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Sequence Compaction for Power Estimation:
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Radu MarculescuMember, IEEE Diana MarculescuiMember, IEEE and Massoud Pedrar8enior Member, IEEE

Abstract—Power estimation has become a critical step in the voltage, C, and sw, are the capacitance and the average
design of today’s integrated circuits (IC’s). Power dissipation is switching activity at the output of gate, respectively. As
strongly input pattern dependent and, hence, to obtain accu- \ye can see, the average switching activity of every gate in the
rate power values one has to simulate the circuit with a large .~ " " K h d b v d ined
number of vectors that typify the application data. The goal of C'fC‘J't ISa gy parameter that needs to elcorr_eCt_y et.erm'ne !
this paper is to present an effective and robust technique for particularly if the node-by-node power estimation is of interest.
compacting large sequences of input vectors into much smaller Since most of the power consumption for digital circuits
ones such that the power estimates are as accurate as possmlemapped with standard libraries comes actually from the output

and the simulation time is reduced by orders of magnitude. : : : :
Specifically, this paper introduces the hierarchical modeling of load charging and discharging, throughout our presentation we

Markov chains as a flexible framework for capturing not only W?” neglect the inFer_naI power dissipation. This is in agreement
complex spatiotemporal correlations, but also dynamic changes in With the vast majority of work of other researchers who also

the sequence characteristics. In addition to this, we introduce and considered only external capacitance charging and discharging
characterize a family of variable-order dynamic Markov models i their power models.

which provide an effective way for accurate modeling of external - : . . )
input sequences that affect the behavior of finite state machines. Existing techniques for power estimation at gate- and

The new framework is very effective and has a high degree of Circuit-level can be divided in two main classes: dynamic and
adaptability. As the experimental results show, large compaction static [1], [25]. Dynamic techniquel], [3] explicitly simulate
ratios of orders of magnitude can be obtained without significant the circuit under a “typical” input stream. Consequently, their
loss in accuracy (less than 5% on average) for power estimates. yaglts depend on the simulated sequence, and the required
Index Terms— Dynamic Markov modeling, hierarchical number of simulated vectors is usually high. These techniques
Markov modeling, Markov sources, power estimation, vector can provide sufficient accuracy at the expense of large running
compaction. times. Switching activity information can be extracted by
doing exhaustive simulation on small circuits; it is, however,
I. INTRODUCTION unrealistic to rely on simulation results for large circuits. To
address this problem, a Monte Carlo simulation technique
was proposed in [4]. This technique uses an input model
based on a Markov process to generate the input stream
COMPUTER'A|DED design (CAD) tools play a signifi- for simulation. The approach has two deficiencies. First,
s cant role in the efficient design of the high-performancge required number of samples, which directly impacts
digital _systems. In the past, time, area, and 'testabl_llty Wefige simulation run time, is approximately proportional to
the primary concerns of the CAD community during thghe ratio between the sample variance and the square of
optimization phase. With the growing need for low-powefe sample mean value. For certain sequences, this ratio
electronic circuits and systems, power analysis and loWacomes large, thus significantly increasing the simulation run
power synthesis have become crucial tasks that must be §|gQ. Second, if the sample distribution significantly deviates
addressed. . . ~_ from the normal distribution, the simulation may terminate
Having a gate-level implementation of the target circuit, t8rematurely. Difficult distributions that cause premature
estimate the dynamic power consumption, we have to sum oygfnination are bhimodal, multimodal, and distributions with
all gates the average power dissipation due to the capacifiyfy or asymmetric tails [5]. The efficiency of the existing
switching current.s; that islouy = (fax/2) - VDQ_D 24(Cg - statistical techniques for power estimation in sequential
sw,), where fax is the clock frequencyVnp is the SUPPIY ircyits is even lower than that for combinational circuits

[6l, [7].
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adapt very well to changes in the input characteristics. For

. t real sequences which may contain a mixture of stimuli with

in out ’ ou . L S . .

