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] + 𝛿�, in which the average value 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] is 

the actual load power consumption and 𝛿  can be estimated from the previous (observed) load power 

consumption profiles. Hence, with given predicted value 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗], 𝑃𝑙𝑜𝑎𝑑,𝑖[𝑗] also follows a uniform distribution 

over the range of �𝑃�𝑙𝑜𝑎𝑑 ,𝑖[𝑗] − 𝛿,𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] + 𝛿�. At time 00:00 of each ith day, the storage controller performs 

optimization to find the optimal storage system output power profile 𝑃𝑠𝑡,𝑖[𝑗] for 1 ≤ 𝑗 ≤ 96 throughout the day, 

which is equivalent to finding the charging/discharging current profile of the storage system. 

In this section, we first introduce the storage control optimization performed at the beginning of a billing 

period (i.e., at time 00:00 of day 𝑖 = 1), in order to achieve a balance between the expected 𝐶𝑜𝑠𝑡𝐸 (induced by 

the energy price component) and expected 𝐶𝑜𝑠𝑡𝐷 (induced by the demand price component) values. In this way, 

we can minimize the total expected energy cost. Next, we introduce the storage control optimization performed 

at the beginning of the other days in the billing period, properly taking into account the prediction errors. 

Although in reality we control the output power 𝑃𝑠𝑡,𝑖[𝑗] (1 ≤ 𝑖 ≤ 30, 1 ≤ 𝑗 ≤ 96) of the storage system 

during the system operation, we use 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] (1 ≤ 𝑖 ≤ 30, 1 ≤ 𝑗 ≤ 96) as the control variables in the optimal 

storage control problem formulation because it can help transform the optimal storage control problem into a 

standard convex optimization problem. We observe from Eqns. (1), (3), (5), and (10) that the grid power 

𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] (1 ≤ 𝑖 ≤ 30, 1 ≤ 𝑗 ≤ 96) is a monotonically decreasing function of 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗], denoted by 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] =

𝑓𝑔𝑟𝑖𝑑�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]� , over the input domain −∞ < 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] < ∞ . Furthermore, 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑓𝑔𝑟𝑖𝑑�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]�  is a 

convex function of the control variable 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] according to the rules of convexity in function compositions 

[18], because of the following two reasons: (i) 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] is a convex and monotonically decreasing function of 

𝑃𝑠𝑡,𝑖[𝑗], and (ii) 𝑃𝑠𝑡,𝑖[𝑗] = 𝑓𝑠𝑡�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]� is a concave function of 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]. Similarly, the estimated grid power 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]  ( 1 ≤ 𝑖 ≤ 30 , 1 ≤ 𝑗 ≤ 96 ) is also a monotonically decreasing function of 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] , denoted by 

𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑓𝑔𝑟𝑖𝑑�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]�. 

At any time in a billing period, let 𝑃𝑒𝑎𝑘𝑘  (1 ≤ 𝑘 ≤ 𝑁) denote the peak grid power consumption value that is 

observed so far over the kth price period in the billing period of interest (cf. Section 2). Obviously, such 𝑃𝑒𝑎𝑘𝑘  
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values are initialized to zero at the beginning of the billing period, and are updated at the end of each day 

according to the actual (observed) grid power consumption profiles. 

4.1. Storage Control Optimization at the Beginning of a Billing Period 

In this section, we introduce the storage control optimization performed at the beginning of a billing period 

(i.e., at time 00:00 of day 𝑖 = 1), in order to achieve a desirable balance between the expected 𝐶𝑜𝑠𝑡𝐸  and 

expected 𝐶𝑜𝑠𝑡𝐷 values. At that time, we have 𝑃𝑒𝑎𝑘𝑘 = 0 for 1 ≤ 𝑘 ≤ 𝑁. The storage controller is only aware of 

the PV power generation and load power consumption predictions in the 1st day of the billing period, i.e., 

