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ABSTRACT – Monitoring and analyzing virtual machines (VMs) in a datacenter enables a cloud 
provider to place them on fewer physical machines with negligible performance penalty, a process 
which is known as the VM consolidation. Such a consolidation allows the cloud provider to take 
advantage of dissimilar workloads to reduce the number of ON servers, and thereby, reduce the 
datacenter energy consumption. Moreover, placing multiple copies of VMs on different servers and 
distributing the incoming requests among them can reduce the resource requirement for each copy 
and help the cloud provider do more aggressive consolidation. This chapter begins by a substantial 
review of various approaches for consolidation, resource management, and power control in 
datacenters. It continues by presenting a dynamic programming-based algorithm for creating 
multiple copies of a VM without degrading performance and doing VM consolidation for the 
purpose of datacenter energy minimization. A side benefit of the consolidation is to improve 
reliability of the services provided by the datacenter to its clients. Using the proposed algorithm, it 
is shown that more than 20% energy saving can be achieved compared to the previous work.  

I. INTRODUCTION 
Demand for computing power has been increasing due to the penetration of information technologies 

in our daily interactions with the world both at personal and public levels, encompassing business, 
commerce, education, manufacturing, and communication services. At personal level, the wide scale 
presence of online banking, e-commerce, SaaS (Software as a Service), social networking and so on 
produce workloads of great diversity and enormous scale. At the same time computing and information 
processing requirements of various public organizations and private corporations have also been 
increasing rapidly. Examples include digital services and functions required by the various industrial 
sectors, ranging from manufacturing to housing, from transportation to banking. Such a dramatic increase 
in the computing demand requires a scalable and dependable IT infrastructure comprising of servers, 
storage, network bandwidth, physical infrastructure, Electrical Grid, IT personnel and billions of dollars 
in capital expenditure and operational cost  to name a few.  

Datacenters are the backbone of today's IT infrastructure. The reach of datacenters spans a broad range 
of application areas from energy production and distribution, complex weather modeling and prediction, 
manufacturing, transportation, entertainment and even social networking. There is a critical need to 
continue to improve efficiency in all these sectors by accelerated use of computing technologies, which 
inevitably requires increasing the size and scope of datacenters. However, datacenters themselves are now 
faced with a major impediment of power consumption. Some reports such as [1] and [2] estimate the 
datacenter electricity demand in 2012 was around 31 GW globally which is equivalent to the electricity 
demand of around 23 million homes. These reports also predict fast growth rate for electrical energy 
consumption in datacenters. Power consumption of datacenters will soon match or exceed many other 
energy-intensive industries such as air transportation.  

Apart from the total energy consumption, another critical component is the peak power; According to 
an EPA report [3], the peak load on the power grid from datacenters is estimated to be approximately 7 
Gigawatts (GW) in 2006 in US, equivalent to the output of about 15 base-load power plants. This load is 



increasing as shipments of high-end servers used in datacenters (e.g., blade servers) are increasing at a 20-
30 percent CAGR.  

System-wide power management is a huge challenge in datacenters. First, restrictions on availability 
of power and large power consumption of the IT equipment make the problem of datacenter power 
management a very difficult one to cope with. Second, the physical infrastructure (e.g., the power backup 
and distribution system and the computer room air conditioning, or CRAC for short, systems) tends to 
account for up to one third of total datacenter power and capital costs [4, 5, 6].  Third, the peak 
instantaneous power consumption must be controlled. The reason for capping power dissipation in the 
datacenters is the capacity limitation of the power delivery network (PDN) in the datacenter facility. 
Fourth, power budgets in datacenters exist in different granularities: datacenter, cluster, rack or even 
servers. A difficulty in the power capping is the distributed nature of power consumption in the 
datacenter. For example, if there is a power budget for a rack in the datacenter, the problem is how to 
allocate this budget to different servers and how to control this budget in a distributed fashion. Finally, 
another goal is to reduce the total power consumption. A big portion of the datacenter operational cost is 
the cost of electrical energy purchased from the utility companies. A trade-off exists between power 
consumption and performance of the system and the power manager should consider this trade-off 
carefully. For example, if the supply voltage level and clock frequency of a CPU are reduced, the average 
power consumption (and even energy needed to execute a given task) is reduced, but the total 
computation time is increased. 

Low utilization of servers in a datacenter is one of the biggest factors in low power efficiency of the 
datacenter. The most important reason behind having the best energy efficiency at 100% load in servers is 
the energy non-proportional behavior of the servers [7]. This means that servers with idle status consume 
a big portion of their peak power consumption. The fact that most of the times, servers are utilized with 
between 10 to 50% of their peak load and discrete frequent idle times of servers [8] amplify this issue in 
the datacenters. This fact motivates the design of energy-proportional servers [4] to minimize the overall 
power consumption. However, due to the non-energy-proportional nature of the current servers, it is 
prudent from an energy efficiency viewpoint to have as few servers as possible turned on with each active 
server being highly utilized. In order to decrease the number of active servers, sharing a physical server 
between several applications is necessary. Virtualization technology creates this opportunity. 

Virtualization technology creates an application-hosting environment that provides independence 
between applications that share a physical machine together [9]. Nowadays, computing systems rely 
heavily on this technology. Virtualization technology provides a new way to improve the power 
efficiency of the datacenters: consolidation. Consolidation means assigning more than one Virtual 
Machines (VM) to a physical server. As a result, some of the servers can be turned off and power 
consumption of the computing system decreases. Again the technique involves performance-power 
tradeoff. More precisely, if workloads are consolidated on servers, performance of the consolidated VMs 
(virtual machines) may decrease because of physical resource contention (CPU, memory, I/O bandwidth) 
but the power efficiency will improve because fewer servers will be used to service the VMs. 

In order to determine the amount of the resources that needs to be allocated to each VM, some 
performance target needs to be defined for each VM. The IT infrastructure provided by the datacenter 
owners/operators must meet various Service Level Agreements (SLAs) established with the clients. The 
SLAs may be resource related (e.g., amount of computing power, memory/storage space, network 
bandwidth), performance related (e.g., service time or throughput), or even quality of service related (24-
7 availability, data security, percentage of dropped requests). SLA constraints can be used to determine 
the limit (minimum and maximum) on the resource requirement of each VM to be able to satisfy the 
required performance target. On the other hand, in order to minimize the operational cost of the 
datacenter, energy cost also needs to be considered to decide about optimal resource assignment to VMs. 

The scale of the resource management problem in datacenters is very big because a datacenter 
comprises of thousands to tens of thousands of server machines, working in tandem to provide services to 
hundreds of thousands clients at the same time, see for example reference [10] and [11]. In such a large 
computing system, energy efficiency can be maximized through system-wide resource allocation and VM 
consolidation. This is in spite of non-energy-proportional characteristics of current server machines [7]. 

Resource management solution affects the operational cost and admission control policy in the cloud 
computing system. Resource management in datacenter is usually handled by three types of resource 



manager: resource arbiter, power manager and thermal managers. Resource arbiter or VM manager, 
decides about VM to server assignment and migration and resource allocation. Power manager controls 
the average and peak power in a distributed or centralized fashion in datacenters and thermal manager 
keeps the hardware temperature below certain critical point and minimizes the power consumption of the 
cooling system. In this chapter, a review of the most important work in the area of the resource arbiter and 
power manager is presented. Moreover, a novel approach to minimize the energy cost of datacenter by 
increasing the VM consolidation opportunity using VM replication is proposed.  

Generating multiple copies of a VM and placing them on different servers is one of the basic ways to 
increase the service reliability. In this approach, only the original copy of the VM handles the requests 
and the other copies are idle. In this chapter, we propose to exploit all of these copies for servicing the 
requests. In this scenario, resource provided for each copy of the VM should satisfy SLA requirements 
and the set of distributed VMs should be able to service all of the incoming requests. For this reason, 
memory Band Width (bandwidth) provided for each copy of the VM should be the same as that of the 
original VM whereas the total CPU cycles provided for these VMs should be greater or equal to the 
provided CPU cycles for the original VM. Using this approach and an effective VM placement algorithm, 
which determines the number of VMs and place them on physical machines, the energy cost of the system 
can be reduced by 20%.  

The proposed VM replication and placement algorithm is based on the dynamic programming and 
local search methods. The dynamic programming method determines the number of copies for each VM 
and places them on servers and the local search tries to minimize the energy cost by turning off the under-
utilized servers. 

The rest of this chapter is organized as follows. Related work is presented in the next section. The 
system model and problem formulation are presented in section III and IV. The proposed algorithm is 
presented in section V. The simulation results are presented in the section VI and the conclusions and 
future work directions are presented in the last section. 