taroet very different switching activities, a compaction technique
|:‘J>cir§uit > E> E> with higher adaptability is clearly needed. In addition to
(initial (initial |z this, the model considered in [14] and [15] is based only

seq. Lg) seq. Lg) (compacted on a first-order Markov chain. As it will be shown later in
0 seq. L« Ly) this paper, this is not sufficient for sequence compaction for

power estimation in finite state machines (FSM’s). Temporal
@ () correlations longer than one clock cycle may affect the overall
Fig. 1. Data compaction for power estimation. behavior of the FSM and, therefore, result in very different
power consumptions.
account for internal dependencies due to the reconvergent fanln what follows, we will address these two issues and
out in the target circuit. This problem, which we will referProvide a new framework for sequence compaction which can
to as the tircuit problem” is by no means trivial. Indeed, be successfully applied to both combinational and sequential
a whole set of solutions have been proposed, ranging fré#icuits.
approaches which build the global ordered binary decision
diagrams (OBDD's) [8] and, therefore, capture all interna. Overview of the New Approach
dependencies, to efficient techniques which partially accoun
for dependencies in an incremental manner [9]—[12].
The authors have pointed out the importance of correlatio
not only inside the target circuit, but also at its primary inpu
[13]. We will refer to this issue as therfput probleni and

mention t_hat Itis |mportar_|t not only In power e_st|mat|o was recently used in power estimation [15]. However, the
but also in low-power design. Generating a minimal-leng

f inout ; hich satisfi - 8del in [15] is not completely satisfactory for our purposes.
sequence of input vectors which salisties. some presgrlqﬁ this paper, we thus extend the initial formulation to cap-
statistics is a nontrivial task. The reason is that the inpyt,

o ) e not only correlations between successive input patterns,
statistics that must be preserved or reproduced during sequ

) . . also temporal dependencies of higher orders by using
generation may be quite complex. On the other hand, it d?/namic Markov trees of ordet (DMT,). We also provide
impractical to simulate large circuits using millions or even

i fth ds of inout vect d. theref the | thu#foriginal solution to distinguish between subsequences with
ens ot thousands of input vectors and, theretore, the leng erent transition behaviors by structuring the input space

the simulation sequence is another important issue that myst,, o iilevel stochastic process callgdrarchical Markov
be considered. model

The research presented in this paper shifts the focus frOmAs a final note, we mention that for both combinational and

th? .CII’CUIt pr_oblerﬁ to the mput problerﬁ and proposes an sequential compaction, by using the DMC modeling technique
original solution for power estimation based on the paradlgmat we propose, we do not produce new vectors; that is, all

8f sequer_1tcg comp;actlllo ﬁhg kind dOf ttecfhtrrl:que t'S ?Ppe?“ngpatterns that occur in the final compacted sequence, are also
ecause 1L IS practically independent of Ihe actual IMPIeMElkasant in the original one. This is a fundamental theoretical

tation of the target circuit. It can, therefore, be used ea ifference compared to the case when new vectors are allowed

in the design cycle when the structure of the circuit has ngot the final sequence [17], [24]. Because the search space
been determined yet. The basic idea is illustrated in Fig. @ much larger in the Iatte’r case, our problem of sequence
To eva]uate_ the total power cgnsumption O.f a target CirCl‘%mpaction is more constrained’ compared to the case of
for a given input sequgncéo [Fig. 1(a)], we first derlve_ the Haroducing shorter sequences when new vectors are allowed.

Markov model of th? input sequence and then, having t Sin summary, both simulation-based and analytic techniques
compa_ct repres_entatlon, we generate a mugh shorter S_equ%'f:ﬁower estimation may benefit from this research. The issues
L, equivalent withL,, which can be used with any aVa'lablebeing raised are new and represent an important step toward

simulator to derive accurate power estimates [Fig. 1(b)]. reducing the gap between the simulative and probabilistic

The key element in this schema is the actual Markoaé hniques commonly used in power estimation
model used to represent the initial input sequence. In [14] ancf '

[15], preliminary efforts in using this methodology have been
presented. As the experimental results show, for homogenegusO
input sequences, these approaches perform very well. Larg&he remainder of this paper is organized into four main sec-
compaction ratios of 1-3 orders of magnitude have beénons. Section Il reviews the background necessary to under-
obtained without significant loss (less than 5% on average)stand the proposed methodology. Sections Ill and IV present
the accuracy of power estimates. However, for input sequendesdetail the probabilistic models for sequence compaction
that exhibit widely different transition behaviors over time, thevhich are applicable to combinational and sequential circuits,
overall accuracy can suffer because the probabilistic modebkpectively, and the experimental results obtained on common
used in [14] and [15] is dlat model; that is, it models benchmark circuits. Finally, in Section V, we summarize our
the average behavior of the input sequence, but does nabajor contribution.