𝑃𝑝𝑣,1[𝑗] and 𝑃�𝑙𝑜𝑎𝑑,1[𝑗] for 1 ≤ 𝑗 ≤ 96, in which 𝑃�𝑙𝑜𝑎𝑑,1[𝑗] is inaccurate. The storage control derives the optimal 

𝑃𝑠𝑡,𝑖𝑛,1[𝑗] profile for 1 ≤ 𝑗 ≤ 96. The objective of the storage controller is to minimize an estimation of the total 

electricity cost in the billing period. Then the Optimal Storage Control problem performed at the Beginning of a 

billing period (the OSC-B problem) is formally described as follows: 

The OSC-B Problem Formulation 

Given the PV power generation profiles of the 1st day in the billing period, i.e., 𝑃𝑝𝑣,1[𝑗] for 1 ≤ 𝑗 ≤ 96, the 

predicted load power consumption profiles 𝑃�𝑙𝑜𝑎𝑑,1[𝑗] for 1 ≤ 𝑗 ≤ 96, and the initial energy 𝐸𝑠𝑡,𝑖𝑛𝑖,1 in the storage 

system at time 00:00. 

Find the optimal 𝑃𝑠𝑡,𝑖𝑛,1[𝑗] profile for 1 ≤ 𝑗 ≤ 96. 

Minimize an estimation of the total electricity cost in the billing period, which is given by: 

𝐶𝑜𝑠𝑡𝐷 + 𝐶𝑜𝑠𝑡𝐸 = 

30 ∙ ∑ 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] ⋅ 𝑃�𝑔𝑟𝑖𝑑,1[𝑗]96
𝑗=1 ⋅ 𝐷 + ∑ 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 ⋅ max�𝑃𝑒𝑎𝑘𝑘 , max𝑗∈𝑺𝑘 𝑃�𝑔𝑟𝑖𝑑,1[𝑗] + 𝛿�𝑁

𝑘=1   (11) 

Subject to the following constraints: 

For each 1 ≤ 𝑗 ≤ 96: 

−𝑃𝑀𝐴𝑋,𝑐 ≤ 𝑃𝑠𝑡,𝑖𝑛,1[𝑗] ≤ 𝑃𝑀𝐴𝑋,𝑑          (12) 

0 ≤ 𝐸𝑠𝑡,𝑖𝑛𝑖,1 − ∑ 𝑃𝑠𝑡,𝑖𝑛,1[𝑙]𝑗
𝑙=1 ⋅ 𝐷 ≤ 𝐸𝑠𝑡,𝑓𝑢𝑙𝑙         (13) 

𝐸𝑠𝑡,𝑖𝑛𝑖,1 − ∑ 𝑃𝑠𝑡,𝑖𝑛,1[𝑗]96
𝑗=1 ⋅ 𝐷 ≥ 𝐸𝑠𝑡,𝑖𝑛𝑖,1        (14) 
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In the OSC-B problem formulation, the objective function (11) is an estimation of the total electricity cost in 

the whole billing period. In this equation, we use the predicted PV power generation and load power 

consumption profiles of the first day, i.e., 𝑃𝑝𝑣,1[𝑗] and 𝑃�𝑙𝑜𝑎𝑑,1[𝑗] for 1 ≤ 𝑗 ≤ 96, as a representation for the 

whole billing period. This is because the storage controller can only predict the PV power generation and load 

power consumption profiles in the first day. Moreover, in the objective function (11), we use 𝑃�𝑔𝑟𝑖𝑑,1[𝑗] + 𝛿 as an 

estimation of the expected value of max𝑖 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗]. This is because of the assumption that 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] is uniformly 

distributed over the range of �𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] − 𝛿,𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] + 𝛿� in the OSC-B problem formulation. 

In the OSC-B problem, constraint (12) represents the restrictions on the maximum allowable amount of power 

flowing into and out of the storage system during charging and discharging, respectively. Constraint (13) ensures 

that the storage energy can never become less than zero or exceed a maximum value 𝐸𝑠𝑡,𝑓𝑢𝑙𝑙 throughout the day. 