II. RELATED WORK IN DATACENTER POWER AND RESOURCE MANAGEMENT 
A datacenter resource management system is comprised of three main components: resource arbiter, 

power manager, and temperature manager. An exemplary architecture for the datacenter resource 
management system with emphasis on the resource arbiter is depicted in Figure 1. 



 
Figure 1. An example of resource management architecture in a datacenter. 

In this architecture, the resource arbiter handles the application placement into resources and 
application migration. In this chapter, the term resource arbiter and resource manager are used 
interchangeably.  

To assign applications or VMs to resources in a datacenter, one must monitor the resource availability 
and performance state of the physical servers in the datacenter. In addition, the resource arbiter must 
interact with the power and thermal managers. For example, if the power manager has limited the 
maximum power consumption of server, the resource arbiter should consider this limitation when 
assigning a new VM to the server. On the other hand, the power manager tries to minimize the average 
power consumption in each server considering the performance constraints of VMs assigned to servers as 
determined by the resource arbiter. Similarly, the resource arbiter must use the information provided by 
the thermal manager to decrease the workload of hot servers. At the same time, the thermal manager tries 
to control the temperature of active servers while accepting VM to server assignments made by the 
resource arbiter and meeting the per-VM performance constraints set forth the arbiter.  

In this section, a review of the important approaches and techniques for design and optimization of 
resource arbiter and power managers in datacenters are presented. Thermal managers are out of the scope 
of this chapter. The review is by no means comprehensive, but aims to present some key approaches and 
results.  

A. Resource Arbiter in Datacenters 
Several versions of the resource management problem in datacenters have been investigated in the 

literature. Some of the prior work focuses on maximizing the number of served tasks in a datacenter (or 
total revenue for the datacenter operator) without considering the energy cost. Example references are 
[12] and [13], where the authors present heuristic solutions based on network flow optimization to find a 
revenue maximizing solution for a scenario in which the total resource requirement of tasks is more than 
the total resource capacity in the datacenter. The resource assignment problem for tasks with fixed 
memory, disc, and processing requirements is tackled in [14], where the authors describe an 
approximation algorithm for solving the problem of maximizing the number of tasks serviced in the 
datacenter. 
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Another version of the resource management problem is focused on minimizing the total electrical 
energy cost. Key considerations are to service all incoming tasks while satisfying specified performance 
guarantees for each task. A classic example of this approach is the work of Chase et al. in [15] who 
present a resource assignment solution in a hosting datacenter with the objective of minimizing the energy 
consumption while responding to power supply disruptions and/or thermal events. In this paper, 
economics-based approaches are used to manage the resource allocation in a system with shared resources 
in which clients bid for resources as a function of delivered performance.  

Yet another version of the resource management problem considers the server and cooling power 
consumptions during the resource assignment problem. A representative of approaches to solving this 
problem is reference [16], in which Pakbaznia et al. present a solution for concurrent task assignment and 
VM consolidation in regular period called epochs. More precisely, workload prediction is used to 
determine the resource requirements (and hence the number of ON servers) for all incoming tasks for the 
epoch. Next considering the current datacenter temperature map and using an analytical model for 
predicting the future temperature map as a function of the server power dissipations, locations of the ON 
servers for the next epoch are determined and tasks are assigned to the ON servers so that the total 
datacenter power consumption is minimized.  

Considering the effect of consolidation on the performance of servers is the key to reducing the total 
power consumption in a datacenter without creating unacceptable performance degradations. For 
example, Srikantaiah et al. [17] present an energy-aware resource assignment technique based on an 
experimental study of the performance, energy usage, and resource utilization of the servers while 
employing VM consolidation. In particular, two dimensions for server resources are considered in this 
paper: disk and CPU. Effects of the consolidation on performance degradation and energy consumption 
per transaction are quantified. The authors recommend applying consolidation so as not to over-commit 
servers in any resource dimension. The problem of application placement into a minimum number of ON 
servers, which is equivalent to the well-known bin-packing problem, is discussed, and a greedy algorithm 
for solving it is described.  

Correlation of resource utilization patterns among VMs is an important factor when VM consolidation 
decision is being made [18]. Assigning highly (positive) correlated VMs in terms of resource usage, will 
increase the chance of VM migrations that is needed to avoid SLA violation. On the other hand, 
consolidating VMs that have less correlation in terms of their resource usage pattern results in more 
packed servers and lower power consumption [19]. Practical experiments of this theory are presented at 
reference [20] which suggests that the interferences between consolidated VMs in terms of 
(CPU/memory/networking) resource usage can cause the resource utilization to be lower or higher than 
the summation of the resource usage for VMs assigned to the server and needs to be considered to avoid 
performance degradation and SLA violations.  

Resource usage of a VM in server can interfere with other VMs placed on that server. Moreover, VMs 
can have uneven resource utilization along different dimensions. These issues need to be considered in 
VM consolidation decisions. For example, the effect of uneven resource utilization along different 
dimensions (e.g., CPU, memory, and I/O) by different VMs and the question of how to improve 
datacenter energy efficiency by increasing the resource utilization in different resource dimensions are 
investigated by Xiao et al. in [21]. An approach to resolve the interference between VMs placed on the 
same physical machine is presented at [22].  

A technique to maximize the utilization of the active server while creating more idle servers that can 
subsequently be turned off is to migrate VMs from a server with a low utilization factor to another server. 
A good example of considering server power consumption and VM migration cost in the resource 
assignment problem is reference [23], which presents power and migration cost-aware application 
placement in a virtualized datacenter. For this problem, each VM has fixed and known resource 
requirements based on the specified service level agreement (SLA). An elaborate architecture called 
pMapper and an effective VM placement algorithm to solve the assignment problem are key components 
of the proposed solution. More precisely, various actions in pMapper algorithm are classified as: (i) soft 
actions like VM re-sizing, (ii) hard actions such as Dynamic Voltage Frequency Scaling (DVFS), and (iii) 
VM consolidation actions. These actions are implemented by different parts of the implemented 
middleware. There is a resource arbiter, which has a global view of the applications and their SLAs and 
issues soft action commands. A power manager issues hard action commands whereas a migration 



manager triggers consolidation decisions in coordination with a virtualization manager. These managers 
communicate with an arbitrator as the global decision maker to set the VM sizes and find a good 
application placement based on the inputs of different managers. Any revenue losses due to performance 
degradation caused by VM migration are calculated considering the given SLAs and used to set the 
migration costs of VMs. To optimally place VMs onto servers, the authors rely on a power efficiency 
metric to statically rank the servers independent of the applications running on them. This is because 
creating a dynamic ranking model for all mixes of all applications on all servers is infeasible. A heuristic 
based on the first-fit decreasing bin-packing algorithm [24] is presented to place the applications on 
servers starting with the most power-efficient server. Different versions of the first fit decreasing solution 
are proposed in a number of previous work including [25] and [26] to decide about VM assignment and 
consolidation.  

The problem of resource allocation is more challenging in case of having clients with SLA contracts 
for a datacenter owner who wants to maximize its profit by reducing the SLA violations and decrease the 
operational cost [27]. Many researchers in different fields have addressed the problem of SLA-driven 
resource assignment. Some of the previous work has considered probabilistic SLA constraints with 
violation penalty, e.g., references [28] and [29]. Other work has relied on utility function-based SLA [30, 
31, 26, 32]. In reference [33], a SLA with soft constraint on average response time is considered for 
multi-tier applications to solve the resource assignment problem. To determine and adjust the amount of 
resource allocated to VMs to satisfy SLA constraints, approaches based on reinforcement learning [34] 
and look-ahead control theory [35] have also been proposed. SLA contracts with guarantee on response 
time and/or penalties paid for violating the stipulated response time constraint is considered in references 
[36]. In this paper, a resource management system is presented that determines the amount of resource 
that needs be allocated to VMs based on SLA contracts and energy cost and subsequently assigns VMs to 
servers so as to reduce the operational cost of datacenter.  

Due to big number of VMs and servers in a datacenter, an important factor in designing VM 
management solution is to make it as scalable as possible. Different works in the literature tackles this 
problem. Feller et al. [37] present a fully decentralized VM control solution to make the VM 
consolidation decisions. The proposed solution is based on peer-to-peer communication between physical 
servers to decide about assignment of new VM to a server and migration of VMs from an overloaded 
server. A decentralized VM assignment and migration is presented in [38] that targets to make the 
resource management solution scalable. The decision regarding accepting new VMs is decided by servers 
(based on a probabilistic approach) inside datacenter based on their current utilization. Hierarchical 
resource management solution is another way of decreasing the complexity of the resource management 
solution. A hierarchical resource allocation solution to minimize the server energy consumption and 
maximize a SLA-based utility function for datacenters is presented in [31]. The proposed hierarchical 
solution breaks the problem of resource scheduling to multiple smaller problems (smaller server and 
application sets) to reduce the complexity of the problem and increase the parallelism. 