The foundation of the new approach is probabilistic in
nature; it relies onadaptive (dynamig modeling of binary
f?ﬁ‘)ut streams as Markov sources of information. The adaptive
tﬁmdeling technique itself (known in the data compression
literature asdynamic Markov chairor DMC modeling[16])

rganization of the Paper
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Fig. 2. Sequence characterization with STG and transition matrix.
[I. BACKGROUND ON FINITE-ORDER MARKOV CHAINS An equivalent description of the MC can be given in

In this section we present the basic definitions and notatioff§Ms of itsstate transition graph(STG). Each node in the
that will be used in the paper. Far from being exhaustive, wal © "epresents a state in the MC, and an edge laheled
restrict our attention to only those concepts that are requirdfPm node: to node;) implies that the one-step transition
by our presentation. For a complete documentation, the reaBEqbability from statei to statej is p;;.
is referred to monographs [18], [19]. Example 1: Let.S; andS; be two 2-bit sequences, of length

A stochastic processs defined as a family of random48, as shown in Fig. 2(a). These two sequences, have exactly
variables {(t), t € T} defined on a given probability spacethe same set of first-order temporal statistics that is, they
and indexed by the parametewheret varies over the index cannot be distinguished as far as wordwise one-step transition
set 7. The stochastic process is said to $tationarywhen probabilities are concerned. In fact, in Fig. 2(b) we provide the
it is invariant under an arbitrary shift of the time origin. Inwordwise transition graph for these two sequences. Each node
this case, the values assumed by the random variaffle in this graph is associated to a distinct pattern that occuss in
are calledstates,and the set of all possible states forms thend.S; (the upmost bit is the most significant one, e.g.5in
state-spaceof the process. v =L vy =2, w3 ="3,” ---, vz = “1"). Each edge

A Markov proces{z(t), t € T} is a stochastic processrepresents a valid transition between any two valid patterns
whose future evolution depends only on its current state aadd has a nonzero probability associated with it. For instance,
not on its past. This is the so called “Markov propertythe pattern “3” inS; andS- is always followed by “1” (thus
and defines a fundamental subclass of stochastic procestes.edge between nodes “3” and “1” has the probability 1),
We shall assume that the transitions out of state) are whereas it is equally likely to have either “0,” “2,” or “1” after
independent of time and, in this case, the Markov procepattern “1.” Starting with different initial states and using a
is said to betime-homogeneous random number generator we may, of course, generate other

If the state-space of a Markov process discrete, the sequences equivalent with, and S, as far as the one-step
Markov process is referred to as a Markov chain (MC). Iftansition probabilities are concerned. We can then see the
the following, we consider only MC’s with finite state-spacegraph in Fig. 2(b) as a compact, canonical, characterization of
If we assume that the index st is also discrete, then we sequences; and S,. Suppose now that we want to compute
have adiscrete-parameteMC. We may assume without 10SSthe occurrence probability of the string = “01 10" that is,
of generality thatl” = {0, 1, 2,---} and denote a generiCthe probability that the transition & 2 is taking place ins; .

MC as {zn }nzo- To this effect, we just use(v) = p(v1v2) = p(v1) - p(va|vr),

Definition 1—Lag-One MC:A discrete stochastic processyhich gives the value of 1/6. If we are interested in finding
{zn}n>0 is said to be a lag-one MC if, at any time step> 1 the two-step transition probability 8> 1 — 1 in Ss, then
and for all states:,, the following holds: using p(v) = p(vivavs) = p(v1) - plvalvr) - pluslvzvy), We

get the value of 1/6. The matricial representation, equivalent

PlEn = Qn|Tp_1 = Qp_1, Tnez = Ap_a, *++, Lo = Q0) with the STG, is given in Fig. 2(c). We can easily verify

) that the sum of all elements on each row istlthus being
indeed a stochastic matrix.

Definition 2—Recurrent StateA state in the MC is called
The conditional probabilitieg(z, = «|r,—1 = a,—1) aré recurrent if the probability of returning in this state after
called single-step transition probabilitiesnd represent the ;, > 1 steps is greater than zero. Otherwise, the state is called
conditional probabilities of making a transition, at time stegansient If the greatest common divisor over all such integers
n, from statex,_; to statex,. In homogeneous MC's these,, js 4 = 1, then the state is also calleperiodic
probabilities are independent afand consequently written as | gur subsequent discussion, we will consider tibstates

pij = p(an = jlan—y = 9), foralln =1, 2,..-. The matrix are recurrent since all transient states vanish after a small
@, formed by placing;; in row : and columny, for all< and mper of steps.