Finally, constraint (14) ensures that the remaining storage energy at the end of day, which is required for 

performing peak power shaving on the next day, is no less than the initial value 𝐸𝑠𝑡,𝑖𝑛𝑖,1. 

The OSC-B problem is a standard convex optimization problem due to the following two reasons: 

• The objective function (11) is a convex objective function because the pointwise maximum function of a 

set of convex functions is still a convex function. 

• The other constraints are all convex (or linear) inequality constraints of optimization variables. 

Although the OSC-B problem is formulated as a convex optimization problem, and therefore, it can be solved 

optimally with a polynomial time complexity using convex optimization algorithms [18], [19], it is difficult to 

directly solve the OSC-B problem by using standard convex optimization tools such as CVX [19] or the fmincon 

function in MATLAB. This is because the function 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] = 𝑓𝑔𝑟𝑖𝑑�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]� is non-differentiable at several 

points, and typical convex optimization tools only accept differentiable objective functions. To address this issue, 

we use a piecewise linear function to approximate the function 𝑓𝑔𝑟𝑖𝑑�𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]�, and then transform the OSC-B 

problem into a linear programming problem (please note that all the constraints are linear constraints), which 

could be optimally solved using standard optimization tools in polynomial time complexity. Details are omitted 

due to space limitation. Similar method will also be applied to the optimal storage control problem as shall be 

discussed in Section 4.2. 
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4.2. Storage Control Optimization at the Beginning of the Other Days 

We introduce the storage control optimization at the beginning of the other days in the billing period (i.e., 

days 2, 3, and so on). Suppose that we are at the beginning of the ith day of the billing period of interest. At that 

time, the 𝑃𝑒𝑎𝑘𝑘 values may not be zero any more. The storage controller is aware of the accurate PV power 

predictions and inaccurate load power consumption predictions in the ith day, i.e., 𝑃𝑝𝑣,𝑖[𝑗] and 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗]  for 

1 ≤ 𝑗 ≤ 96. The storage controller derives the optimal 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] profile for 1 ≤ 𝑗 ≤ 96. The objective of the 

storage controller is to minimize the expected increase of the electricity cost in the ith day of the billing period, as 

will be formally described as follows. The Optimal Storage Control problem performed at the beginning of the 

Other days in the billing period (the OSC-O problem) is formally described as follows: 

The OSC-O Problem Formulation 

Given the PV power generation profiles of the ith day in the billing period, i.e., 𝑃𝑝𝑣,𝑖[𝑗] for 1 ≤ 𝑗 ≤ 96, the 

predicted load power consumption profiles 𝑃�𝑙𝑜𝑎𝑑,𝑖[𝑗] for 1 ≤ 𝑗 ≤ 96, and the initial energy 𝐸𝑠𝑡,𝑖𝑛𝑖,𝑖 in the storage 

system at time 00:00. 

Find the optimal 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] profile for 1 ≤ 𝑗 ≤ 96. 

Minimize the estimated increase in the electricity cost in the ith day, which is given by 

∑ 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] ⋅ 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]96
𝑗=1 ⋅ 𝐷 + ∑ 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 ⋅ �max �𝑃𝑒𝑎𝑘𝑘 , max

𝑗∈𝑺𝑘

𝑃𝑒𝑎𝑘𝑘+𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]+𝛿

2
� − 𝑃𝑒𝑎𝑘𝑘�𝑁

𝑘=1   (15) 

or equivalently, minimize 

∑ 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] ⋅ 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]96
𝑗=1 ⋅ 𝐷 + ∑ 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 ⋅ max �𝑃𝑒𝑎𝑘𝑘 , max

𝑗∈𝑺𝑘

𝑃𝑒𝑎𝑘𝑘+𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]+𝛿

2
�𝑁

𝑘=1   (16) 

Subject to the following constraints: 

For each 1 ≤ 𝑗 ≤ 96: 