Modeling the performance and energy cost is vital for solving the resource assignment problem. Good 
examples of theoretical performance modeling are [39] and [40]. Benani et al. [39] present an analytical 
performance model based on queuing theory to calculate the response time of the clients based on CPU 
and I/O service times. Urgaonkar et al. [40] present an analytical model for multi-tier internet applications 
based on the mean-value analysis. An example of experimental modeling of power and performance in 
servers is presented in [41]. 

In order to satisfy SLA and be able to keep the guaranteed-level of performance for clients, datacenter 
resource manager needs to continuously monitor the performance of VMs and utilization level of the 
active servers in order to perform VM migration to avoid possible SLA violation [42] and [43]. Different 
approaches are suggested in the literature to decide about the maximum utilization point at which VM 
migration needs to happen. For example, authors in [44] and [45] suggest to use the statistical CPU 
utilization behavior of the consolidated VMs on a server in order to come up with a workload behavior-
adaptive utilization limit that triggers the VM migration to avoid SLA violation. This adaptive limit 
makes the decision regarding VM migration more accurate compared to a fixed maximum utilization 
limit.  

Statistical analysis of the resource utilization is also used in order to decide about the VM 
consolidation in datacenter resource managers. For example, network bandwidth of VMs are dynamic and 



cannot be predicted perfectly. This fact motivated Wang et al. [46] to develop a solution to decide about 
VM consolidation based on the statistical data gathered from network bandwidth utilization of the VMs 
that can over-perform the VM consolidation solution based on the assumption of fixed communication 
bandwidth for each VM. 

In order to be able to use the VM consolidation in its full extent, we need very fast VM migration 
solutions to avoid SLA violation in case of workload change. For example, Hirofuchi et al. [47] suggest 
using a fast solution called postcopy VM migration. In this approach, instead of migrating the whole 
memory before starting the VM operation in the destination host, VM operation starts right after the 
migration and before memory copy is finished. In this case, if VM needs to access a point in its memory 
before all the memory is copied to the destination host, VM operation is stalled for a short amount of time 
before copy of that point of memory is finished. This solution significantly reduces the VM stall time 
during the live migration.         

B. Power Management in Datacenters 
Power management is one of the key challenges in datacenters. The power issue is one of the most 

important considerations for almost every decision making process in a datacenter. In this context, the 
power issue refers to power distribution and delivery challenges in a datacenter, electrical energy cost due 
to average power consumption in the IT equipment and the room air conditioning, and power dissipation 
constraints due to thermal power budgets for VLSI chips. 

 

Figure 2. An example power management architecture and its relation to resource arbiter and thermal manager 

Figure 2 depicts a distributed power management architecture composed of server-level power 
managers, plus blade enclosure and rack-level and datacenter-level power provisioners, denoted as SPMs, 
EPPs, and DPP, respectively. There is one SPM per server, one EPP per blade enclosure, and a single 
DPP for the whole datacenter. This architecture is similar to the four-layer architecture proposed in [48]. 
The only difference with the architecture proposed in [48] is that instead of using one server power 
manager for each server that minimizes the average power consumption and avoids power budget 
violation, two power manager is proposed to do these jobs. 

A number of dynamic power provisioning policies have been presented in the literature, including 
[48], [49] and [50], where the authors propose using dynamic (as opposed to static) power provisioning to 
increase the performance in datacenter and decrease power consumption. Notice that the power 
provisioning problem can be formulated as deciding how many computing resources can be made active 
with a given total power budget for the datacenter.  



Fan et al. [49] present the aggregate power usage characteristics of different units (servers, racks, 
clusters, and datacenter) in a datacenter for different applications over a long period of time. This data is 
analyzed in order to maximize the use of the deployed power capacity in the datacenter while reducing 
the risk of any power budget violations. In particular, this reference shows that there is a large difference 
between theoretical peak and actual peak power consumptions for different units. This difference grows 
as the unit size grows. This shows that the opportunity of minimizing the power budget under 
performance constraints (or maximizing the number of servers that are turned ON under a fixed power 
budget) increases as one goes higher in the datacenter hierarchy (e.g. from individual servers to datacenter 
as a whole.) For example, it is reported that in a real Google datacenter, the ratio of the theoretical peak 
power consumption to actual maximum power consumption is 1.05, 1.28 and 1.39 for rack, Power 
Distribution Unit (PDU) and cluster, respectively. The authors consider two approaches usually used for 
power and energy saving in datacenters, i.e., DVFS and reducing the idle power consumption in servers 
and enclosures (for example, by power gating logic and memory). Reported results suggest that 
employing the DVFS technique can result in 18% peak power reduction and 23% total energy reduction 
in a model datacenter. Moreover, decreasing the idle power consumption of the servers to 10% of their 
peak power can result in 30% peak power and 50% energy reduction. Based on these analyses and actual 
measurements, the authors present a dynamic power provisioning policy for datacenters to increase the 
possibility of better utilization of the available power while protecting the power distribution hierarchy 
against overdraws.  

Exploring the best way of distributing a total power budget among different servers in a server farm in 
order to reach the highest performance level is studied in reference [51]. Moreover, an approach to reduce 
the peak power consumption of servers by dynamic power allocation using workload and performance 
feedbacks is presented in reference [52]. 

Design of an effective server-level power management is perhaps the most researched power 
management problem in the literature. Various Dynamic Power Management (DPM) techniques that 
solve versions of this problem have been presented by researchers. These DPM approaches can be 
broadly classified into three categories: ad hoc [53], stochastic [54], and learning based methods [55].  

Server-level power manager can be quite effective in reducing the power consumption of datacenter. 
As an example, Elnozahy et al. [56] present independent as well as coordinated voltage and frequency 
scaling and turn on/off policies for servers in a datacenter and compare them against each other from a 
power savings perspective. Their results indicate that independent DVFS policies for individual servers 
results in 29% power reduction compared to a baseline system with no DVFS. In contrast, a policy that 
considers only turning on/off servers results in 42% lowering of the power consumption. The largest 
power saving of 60% is reported for a policy with coordinated DVFS and dynamic server ON/OFF 
decisions. 

DPM techniques typically try to put the power consuming components to idle mode as often as 
possible to maximize the power saving. Studies on different datacenter workloads [7], [49] and [57] show 
frequent short idle times in workload. Because of the short widths of these idle times, components cannot 
be switched to their deep sleep modes (which consume approximately zero power) considering the 
expected performance penalty of frequent go-to-sleep and wakeup commands. At the same time, because 
of energy non-proportionality of current servers [7], idle server power modes give rise to relatively high 
power consumption compared to the sleep mode power consumption. As discussed at length before, VM 
consolidation is an answer to this problem.  A new solution is however emerging. More precisely, a 
number of new architectures have been presented for hardware with very low (approximately zero) idle 
mode power consumption (energy-proportional servers) to be able to reduce the average power 
consumption in case of short idle times [49] and [4].   

There are many examples of work that describe a combined solution for power and resource 
management solution. For example, Wang et al. [58] present a coordinated control solution that includes a 
cluster-level power control loop and a performance control loop for every VM. These control loops are 
configured to achieve desired power and performance objectives in the datacenter. Precisely, the cluster-
level power controller monitors the power consumption of the servers and sets the DVFS state of the 
servers to reach the desired power consumption. In the same venue, the VM performance controller 
dynamically manages the VM performance by changing the resource (CPU) allocation policy. Finally, a 
cluster-level resource coordinator is introduced whose job is to migrate the VMs in case of performance 



violation. As another example, Beloglazov and Buyya [59] propose a management architecture 
comprising of a VM dispatcher, as well as local and global managers. A local manager migrates a VM 
from one server to another in case of SLA violations, low server utilization, high server temperature, or 
high amount of communication with another VM in a different server. A global manager receives 
information from local managers and issues commands for turning on/off servers, applying DVFS or 
resizing VMs.  

This chapter tackles the resource management problem in a cloud computing system. Key features of 
our formulation and proposed solution are that we consider heterogeneous servers in the system and use a 
two dimensional model of the resource usage accounting for both computational and memory bandwidth. 
We propose multiple copies of VMs to be active in each time in order to reduce the resource requirement 
for each copy of the VM and hence help increase the chances for VM consolidation. Finally an algorithm 
based on dynamic programming and local search is described. This algorithm determines the number of 
copies of each VM and the placement of these copies on servers so as to minimize some total system cost 
function. 