7, is called theransition probability matrix We note that} is Definition 3—Nondecomposable M@ Markov chain is

a stochastic matrixoecause its elements satisfy the following i o benondecomposabléevery state can be reached from
two properties) < p;; < 1 and3_;pi; = 1. every other state in a finite number of steps.

= p(xn = an|xn—l = an—l)-
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Note: The STG in Fig. 2(b) is nondecomposable; we note — target
that, in general, the STG associated to any input sequence of —> circnit
vectors is also nondecomposable.

Changes of states over > 1 time steps are given by A /\

|
probability rules simply expressed in terms pf;. Let us ! Y r A
Qe_note byp;; the probability of transition from s;a'reto stgte Markov chas I X, Lont 2
J in exactlyn steps, namelypy; = p(zmin = jlzm = 1), I >| Logic
whatever the intege. It can be easily seen that probabilities Ip(xn)
py; (which are calledh-step transition probabilitisrepresent |

the entries of th&)™ matrix (calledn-step transition matrix

n > 1. The Q™ matrix itself is still a stochastic matrix andrig. 3. The tuple Markov-Chain target circuit).
satisfies the identity)™*” = Q™ - Q™, m, n > 0 (Q° is by

definition the unit matrix/) or just the system of equations

m—+n

P = S, p - p., known as theChapman—Kolmogorov circuit where power consumption has to be determined. Let
i = ZukPik g i i i i
e(iuations [18]. In ojther words, to go fromto j in exactly &n d(.anot.e a randpm yarlable agsouated to primary inputs of
(m + n) steps, it is necessary to go first fromto an the circuit shown' in Fig. 3p(x,) is t.hen the prpbabl]lty that
intermediate staté, in m steps, and then frorh to j in the the mpt_J'_[ s, at time stem. We are interested in defining the
remainingn steps. By summing over all possible intermediatgrobabilitiesp(z,.) and p(z,x,—.) because they completely
statesk, we consider all possible distinct paths leading frorR@pture the characteristics of the input that feeds the target cir-
i 10 j in (m -+ n) steps. Assuming stationarity, i = [r;] cuit. Using these probabilities, the vector compaction problem
denotes thestate probabilityvector of the MC, then from ¢@n be formulated as follows. _
Chapman—Kolmogorov equations we have that) = 7. Problem Formulation: For a sequence of lengthg, find
Theorem 1—[19]: For a nondecomposable MC, the equaanother sequence of length < Ly (consisting of a subset

tion 7 - Q = = has a unique solution that represents thf the initial sequence), such that theverage transition
stationary distributionof the MC. 7 Pprobability on the primary inputs is preserveubrdwise,for

Note: If the Markov chain is aperiodic, the@™ converges two gpnsecutive time s.te.ps. More formally, the following
to a stable matrix whem — oo, and = can be found to be condition should be satisfied:

any row of the limiting matrix. ok < 3
Definition 4—Lagk MC: A discrete stochastic process [p(en@n1) = p*(@nen)] <€ ®)

{#, }n>0 is said to be dag-k MC if, at any time stepr > k, where p and p* are the probabilities in the original and

we have compacted sequences, respectively, and an infinitesimal
quantity. O
P(Tn = On|Tn—1 = Qn—1, Tn—2 = Qp_2, "+, To = Q) This condition simply requires that the joint transition
=p(@n = Qn|Tn-1 = Qno1, Tn2 = @noz, o, probability for the primary inputs is preserved within a given
Tk = Ok )- (2) level of error, for any two consecutive vectors. We want to

prove now that indeed, by having satisfied relation (3), it is
It should be noted that any lag-MC can be reduced to aguaranteed to produce a new sequence which is asymptotically

lag-one MC based on the following result. close to the original one as far as the total power consumption
Proposition 1—[19]: If {u,}n>0 iS a lagk MC then in the target circuitis concerned. The proof will involve several

{¥n}n>0 Where v, = (Un, Unt1, - Untr—1), IS @ intermediate results as shown subsequently.

multivariate first-order MC. U Proof of Correctness:As stated in the previous section,

Consequently, the study of lagMC'’s is practically reduced () represents the stochastic matrix associated to the original

to the study of the properties satisfied by lag-one MC's. WRput sequence, i.ep;; = p(v;|v;), wherewv;, v; are any
will subsequently refer mostly to lag-one MC’s but, by virtugwo consecutive vectors. To produce an equivalent sequence
of Proposition 1, all results easily translate to fagAC’s. from a reference one, one should preserve the word-level
transition probabilities. This essentially becomes the problem