−𝑃𝑀𝐴𝑋,𝑐 ≤ 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗] ≤ 𝑃𝑀𝐴𝑋,𝑑         (17) 

0 ≤ 𝐸𝑠𝑡,𝑖𝑛𝑖,𝑖 − ∑ 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑙]
𝑗
𝑙=1 ⋅ 𝐷 ≤ 𝐸𝑠𝑡,𝑓𝑢𝑙𝑙         (18) 

𝐸𝑠𝑡,𝑖𝑛𝑖,𝑖 − ∑ 𝑃𝑠𝑡,𝑖𝑛,𝑖[𝑗]96
𝑗=1 ⋅ 𝐷 ≥ 𝐸𝑠𝑡,𝑖𝑛𝑖,𝑖          (19) 

In the OSC-O problem formulation, the objective function (15) is an estimation of the increase of the 

electricity cost in the ith day of the billing period of interest. The objective function is comprised of two parts: (i) 



15 

the expected energy price-induced electricity cost in the ith day of the billing period, given by the first term 

∑ 𝑃𝑟𝑖𝑐𝑒𝐸[𝑗] ⋅ 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]96
𝑗=1 ⋅ 𝐷  of Eqn. (15), and (ii) the estimation of the increase in demand price-induced 

electricity cost in the billing period of interest, given by the second term 

∑ 𝑃𝑟𝑖𝑐𝑒𝐷,𝑘 ⋅ �max �𝑃𝑒𝑎𝑘𝑘 , max
𝑗∈𝑺𝑘

𝑃𝑒𝑎𝑘𝑘+𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]+𝛿

2
� − 𝑃𝑒𝑎𝑘𝑘�𝑁

𝑘=1  of Eqn. (15). In the second term, we use 

𝑃𝑒𝑎𝑘𝑘+𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗]+𝛿

2
 as a (conservative) estimation of the expected value of max(𝑃𝑒𝑎𝑘𝑘 ,𝑃𝑔𝑟𝑖𝑑 ,𝑖[𝑗]) when 𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] +

𝛿 ≥ 𝑃𝑒𝑎𝑘𝑘 . Please note that 𝑃𝑔𝑟𝑖𝑑,𝑖[𝑗] is uniformly distributed over the range of �𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] − 𝛿,𝑃�𝑔𝑟𝑖𝑑,𝑖[𝑗] + 𝛿� in 

the problem formulation. Moreover, the constraints in the OSC-O problem are similar to the constraints in the 

OSC-B problem as discussed in Section 4.1. 

Again, similar to the above-mentioned OSC-B problem, the OSC-O problem has a convex objective function 

(15) or (16), and linear inequality constraints (17) - (19), of the optimization variables. Therefore, the OSC-O 

problem can also be optimally solved with polynomial time complexity using the standard convex optimization 

methods [18], [19]. 

5. Experimental Results 

In this section, we present the experimental results on the effectiveness of the proposed accurate component 

model-based near-optimal residential storage control algorithm accounting for prediction errors. The PV power 

profiles used in our experiments are measured at Duffield, VA, in the year 2007, whereas the electric load data 

comes from the Baltimore Gas and Electric Company, also measured in the year 2007 [21]. We add some 

random peaks to the electric load profiles. 
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Fig. 3. The daily energy price component in the second type of electricity price function. 

We use two types of electricity price functions. The first type of electricity price function is a real price 

function similar to [10], [11], which is given as follows. The energy price component is given by: 0.01879 

$/kWh during 00:00 to 09:59 and 20:00 to 23:59, 0.03952 $/kWh during 10:00 to 12:59 and 17:00 to 19:59, 

0.04679 $/kWh during 13:00 to 16:59. For the monthly demand price component, there are three price periods in 

a day: (i) the "high peak" period from 13:00 to 16:59, with demand price of 9.00 $/kW, (ii) the "low peak" period 

from 10:00 to 12:59 and from 17:00 to 19:59, with demand price of 3.25 $/kW, (iii) the "overall" period from 

00:00 to 23:59 (the whole day), with demand price of 5.00/kW. The second type is a synthesized electricity price 

function. The energy price component over a day is demonstrated in Fig. 3. For the monthly demand price 

component, we consider only one "high peak" period from 18:00 to 21:59 with demand price of 9.00 $/kW, 

whereas the rest is "low peak" period. 