III. SYSTEM MODEL 
In this section, detail of the assumptions and system configuration for the VM placement problem are 

presented.  To improve the readability, Table I presents key symbols and definitions used in this chapter. 
Note that each client is identified by a unique id, denoted by index i whereas each server in the cloud 
computing system is identified by a unique id, denoted by index j. 

Table I. NOTATION AND DEFINITIONS 

Symbol 
name Definition 

𝑐𝑖𝑚 and 𝑐𝑖
𝑝 Required memory bandwidth and total processing demand of the ith client 

𝐿𝑖 Max. number of servers allowed to serve the ith client 
𝑠𝑘 Set of servers of type k 

𝐶𝑗
𝑝and 𝐶𝑗𝑚 Total CPU cycle capacity and memory bandwidth of the jth server 
𝑃𝑗0 Constant power consumption of the jth server in the active mode  

𝑃𝑗
p Power of operating the jth server which is proportional to the utilization of processing 

resources 
Te Duration of a epoch in seconds 
𝑥𝑗 A pseudo-Boolean variable to determine if the jth server is ON (1) or OFF (0) 

𝑦𝑖𝑖 
A pseudo-Boolean variable to determine if the ith VM is assigned to the jth server (1) 
or not (0) 

𝜙𝑖𝑖
𝑝 , 𝜙𝑖𝑖𝑚 Portion of the processing and memory bandwidth resources of the jth server that is 

allocated to the ith client 

𝜙𝑗
𝑝, 𝜙𝑗𝑚 Portion of the processing and memory bandwidth resources of the jth server that is 

allocated to any clients 

𝛼 Processing size ratio of the VM copy (between 1/𝐿𝑖 and 1) that determines the 
portion of the original VM CPU cycle provided by the VM copy 

𝑓(𝛼) Function of processing size ratio that is used in calculating 𝜙𝑖𝑖
𝑝  based on 𝑐𝑖

𝑝 amd 𝐶𝑗
𝑝 

𝑐𝑖𝑖(𝛼) Estimate of the energy cost of assigning a copy of the ith VM with processing size 
ratio of 𝛼 to the jth server 

𝑦𝑖𝑖𝛼  assignment parameter for jth server with VM with processing size ratio of α 
 

A. Cloud Computing System 
In the following paragraphs, we describe the type of the datacenter that we have assumed as well as 

our observations and key assumptions about where the performance bottlenecks are in the system and 
how we can account for the energy cost associated with a client’s VM running in the datacenter.  

A datacenter comprises of a number of potentially heterogeneous servers chosen from a set of known 
and well-characterized server types. In particular, servers of a given type are modeled by their processing 
capacity or CPU cycles (𝐶∗

𝑝) and memory bandwidth (𝐶∗𝑚) as well as their operational expense (energy 



cost), which is directly related to their average power consumption. We assume that local (or networked) 
secondary storage (disc) is not a system bottleneck.  

The main part of the operational cost of the system is the total energy cost of serving clients’ requests. 
The energy cost is calculated as the server power multiplied by the duration of each epoch in seconds 
(𝑇𝑒). The power dissipation of a server is modeled as a constant power cost (𝑃∗0) plus another variable 
power cost, which is linearly related to the utilization of the server (with slope of 𝑃∗

𝑝). This model is 
inspired by the previous works such as [41] and [17]. Note that the power cost of communication 
resources and air conditioning units are amortized over all servers and communication/networking gear in 
the datacenter, and are thus assumed to be relatively independent of the clients’ workloads. More 
precisely, these costs are not included in the equation for power cost of the datacenter.  

B. Client and Virtual Machines 
Clients in the cloud computing system are represented as VMs. Based on the SLA contract or using 

workload prediction with consideration of the SLA, the amount of resources required for each client can 
be determined. These VMs are thus considered to have processing and memory bandwidth requests 
during the considered epoch. This assumption is applicable to online services (not for batch applications). 

Each client’s VM may be copied on different servers (i.e., requests generated by a single VM can be 
assigned to more than one server). This request distribution can decrease the quality of the service if the 
number of servers that process the client requests is large [30]. Therefore, we impose an upper bound on 
this number; precisely,  𝐿𝑖 determines the maximum number of copies of any VM in the datacenter (this 
bound can be set to one if for some reason the VM should not be replicated). When multiple copies of a 
VM are active on different servers, the following constraints must be satisfied: 
∑ 𝜙𝑖𝑖

𝑝𝐶𝑗
𝑝

𝑗 ≥ 𝑐𝑖
𝑝  (1) 

𝜙𝑖𝑖𝑚𝐶𝑗𝑚 = 𝑦𝑖𝑖𝑐𝑖𝑚  (2) 
where 𝜙𝑖𝑖

𝑝  and  𝜙𝑖𝑖𝑚 denote the portion of the jth server CPU cycles and memory bandwidth allocated to the 
VM associated with client i. Constraint (1) enforces the summation of the reserved CPU cycles on the 
assigned servers to be equal or greater than the required CPU cycles for client i. Constraint (2) enforces 
the provided memory bandwidth on assigned servers to be equal to the required memory bandwidth for 
the VM. This constraint enforces the cloud provider not to sacrifice the Quality of Service (QoS) of 
clients. An example of VM1 being replicated as VM2 and VM3 is shown in Figure 3. 

  
Figure 3. An example of multiple copies of a VM 

C. VM Management System 
The focus of the rest of this chapter is VM manager, which is responsible for determining resource 

requirements of the VMs and placing them on servers. Moreover, to address dynamic workload changes, 
VM manager may do VM migration. VM manager performs these tasks utilizing two different 
optimization procedures: semi-static optimization and dynamic optimization. The semi-static optimization 
procedure is performed periodically, whereas the dynamic optimization procedure is performed whenever 
it is needed.   

In the semi-static optimization procedure, VM manager considers the full active set of VMs, the 
previous assignment solution, feedbacks generated by the power, thermal, and performance sensors, and 
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workload prediction in order to generate the best VM placement solution for the next epoch. The period 
for performing semi-static optimization depends on the type and size of the datacenter and workload 
characteristics. In the dynamic optimization procedure, VM manager finds a temporary VM placement 
solution by migrating, creating, or removing some VMs in respond to any performance, power budget, or 
critical temperature violations.  

In this work, we focus on semi-static optimization procedure of VM manager. In this procedure, 
resource requirements of VMs are assumed to be determined based on SLA contracts and workload 
estimation for the next epoch. The duration of the epoch is long enough for one to neglect the VM 
migration delay penalty (it is typically less than 100ms for live migration [23]) with respect to the gain of 
the global optimization. Consequently, the energy cost optimization may be performed without the 
constraint of the state of the cloud computing system in the previous epoch. 

The role of semi-static optimization procedure in VM manager is to answer the questions of (i) 
whether to create multiple copies of VMs on different servers or not and (ii) where to place these VMs. 
Considering fixed payments from clients for the cloud service, the goal of this optimization is to minimize 
the operational cost of the active servers in datacenter. An exemplary solution for assigning six VMs on 
two heterogeneous servers is shown in Figure 4. 

 
Figure 4. An exemplary solution for assigning six VMs on two different servers 

IV. PROBLEM FORMULATION 
In this chapter, a VM placement problem is considered with the objective of minimizing the total 

energy consumption in the next epoch while servicing all VMs in the cloud computing system. 
The exact formulation of the aforesaid problem (called EMRA for Energy-efficient Multi-dimensional 

Resource Allocation) is provided below (cf. Table I.) 
𝑀𝑀𝑀      𝑇𝑒� 𝑥𝑗 �𝑃𝑗0 + 𝑃𝑗

𝑝� 𝜙𝑖𝑖
𝑝

𝑖
�

𝑗
 (3) 

subject to: 
𝜙𝑗
𝑝 = ∑ 𝜙𝑖𝑖

𝑝
𝑖 ≤ 1  ∀𝑗  (4) 

𝜙𝑗𝑚 = ∑ 𝜙𝑖𝑖𝑚𝑖 ≤ 1  ∀𝑗  (5) 

∑ 𝐶𝑗
𝑝𝜙𝑖𝑖

𝑝
𝑗 ≥ 𝑐𝑖

𝑝  ∀𝑖, 𝑗  (6) 

𝑦𝑖𝑖 ≥ 𝜙𝑖𝑖
𝑝 ,   ∀𝑖, 𝑗  (7) 

𝜙𝑖𝑖𝑚𝐶𝑗𝑚 = 𝑦𝑖𝑖𝑐𝑖𝑚  ∀𝑖, 𝑗  (8) 

∑ 𝑦𝑖𝑖𝑖 ≤ 𝐿𝑖  ∀𝑖  (9) 

𝑥𝑗 ≥ ∑ 𝜙𝑖𝑖
𝑝

𝑖   ∀𝑗  (10) 

𝑦𝑖𝑖 ∈ {0,1}, 𝑥𝑗 ∈ {0,1}, 𝜙𝑖𝑖
𝑝 ≥ 0, 𝜙𝑖𝑖𝑚 ≥ 0 ∀𝑖, 𝑗  (11) 

where 𝑥𝑗 is a pseudo-Boolean integer variable to determine if the jth server is ON (𝑥𝑗=1) or OFF (𝑥𝑗=0).  
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The objective function is the summation of the operation costs (energy dissipations) of the ON servers 
based on a fixed power factor and a variable power term linearly related to the server utilization. In this 
problem, 𝑥𝑗, 𝑦𝑖𝑖 and 𝜙𝑖𝑖

𝑝  denote the optimization variables.  
The constraints capture the limits on the number of available servers and clients. In particular, 

inequality constraints (4) and (5) represent the limit on the utilization of the processing and memory 
bandwidth in the jth server, respectively. Constraint (6) ensures that required processing demands for each 
VM is provided. Constraint (7) generates a pseudo-Boolean parameter that determines if a copy of a VM 
is assigned to a server (𝑦𝑖𝑖 = 1) or not (𝑦𝑖𝑖 = 0). Constraint (8) ensures the memory bandwidth needs of a 
VM that is assigned to a server are met whereas constraint (9) ensures that the number of copies of a VM 
does not exceed the maximum possible number of copies. Constraint (10) generates the pseudo-Boolean 
parameter related to the status of each server. Constraint (11) specifies the domains of optimization 
variables. 

Theorem I: Generalized Assignment Problem (GAP) [24] can be reduced to EMRA problem.  
Proof: Consider a version of the EMRA problem in which 𝑃𝑗0 is equal to zero for every server and 𝐿𝑖 

is equal to 1 for every VM. In this problem, assigning each VM (exactly one copy) to each server has 
different costs, and each server has two dimensional resources that can be assigned to VMs. So, we can 
solve any two-dimensional GAP problem by using the solution to EMRA problem for a special case.  

Considering theorem I, the EMRA problem is NP-hard [24]. Indeed, similar to the GAP problem, even 
the question of deciding whether a feasible solution exists for this problem does not admit an efficient 
solution [24]. In this chapter, we consider a case in which the required resources for VMs are smaller than 
the available resources in the datacenter. This means that we consider energy minimization with a fixed 
set of VMs instead of maximizing the number of (or the profit for) a subset of VMs served in the 
datacenter. Therefore, a simple greedy algorithm (similar to First Fit Decreasing (FFD) heuristic [24]) 
will find a feasible solution to the EMRA problem. Another important observation about this problem is 
that the number of clients and servers in this problem are very large; therefore, a critical property of any 
proposed heuristic is its scalability. 

An example of how multiple copies of VM can reduce energy consumption of the cloud system is seen 
when we compare Figure 5-a and Figure 5-b. Here, three homogenous VMs are assigned to three 
homogenous servers. The CPU cycle capacity of each server is strictly less than 2X the required CPU 
cycle count of each VM (say, 1.75 times) whereas the memory bandwidth capacity of each server is 
strictly more than 2X the required memory bandwidth of each VM (say, 3 times). In Figure 5, you can see 
that the assignment results in three active servers. If we consider VM replication, we can create two 
copies of the third VM with the same memory bandwidth requirements but smaller CPU cycle demands. 
Assigning the new set of VMs to servers can result in only two active servers with high CPU and memory 
bandwidth utilization, which may result in energy saving due to the energy non-proportionality behavior 
of the servers. 



 
(a)  Without VM replication 

 
(b)  With VM replication 

 

Figure 5. An exemplary solution for assigning three VMs on three identical servers  

V. PROPOSED ALGORITHM 
In this section, a two-step heuristic for solving the EMRA problem is presented. In the first step, an 

algorithm based on Dynamic Programming (DP) is used to determine the number of copies for each VM 
and the assignment of these VMs to the servers. This decision determines (i) which servers will be active 
during the next epoch and (ii) the utilization of the active servers in that epoch. The goal of the algorithm 
is to minimize the total energy cost. In the second step, a local search is conducted to further reduce the 
power consumption by turning off some of the active servers and placing their VMs on other active 
servers. 

In the beginning of the VM placement, clients are ordered in descending order of their CPU cycle 
demands. Based on this ordering, the optimal number of copies of the VMs are determined and they are 
placed on servers by using dynamic programming. In the local search method, servers are turned off 
based on their utilization and VMs assigned to them are moved to the rest of the active servers so as to 
minimize the energy consumption as much as possible. 

Details of the Energy-efficient VM Placement algorithm (EVMP) are presented below. 

A. Energy Efficient VM Placement Algorithm – Initial solution 
Initially, the values of ϕj

p and ϕjm for each server are set to zero. A constructive approach is used to 
place the VMs on the servers. VMs are sorted based on their processing requirements in a descending 
order. For each VM, a method based on DP is used to determine the number of copies that are placed on 
different servers.  

To estimate the power consumption of assigning a copy of the ith VM to the jth server of type k, we use 
the following equation. 

𝑐𝑖𝑖(𝛼) = �
𝑇𝑒(𝜙𝑖𝑖

𝑝𝑃𝑗
𝑝 + 𝑃𝑗0𝑐𝑖𝑚/𝐶𝑗𝑚) 𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑒(𝜙𝑖𝑖

𝑝𝑃𝑗
𝑝 + 𝑃𝑗0) 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒    

 (12) 

where 𝛼 (between 1/𝐿𝑖 and 1) is the processing size ratio of the VM copy to that of the original VM.  In 
other words  𝛼 denotes the percentage of the original VM CPU cycles to be provided to the copy of VM.  

The top branch of equation (12) estimates the energy cost of assigning a copy of the ith VM to an 
already active server and is comprised of a utilization-proportional power consumption of the server plus 
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a fraction of the idle power consumption based on the (normalized) required memory bandwidth of the 
assigned VM. Similarly, the bottom branch of equation (12) estimates the energy cost of assigning a copy 
of the ith VM to a currently inactive server (but to become active soon). This energy cost estimate includes 
the utilization-proportional power consumption of the server and accounts for the whole idle power 
consumption of the server. The additional power consumption in the bottom branch compared to the one 
in the top branch captures the risk of turning on a server if no other VM is assigned to that server for the 
next epoch. The average utilization of the server type (𝜙�𝑗

𝑝 and 𝜙�𝑗𝑚) in the previous epochs can also be 
used to replace the equation in the bottom branch with 𝑇𝑒(𝜙𝑖𝑖

𝑝𝑃𝑗
𝑝 + 𝑃𝑗0min (1, max (𝑐𝑖𝑚/ϕ�jm, 𝑐𝑖𝑚/ϕ�jm))) to 

more accurately account for the energy cost risk of turning on a server for VM assignment.  
𝜙𝑖𝑖
𝑝  is a function of the VM, the server, and 𝛼. It can be calculated as shown below. 

𝜙𝑖𝑖
𝑝 = 𝑓(𝛼)𝑐𝑖

𝑝/𝐶𝑗
𝑝   (13) 

where 𝑓(𝛼) is a function of the processing size ratio of the VM. We know that in any type of VM and 
servers, 𝑓(0) is equal to 0 while 𝑓(1) is equal to 1. 𝑓 is a monotonically increasing function. Considering 
the beginning and endpoint of this function at 0 and 1 and considering constraint (1), for any value 
between 0 and 1, the value of function 𝑓 can be between 𝛼 and 1. For example, if half of the CPU cycle 
requirement of the VM is provided by a copy of the VM, 𝜙𝑖𝑖

𝑝 = 𝑓(1 2⁄ )𝑐𝑖
𝑝/𝐶𝑗

𝑝 which is greater than or 
equal to 0.5𝑐𝑖

𝑝/𝐶𝑗
𝑝. If this property does not hold for a small portion of the spectrum, we can create a 

solution with multiple VM copies which require less than 𝑐𝑖
𝑝  resources collectively and violate the 

constraint (1).  
The presented algorithm is based on a general function 𝑓 with the mentioned behavior but an example 

of this function based on a performance model is presented in subsection B.  
For each VM, both versions of equation (12) are calculated for each server type and different values of 

α (between 1/𝐿𝑖  and 1 with steps of 1/𝐿𝑖 ). Moreover, for each server type, 𝐿𝑖  active servers and 𝐿𝑖 
inactive servers that can service at least the smallest copy of the VM are selected as candidate hosts. For 
assigning the VM to any of the candidate servers, the cost is determined by the top or bottom branch of 
equation (12) as the case may be.  