We define the cost saving capability of a storage control algorithm (the proposed algorithm or the baseline 

algorithm) to be the average daily cost saving over a billing period due to the additional storage system, 

compared with the same residential Smart Grid user equipped only with the PV system. We compare the cost 

saving capabilities of the proposed near-optimal storage control algorithm with the baseline algorithm. The 

baseline algorithm charges the storage system from the Grid during the "off peak" period (00:00 to 09:59 and 

20:00 to 23:59 in the first type of electricity price function or 00:00 to 17:59 and 22:00 to 23:59 in the second 

type of electricity price function) with constant charging power, and distributes energy stored in the storage 

system evenly in the "high peak" period. 

First we show experimental results based on the first type of electricity price function. In the experiments, we 

set the amount of residual energy at the end of each day to be no less than 20% of the full energy capacity of the 

storage system. We set the inaccuracy parameter 𝛿 to be 0.8. Table I illustrates the comparison results on the cost 

saving capabilities between the proposed near-optimal storage control algorithm accounting for prediction 

inaccuracy and the baseline algorithm on every month throughout a year, when the capacity of the storage is 45 

Ah. The improvement in cost saving capabilities using the proposed algorithm is provided in the table. Table II 

shows the comparison results on the same testing data when the capacity of the storage system is 60 Ah. We can 

see from these two tables that the proposed near-optimal residential storage control algorithm consistently 
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outperforms the baseline algorithm, with the maximum improvement of 162% (i.e., 2.62X) on the cost saving 

capability (on December, 45 Ah storage capacity). Furthermore, it can be observed that the proposed storage 

control algorithm demonstrates more significant improvement on the cost saving capability over the baseline 

system when the storage system has a capacity of 60 Ah. It also achieves higher cost saving capability during the 

winter than during the summer. The reason is that the peak load power consumption generally occurs in the 

"high peak" price period in the summer, and therefore, the baseline algorithm achieves relatively higher 

performance by distributing the storage energy only in the "high peak" periods. 

TABLE I.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM COMPARED WITH THE BASELINE ALGORITHM, 
WHEN THE STORAGE CAPACITY IS 45AH AND PARAMETER 𝛿 SET TO BE 0.8 

Month Jan. Feb. Mar. Apr. 

Improvement 99% 112% 69% 52% 

Month May Jun. Jul. Aug. 

Improvement 54% 66% 53% 59% 

Month Sep. Oct. Nov. Dec. 

Improvement 54% 65% 100% 162% 

TABLE II.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM WITH THE BASELINE ALGORITHM, WHEN THE 
STORAGE CAPACITY IS 60AH AND PARAMETER 𝛿 SET TO BE 0.8 

Month Jan. Feb. Mar. Apr. 

Improvement 159% 142% 51% 102% 

Month May Jun. Jul. Aug. 

Improvement 46% 61% 101% 64% 

Month Sep. Oct. Nov. Dec. 

Improvement 64% 127% 161% 103% 

 

We set the parameter 𝛿 to be 1.5 and conduct the same experiments as discussed before. Table III and Table 

IV illustrate the comparison results when the capacity of the storage is 45 Ah and 60 Ah, respectively. We can 

see from these two tables that the proposed near-optimal residential storage control algorithm accounting for 

prediction inaccuracy consistently outperforms the baseline algorithm, with the maximum improvement of 160% 

(i.e., 2.60X) on the cost saving capability (on December, 45 Ah storage capacity). Moreover, when comparing 

with Table I and Table II, we can observe that the improvement in cost saving capability of the proposed 
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algorithm is slighted degraded in Table III and Table IV (i.e., when parameter 𝛿 is 1.5). This is because the 

prediction accuracy is lower, thereby degrading the effectiveness of the proposed near-optimal algorithm. 