After selecting active and inactive candidate servers for each server type and calculating cost for each 
possible assignment, the problem is reduced to (14). 
𝑀𝑀𝑀  ∑ 𝑦𝑖𝑖𝛼𝑐𝑖𝑖(𝛼)𝑗∈𝑃   (14) 
subject to: 
∑ 𝛼𝑦𝑖𝑖𝛼𝑗∈𝑃 = 𝐿𝑖   (15) 
where 𝑦𝑖𝑖𝛼  denotes the assignment parameter for jth server for a VM copy with processing size ratio of α (1 
if assigned and 0 otherwise). Moreover, 𝑃 denotes the set of candidate servers for this assignment. 

The DP method is used to solve this problem and find the best assignment decision. In this DP 
method, candidate servers can be processed in any order. This method examines all the possible VM 
placement solution efficiently without calculating every possible solution in a brute-force manner. Using 
this method, the optimal solution for problem presented in (14) can be found. 

Algorithm 1 shows the pseudo code for this assignment solution for each VM. Complexity of this DP 
solution is 𝑂(2𝐿𝑖2𝐾), where 𝐾 denotes the number of server types that are considered for this assignment. 
The complexity is calculated from the number of cost calculation in line 23 of the pseudo code. After 
finding the assignment solution 𝜙𝑗

𝑝 and 𝜙𝑗𝑚 for the selected servers are updated. Then, the next VM is 
chosen and this procedure is repeated until all VMs are placed. 

 



Algorithm 1: Energy Efficient VM Placement 
Inputs: 𝐶𝑗𝑚, 𝐶𝑗

𝑝, 𝑃𝑗0, 𝑃𝑗
𝑝, 𝑐𝑖𝑚, 𝑐𝑖

𝑝, 𝐿𝑖 
Outputs: 𝜙𝑖𝑖

𝑝 , 𝜙𝑖𝑖𝑚 (i is constant in this algorithm) 
 

1 𝑃 = {} 
2 For (k = 1 to number of server types) 
3 ON=0; OFF=0; 
4 For (𝛼 = 1/𝐿𝑖 to 𝐿𝑖) 
5  𝜙𝑖𝑖

𝑝 = 𝑓(𝛼)𝑐𝑖
𝑝/𝐶𝑗

𝑝 
6 𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎(𝛼) = 𝜙𝑖𝑖

𝑝𝑃𝑗
𝑝 + 𝑃𝑗0𝑐𝑖𝑚/𝐶𝑗𝑚  

7 𝑐𝑖𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛼) = 𝜙𝑖𝑖
𝑝𝑃𝑗

𝑝 + 𝑃𝑗0 
8 End 
9 𝐽𝑂𝑂  = {𝑗 ∈ 𝑠𝑘|(1 − 𝜙𝑗𝑚) ≥ 𝑐𝑖𝑚/𝐶𝑗𝑚 & (1 − 𝜙𝑗

𝑝) ≥ 𝑐𝑖
𝑝/𝐿𝑖𝐶𝑗

𝑝} 
10 𝐽𝑂𝑂𝑂 = {𝑗 ∈ 𝑠𝑘|𝜙𝑗

𝑝 = 0, (1 − 𝜙𝑗𝑚) ≥ 𝑐𝑖𝑚/𝐶𝑗𝑚} 
11 Foreach (𝑗 ∈ 𝑠𝑘) 
12 If (𝑗 ∈ 𝐽𝑂𝑂& ON< 𝐿𝑖)                 
13 𝑃 = 𝑃 ∪ {𝑗} , ON++,  𝑐𝑖𝑖(𝛼) = 𝑐𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎(𝛼) 
14 Else if (j ∈ JOFF& OFF< Li)  
15 𝑃 = 𝑃 ∪ {𝑗} , OFF++, 𝑐𝑖𝑖(𝛼) = 𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛼) 
16 End 
17 End 
18 𝑋 =  𝐿𝑖, and 𝑌 =  𝑠𝑠𝑠𝑠 (𝑃) 
19 Foreach ( 𝑗 ∈ 𝑃) 
20 For  (𝑥 =  1 to 𝑋) 
21  𝐷[𝑥, 𝑦] = infinity; //Auxiliary 𝑋 × 𝑌 matrix used for DP 
22 For (𝑧 =  1 to 𝑥) 
23 𝐷[𝑥, 𝑦] = 𝑚𝑚𝑚(𝐷[𝑥, 𝑦], 𝐷[𝑥 − 1, 𝑦 − 𝑧] + 𝑐𝑖𝑖(𝑧)) 
24 𝐷[𝑥, 𝑦] = 𝑚𝑚𝑚(𝐷[𝑥, 𝑦], 𝐷[𝑥 − 1, 𝑦]) 
25 End 
26 End 
27 Back-track to find best 𝜙𝑖𝑖’s to minimize cost and update 𝜙𝑗’s 

B. Example of function 𝑓(𝛼) for a performance model 
To better appreciate the concept of function f(α), a performance model for VM is briefly presented. 
To model the response time of the VMs, we assume that the inter-arrival times of the requests for each 

VM follow an exponential distribution function similar to the inter-arrival times of the requests in the e-
commerce applications [28]. The average inter-arrival time (𝜆𝑖) of the requests for each VM can be 
estimated from analyzing workload traces [60].  

In case of more than one copy of a VM, requests are assigned probabilistically i.e., 𝛼 portion of the 
incoming requests are forwarded to the jth server (i.e., the host for some copy of the VM) for execution, 
independently of the past or future forwarding decisions. Based on this assumption, the request arrival 
rate in each server follows the Poisson distribution function. 

An exponential distribution function can be used to model the service time of the clients in this 
system. Based on this model, the response time distribution of a VM (placed on server j) is an exponential 
distribution with the following expected value: 

𝑅�𝑖𝑖 =
1

𝐶𝑗
𝑝𝜙𝑖𝑖

𝑝𝜇𝑖𝑖 − 𝛼𝜆𝑖
 (16) 

where 𝜇𝑖𝑖 denotes the service rate of the ith client on the jth server when a unit of processing capacity is 
allocated to the VM of this client. 

Most response-time sensitive applications have a contract with the cloud provider to guarantee that the 
response time of their requests does not go over a certain threshold. The constraint on the response time 
of the ith client may be expressed as: 
𝑃𝑃𝑃𝑏{𝑅𝑖 > 𝑅𝑖𝑐} ≤ ℎ𝑖𝑐 (17) 



where 𝑅𝑖 and 𝑅𝑖𝑐 denote the actual and target response times for the ith client’s requests, respectively. 
Based on the presented model and constraint (17), the response time constraint for each copy of a VM 

can be expressed as follows: 

𝑒−�𝐶𝑗
𝑝𝜙𝑖𝑖

𝑝𝜇𝑖𝑖−𝛼𝜆𝑖�𝑅𝑖
𝑐
≤ ℎ𝑖𝑐 ⇒ 𝜙𝑖𝑖

𝑝 ≥ (𝛼𝜆𝑖 − ln ℎ𝑖𝑐 𝑅𝑖𝑐⁄ ) 𝜇𝑖𝑖𝐶𝑗
𝑝�  (18) 

If there is only one copy of VM, 𝑐𝑖
𝑝 can be calculated as follows:  

Considering the presented performance model, 𝑐𝑖
𝑝 varies based on the server type. If the processing 

size ratio of 𝛼 is considered for the VM copy, lower bound of 𝜙𝑖𝑖
𝑝  has a similar formula as (19) with the 

first term multiplied by 𝛼. The first term of 𝜙𝑖𝑖
𝑝  is the portion that scales with the processing size ratio of 

the VM. The second term of 𝜙𝑖𝑖
𝑝  is a constant value based on the SLA contract parameters, service rate, 

and processing capacity of the server. Note that the second term does not scale with 𝛼 and exists in even 
the smallest VM copy to guarantee that the request is serviced with an acceptable response time.  

Having multiple copies of VM requires to account for the second term multiple times. For example, if 
there are three active copies of a VM, independent of the value for 𝛼  parameter for each copy, the 
summation of 𝜙𝑖𝑖

𝑝  is equal to 𝜆𝑖 𝜇𝑖𝑖𝐶𝑗
𝑝� +3 ∗ (− ln ℎ𝑖𝑐 𝑅𝑖𝑐⁄ ) 𝜇𝑖𝑖𝐶𝑗

𝑝� . This value would be larger than the 𝑐𝑖
𝑝. 

The function 𝑓 for this performance model is presented below. 

The behavior of 𝑓 is determined from the ratio between the first and second terms in equation (19). 
When this ratio is big, creating a limited number of copies from that VM is reasonable since 𝑓(𝛼) ≅ 𝛼 
and the total amount of processing power reserved and used for multiple copies of VM is approximately 
equal to the processing power needed for the original VM. On the other hand, when the aforesaid ratio is 
small, then the VM is not a good candidate for replication since the total processing power required for 
multiple copies of that VM is multiple times larger than the required processing power for the original 
VM. However, as shown before, in some scenarios the increase in utilization of servers and turning off 
some other servers by creating multiple copies of VM can decrease the overall operational cost of the 
datacenter and cloud system. The proposed algorithm can capture this trade-off and come up with the near 
optimal solution. 

C. Energy Efficient VM Placement Algorithm – Local Search  
The constructive nature of the proposed algorithm can cause a situation in which some servers are not 

well utilized. However the large number of clients makes this problem less severe. To improve the results 
of the proposed VM placement algorithm, a local search method is used.  

In order to select the candidate servers for turning OFF, utilization of the server needs to be defined. 
Due to heterogeneity of the server resources and VM resource requirements, it is possible that the 
utilization ratio of the server along different resource dimensions will be different. Since saturation of 
each resource type in the server results in a resource-saturated server (to be called a fully-utilized server), 
we define the utilization of a server as the maximum resource utilization along different resource 
dimensions. For example if 𝜙𝑗

𝑝 = 0.5 and 𝜙𝑗𝑚 = 0.3, we consider the utilization of the server to be 50%. 
To minimize the total energy consumption in the system, all servers with utilization less than a threshold 
will be examined in this local search. This threshold can be specified by the cloud provider.  

To examine these under-utilized servers, each of them is turned off one by one (starting from servers 
with lowest utilization) and total energy consumption is found by placing their VMs on other active 
servers using the proposed DP placement method. If the total cost of the new placement is less than the 
previous total cost, the new configuration is fixed and the rest of under-utilized servers are examined, 
otherwise the option of turning off that server is removed and the other candidate servers are examined. 
Algorithm 2 shows a high-level pseudo code for the proposed local search step. 

𝑐𝑖
𝑝 = 𝜆𝑖 𝜇𝑖𝑖𝐶𝑗

𝑝� +(− ln ℎ𝑖𝑐 𝑅𝑖𝑐⁄ ) 𝜇𝑖𝑖𝐶𝑗
𝑝�  (19) 

𝑓(𝛼) =
𝛼 𝜆𝑖 𝜇𝑖𝑖𝐶𝑗

𝑝� + (− ln ℎ𝑖𝑐 𝑅𝑖𝑐⁄ ) 𝜇𝑖𝑖𝐶𝑗
𝑝�

𝜆𝑖 𝜇𝑖𝑖𝐶𝑗
𝑝� + �− lnℎ𝑖𝑐 𝑅𝑖𝑐⁄ � 𝜇𝑖𝑖𝐶𝑗

𝑝�
= 𝛼 +

(1 − 𝛼) (− ln ℎ𝑖𝑐 𝑅𝑖𝑐⁄ ) 𝜇𝑖𝑖𝐶𝑗
𝑝�

𝜆𝑖 𝜇𝑖𝑖𝐶𝑗
𝑝� + �− lnℎ𝑖𝑐 𝑅𝑖𝑐⁄ � 𝜇𝑖𝑖𝐶𝑗

𝑝�
 (20) 



Algorithm 2: Local Search Algorithm 
Inputs: Current VM assignment and xj 
Outputs: New VM assignment and 𝑥𝑗 

 
1 𝜙𝑗 = 𝑚𝑚𝑚 (𝜙𝑗𝑚, 𝜙𝑗

𝑝) 
2 𝐽 = {𝑗|𝜙𝑗 > 0} 
3 While (𝜙𝑗 <threshold OR timeout) 
4       𝑗 = argmin𝑗∈𝐽|𝜙𝑗>0 𝜙𝑗 
5       𝐼 = �𝑖�𝜙𝑖𝑖𝑚 > 0� 
6       𝑂𝑂𝑂𝑋𝑜𝑜𝑜 =Total operational cost based on the current assignment 
7       Foreach (𝑖 ∈ 𝐼) 
8              Find a new placement on set of active servers 
9       End 
10       𝑂𝑂𝑂𝑋𝑛𝑛𝑛 =Total operational cost based on the new assignment 
11       If (𝑂𝑂𝑂𝑋𝑛𝑛𝑛 < 𝑂𝑂𝑂𝑋𝑜𝑜𝑜) 
12              𝑥𝑗 = 0 and fix the new VM assignment 
13       Else 
14              𝑥𝑗 = 1 and keep the old VM assignment 
15       𝐽 = 𝐽 − 𝑗 
16 End 
17 Finalize the set of active servers and VM assignment for the current epoch 

VI. SIMULATION RESULTS 
To evaluate the effectiveness of the proposed VM placement algorithm, a simulation framework is 

implemented. Simulation setups, baseline heuristics and numerical results of this implementation are 
presented in this section. 
A. Simulation Setup 

For simulation purposes, model parameters are generated from real world examples. The number of 
server types is set to 8. For each server type, some arbitrary number of servers are provisioned in 
datacenter. Processors for each server type are selected from the Intel portfolio of processors (e.g. Atom, 
i5, i7 and Xeon) [61] with different number of cores, cache sizes, power consumptions, and clock 
frequencies. Peak power consumptions for different servers (excluding the processor itself) are set 
uniformly to be between two to four times the power consumption of the corresponding fully-utilized 
processor. The memory bandwidth requirements of the servers are selected based on the maximum 
memory bandwidth of these processors multiplied by a factor of 0.4. For example if the maximum 
memory bandwidth of a processor is 20 GB/s, the available memory bandwidth for this processor is set to 
8 GB/s. 

The processing (CPU cycle count) requirement for each VM is selected uniformly between 1 and 18 
billion CPU cycles per second. In order to observe the effect of function 𝑓(𝛼), we ran the experimental 
results twice for each setting. The first time considering 𝑓(𝛼) = 𝛼 and the second time with 𝑓(𝛼) = (𝛼 +
1)/2. 𝑓1 and 𝑓2 denote the first and second observed values of 𝑓(𝛼). As described in subsection V.B, 
𝑓(𝛼) is a function of the type of VM and is not constant for all VMs in datacenter. The purpose of 
considering two different 𝑓(𝛼) for the simulation setup is to show how the algorithm works with different 
VM replication costs.  

The memory bandwidth requirements for clients are also selected uniformly between 768MB/s and 
4GB/s. The selection of processing resource requirement is based on the fact that the base-line algorithms 
do not automatically support multiple copies of VMs. This means that the required processing capacity of 
each VM should be less than the maximum available processing capacity in the datacenter; otherwise, the 
base-line algorithms cannot handle the VM placement problem. On the other hand, EVMP algorithm is 
capable of generating a VM placement solution if the memory bandwidth requirement of each VM is less 
than the maximum memory bandwidth supported by the available servers in the datacenter. 



Upper bound on the number of copies for each VM is set between 1 and 5 based on the value of the 
required processing resources, e.g. if the processing requirement for a VM is equal to maximum 
processing requirements, 𝐿𝑖 is set to 5 and if the value of processing requirement for a VM is less than ¼ 
of the maximum value, 𝐿𝑖 is set to one (no copy is allowed). 

Each simulation is repeated at least 1,000 times to generate acceptable average results for each case.  
B. Heuristics for Comparison 

We implemented the min Power Parity (mPP) heuristic [23] as one of the state-of-the-art energy-
aware VM placement techniques. This heuristic is based on first fit decreasing heuristic [24] for the bin 
packing problem. This heuristic tries to minimize the overall power consumed by active servers in the 
datacenter. mPP heuristic works in two steps. In the first step, a target utilization for each server is found 
based on the power model for the servers. The target utilization of the servers is found by minimizing the 
power consumption of assigning the total required CPU utilization of all VMs on the current servers. In 
the second step, FFD heuristic is used to assign VMs to the selected set of the active servers. More details 
of mPP can be found in [23]. 

To show the effectiveness of our proposed approach for placing multiple copies of VMs on servers, 
along with mPP, a version of our algorithm in which 𝐿𝑖 is set to one for all i is also considered. We refer 
to this version of the algorithm with the name of baseline method in the figures. 

Moreover, to show the effect of distributed resource assignment and constant power cost for active 
servers, we implement a procedure to find a lower bound on the total energy cost with relaxation of these 
obstacles. To calculate this lower bound, for each VM, total energy cost (𝑐𝑖

𝑝/𝐶𝑗
𝑝�𝑃𝑗

𝑝 + 𝑃𝑗0�𝑇𝑒) of serving 
that VM on each server is calculated and the smallest energy cost is selected. Summation of these energy 
costs generates a lower bound on the total energy cost in the system. 
C. Numerical Results 

Normalized total energy cost in the system using the EVMP algorithm, baseline method, and mPP 
algorithm is presented in Figure 6. EVMP-f1 results show the results for the first 𝑓(𝛼) function whereas 
EVMP-f2 shows the results for the second 𝑓(𝛼) function as discussed earlier.  