TABLE III.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM COMPARED WITH THE BASELINE ALGORITHM, 
WHEN THE STORAGE CAPACITY IS 45AH AND PARAMETER 𝛿 SET TO BE 1.5 

Month Jan. Feb. Mar. Apr. 

Improvement 98% 82% 64% 75% 

Month May Jun. Jul. Aug. 

Improvement 52% 50% 44% 88% 

Month Sep. Oct. Nov. Dec. 

Improvement 56% 85% 53% 160% 

TABLE IV.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM WITH THE BASELINE ALGORITHM, WHEN THE 
STORAGE CAPACITY IS 60AH AND PARAMETER 𝛿 SET TO BE 1.5 

Month Jan. Feb. Mar. Apr. 

Improvement 112% 142% 95% 88% 

Month May Jun. Jul. Aug. 

Improvement 54% 48% 63% 67% 

Month Sep. Oct. Nov. Dec. 

Improvement 69% 48% 113% 80% 

 

Next we show experimental results based on the second type of electricity price function. We only show 

experimental results on the 60 Ah storage system due to space limitation. Table V illustrates the comparison 

results on the cost saving capabilities between the proposed near-optimal storage control algorithm accounting 

for prediction inaccuracy and the baseline algorithm on every month throughout a year, when the prediction 

inaccuracy parameter 𝛿 is set to 0.8. Table VI illustrates the comparison results when the prediction inaccuracy 

parameter 𝛿 is set to 1.5. Once again, the proposed near-optimal residential storage control algorithm accounting 

for prediction inaccuracy consistently outperforms the baseline algorithm, with a maximum improvement of 106% 

on the cost saving capability. However, one can notice that the improvement is less significant than the results on 

the first type of electricity price function. This is because the energy cost due to the demand price component is 

less significant compared with that due to the energy price component in this case, which will degrade the 

improvement achieved by the proposed near-optimal solution (because the proposed solution is the most 

effective in reducing cost due to the demand price component.) 
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TABLE V.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM COMPARED WITH THE BASELINE ALGORITHM, 
UNDER THE SECOND TYPE OF PRICE FUNCTION AND PARAMETER 𝛿 SET TO BE 0.8 

Month Jan. Feb. Mar. Apr. 

Improvement 106% 98% 65% 67% 

Month May Jun. Jul. Aug. 

Improvement 39% 38% 53% 49% 

Month Sep. Oct. Nov. Dec. 

Improvement 62% 77% 76% 91% 

TABLE VI.  IMPROVEMENT IN COST SAVING CAPABILITY OF THE PROPOSED ALGORITHM COMPARED WITH THE BASELINE ALGORITHM, 
UNDER THE SECOND TYPE OF PRICE FUNCTION AND PARAMETER 𝛿 SET TO BE 1.5 

Month Jan. Feb. Mar. Apr. 

Improvement 81% 105% 45% 65% 

Month May Jun. Jul. Aug. 

Improvement 37% 40% 43% 77% 

Month Sep. Oct. Nov. Dec. 

Improvement 38% 56% 68% 66% 

6. Conclusion 

In this paper, we address the problem of integrating residential PV power generation and storage systems into 

the Smart Grid for simultaneous peak power shaving and total electricity cost minimization over a billing period, 

making use of the dynamic energy pricing models. The residential storage control should effectively mitigate the 

inevitable prediction errors and properly account for the energy loss in storage charging/discharging and in 

power conversion circuitries. Based on the PV power generation and load power consumption prediction 

methods in our previous papers, we propose an accurate component model-based near-optimal storage control 

algorithm taking into account these aspects. We effectively implement the near-optimal storage control 

algorithm by solving a convex optimization problem at the beginning of each day with polynomial time 

complexity. Experimental results demonstrate the effectiveness of the proposed near-optimal residential storage 

control algorithm in electricity cost reduction compared with the baseline control algorithm. 
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