 
Figure 6. Normalized total energy cost of the system 

As can be seen, EVMP reduces the total energy cost of VM placement solution by 24 to 36% with 
respect to the mPP algorithm. This amount of energy decrease is significant in cloud computing systems 
and can help reduce the operational cost of computing. 

As can be seen, changing 𝑓(𝛼) function from 𝑓1, which represent ideal VM copying case, to 𝑓2, 
which captures a scenario in which the cost of creating multiple copies of VMs is rather large, does not 
significantly increase the energy consumption of the datacenter (between 3 and 4% increase). This is due 
to the fact that EVMP algorithm adapts the decision regarding VM copying based on the 𝑓(𝛼) function. 
This means that having a higher cost associated with creating copies of some VM, results in fewer 
number of VM copies being created by the algorithm. 
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Performance of the baseline algorithm which is based on assigning VMs using DP method is slightly 
worse than the performance of mPP method (~3% range) because baseline method does not place the VM 
on the server with the least resource availability and instead chooses the host server randomly in the 
selected server type. 

Table II shows the relative performance of EVMP-f1 with respect to the derived lower bound on the 
total energy cost. There are two reasons behind the difference between the result of EVMP and the lower 
bound: i) imperfection of the algorithm, and ii) constant power consumption of the servers (independent 
from their utilization) and effect of the distributed resources in the datacenter.  

TABLE II. PERFORMANCE OF THE EVMP-F1 W.R.T. LOWER BOUND COST AND AVERAGE NUMBER OF VM COPIES 

# of original VMs Performance w.r.t Lower bound 
200 1.02 
500 1.01 

1000 1.05 
2000 1.01 
4000 1.08 
5000 1.05 

 

TABLE III shows the average number of VM copies created in EVMP-f1 and EVMP-f2 runs. The 
average number of VM copies on the final solution of the EVMP-f1 and EVMP-f2 is small compared to 
the average 𝐿𝑖 for VMs which is 3. This shows that the EVMP algorithm does not create multiple copies 
of a VM unless it is beneficial for the energy cost of the system. Moreover, the average number of VM 
copies created in EVMP-f2 is smaller than the same number for EVMP-f1 which shows the adaptiveness 
of the EVMP algorithm in creating VM copies based on 𝑓(𝛼) function. 

TABLE III. PERFORMANCE OF THE EVMP-F2 W.R.T. LOWER BOUND COST AND AVERAGE NUMBER OF VM COPIES 

# of original 
VMs 

average # of VM copies for 
EVMP-F1 

average # of VM copies for 
EVMP-F2 

200 1.83 1.76 
500 1.78 1.71 
1000 1.78 1.72 
2000 1.74 1.67 
4000 1.71 1.66 
5000 1.69 1.64 

 

Effect of different 𝐿𝑖 values on the performance of EVMP-f1 is reported in Figure 7. In this figure the 
normalized total energy costs of the VM placement solutions when using the EVMP algorithm and for 
different 𝐿𝑖 values are shown. As can be seen, the cost difference between the EVMP solution and the 
solution of a version of EVMP that restricts the number of VM copies to two is 7% (on average). This 
shows around 20% energy reduction compared to the mPP algorithm even if the number of allowed VM 
copies is limited to two. The cost difference between the EVMP solution and the solution of a version of 
EVMP that restricts the number of VM copies to ten is around 10% (on average). Note that the function 
used to calculate the resource requirement for each VM copies for EVMP-f1 only accounts for the lower-
bound amount of the processing resources required for each VM copy. Figure 8 shows the same 
comparison for EVMP using the second 𝑓(𝛼) function. As can be seen, the energy cost reduction when 
the maximum allowable number of VM copies is increased to ten, is smaller (about 6% improvement) in 
case of using the second 𝑓(𝛼) function. This is due to the fact that f2 function adds an energy cost penalty 
every time a new VM copy is added to the system.  



 
Figure 7. Normalized total energy cost of the VM placement solution using for different 𝐿𝑖 for EVMP-f1 

 

 
Figure 8. Normalized total energy cost of the VM placement solution using for different 𝐿𝑖 for EVMP-f2 

Figure 9 shows the average run-time of the EVMP, baseline and mPP methods for different number of 
VMs. Note that VM placement algorithm is called only a few times in each charge cycle (one hour in 
Amazon EC2 service [62]), e.g. 2-3 times per hour. Also to reduce the time complexity of the EVMP 
algorithm in case of bigger number of VMs, we can use a partitioning algorithm to assign a set of VMs to 
a cluster and then apply EVMP in each cluster in parallel.  
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Figure 9. Run-time of EVMP for different number of VMs on 2.4GHZ E6600 server with 3GB of RAM from Intel 

VII. CONCLUSION AND FUTURE RESEARCH DIRECTION 

A. Conclusions 
In this chapter, we presented a review of the literature focusing on resource and power managers in 

datacenters. Moreover, we proposed a novel solution to increase the energy efficiency in datacenter that 
relies on generating multiple copies of each VM. To guarantee QoS for each VM, we considered fixed 
memory bandwidth requirement for each VM copy, added a limitation on the number of VM copies, and 
considered a VM replication energy and resource overhead. An algorithm based on dynamic 
programming and local search was proposed to determine the number of VM copies, then place them on 
servers to minimize the total energy cost in the cloud computing system. Using simulation results, we 
showed that this approach reduces the total energy cost ~20% with respect to the prior VM placement 
techniques. The effect of different parameters on the system performance was also evaluated using 
simulation results. 

The proposed solution provides a flexible method to increase the energy efficiency of the cloud 
computing system and increases the resource availability in the datacenter. Cloud provider can decide 
how to service VMs with big processing resource requirements and how to distribute their requests 
among the servers to maximize the energy efficiency. 

B. Possible Research Direction on energy-efficient datacenter design 
There are plenty of opportunities to improve the state of the art in resource and power managers in 

datacenters. Advancing the design and adaptive control of datacenters with energy efficiency, SLAs, and 
total cost of ownership are the primary areas that one can contribute on, as detailed below.  

The first step is to develop a theory for understanding the energy complexity of computational jobs. 
Today, energy efficiency is benchmarked relative to last year’s product; any efficiency gain is touted as 
success. Instead, we wish to ask what level of efficiency is possible and measure solutions relative to this 
limit. One must thus develop key scientific principles to measure the energy complexity of applications. 
By combining energy complexity with time complexity of applications, we can then perform fundamental 
energy-performance tradeoffs at application programming level.  

Informed by this new theory, one can then reconsider the design of the hardware platforms that 
comprise the energy-efficient datacenters. Key sources of inefficiency are the lack of energy proportional 
hardware and the overprovisioning of these servers to meet SLAs given the time-varying application 
resource demands. An energy-efficient datacenter exploits hardware heterogeneity and employs dynamic 
adaptation. Heterogeneity allows energy-optimized components to be brought to bear as an application 
characteristics change. Dynamic adaptation allows the datacenter to adapt and provision hardware 
components to meet varying workload and performance requirements, which, in turn, eliminates over-
provisioning. Computing, storage, and networking subsystems of current datacenters exhibit dismal 
energy proportionality. One must attempt to redesign server architectures and network protocols with 
energy efficiency and energy-proportionality as the driving design constraint. On the storage front, we 
must construct hybrid storage systems that assign data to devices based on a fundamental understanding 
of access patterns and capacity-performance-efficiency tradeoffs. 

To go beyond the incremental energy efficiency gains possible from component-wise optimization, 
one must consider the coordination and control of storage, networking, memory, compute, and physical 
infrastructure. By tackling the optimization problem for the datacenter as a whole, one can develop 
solutions at one layer that will be exploited at other layers. By using the mathematical underpinnings of 
control theory and stochastic modeling, these approaches enable reasoning about worst-case and average-
case behavior of multi loop compositions of control approaches. One can then develop algorithms to 
globally manage compute, storage, and cyber-physical resources with the objective of minimizing the 
total energy dissipation while meeting SLAs.  

Finally, to evaluate datacenter designs, one must develop new methodologies and simulation 
infrastructure to quantify the impact and prototype research ideas. Because of the complexity and scale of 
datacenter applications, conventional evaluation approaches cannot evaluate new innovations with 
reasonable turnaround time. Hence, we must design hierarchical models, which integrate performance and 



energy estimates across detail and time granularities, and parallel cluster-on-a-cluster simulation 
techniques, which together allow us to quantitatively evaluate systems at an entirely new scale. 
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