1. SEQUENCE COMPACTION FOR COMBINATIONAL CIRCUITS of preserving both conditional and state prObabi”ties because

. i~ = m; - pi;, wherem; is the ith component of the
In what follows, we will use elements from the theory o o o
. . ; . tate probability vector ang;_.; represents the transition
discrete-parameter time-homogeneous MC'’s to derive a prob- " .
robability of going from vectory; to vector v;. (From

abilistic model for sequence compaction for power estimati corem 1, it can be seen thatis the left eigenvector that

in combinational circuits. corresponds to the eigenvalue= 1 in the general equation

7 - Q = A-w.) At this point, we emphasize the importance of

stationarity condition for defining the state probability vector
As shown in Fig. 3, we model the “tuplefnput sequence ;.

target circuit) by the “tuple” (Markov_chain target circuit), To complete the proof, we note that every stochastic matrix

whereMarkov _chainrepresents the Markov chain that modelkas one as simple eigenvalue and all other eigenvalues have

the input_sequenceand target circuit is the combinational absolute values less than one. (This is in fact a consequence

A. Problem Formulation
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Fig. 4. Two sequences and their corresponding transition graphs.

of the Perron—Frobenius theorem [20] which states that fof total power consumption is given by
every matrix with nonnegative entries, there exists a sirhple,

positive eigenvalue greater than the absolute value of any other |P— P*| < Jelx V2o Z Pis — P |
eigenvalue.) This result is very important because it makes -2 PPL ‘ Pimi = Pimsj
possible to analyze the effect of perturbation of matpion o
i i -Cy -nk = 0(e). ]
the eigenvectors that correspond to the eigenvalue one. To kb
this end, let us assume that the newly generated sequence is
characterized by the matrig* = [p};] wherep}; = p;; + &i; Corollary 2 basically shows that, if the new sequence is

(e:; represents the error induced by perturbations) japdl < asymptotically close to the original one, then the same type
1. We can writeQ* = @ + ¢ - B wheree = max|e;;| and of asymptotic relationship holds for the total power values.
b;; = €;;/¢. Becausel* characterizes a sequence of vectoryVe have, therefore, proved that a first-order probabilistic
it is also a stochastic matrix and, therefore, it has an eigenvalmedel issufficientto perform sequence compaction for power
A* = 1. But, from the theory of algebraic functions [21], forestimation in combinational circuits. The remaining portion of
any eigenvector of () corresponding to the simple eigenvalughis section describes how we can efficiently do compaction
A = 1, there exists an eigenvectet of Q* corresponding to in practice.

the simple eigenvalue* = 1, such that||r — #*|| = 0(g)

(read as Zzero of epsilof), where 0(¢) is any power series g Hierarchical Models

in £ (convergent for sufficiently smalt) having the form
kie + kze” + - --. As a consequence, singg; — p;;| = 0(e),

it is easy to see thdp;—; — pj_;| = 0(¢).

Summarizing, we have that:

Corollary 1: If the stochastic matrix)) is properly pre-
served during the compaction process, then the transiti
probabilities of the newly generated sequence asgmptot-
ically closeto the original ones, that i;—.; — pj_, ;| = 0(¢).

This section introduces the hierarchical modeling of Markov
chains as a flexible framework for capturing not only complex
spatiotemporal correlations, but also the dynamic changes in
the sequence characteristics.

n1) Nonhomogeneous Sequencés:[14] and [15], the au-
thors present preliminary results in solving the vector com-
paction problem when only first-order temporal correlations
are taken into account. The Markov model used to represent
the initial input sequence is #at model; that is, it models
only theaveragebehavior of the input sequence. The primary
g}sadvantage of any flat model is the fact that it does not adapt

ery well to changes in the input characteristics. To illustrate
the significance of this issue, we consider the following

We have, thus, proved that we casymptoticallyreproduce
an initial sequence by preserving its matflx From a practical
point of view, let us see the implications of the above corolla
on total power consumption in a target circuit when th
original input sequence is approximated by a new one.

Corollary 2: If P and P* are the values of the total powerexample.

consumption which are obtained for two sequences satisfyin Xam'?'e 2:Let .Sl be a 5-bit sequence as shown_ n
the conditions in Corollary 1, then we have th&t — P*| = Fig. 4(a); next to it, we represent the word-level transition
0(e) O graph that corresponds to this sequehdéis particular set

Proof: We have that? = (£.u/2) - V2, -3 - pos - of inputs behaves like a pseudorandom sequence because any
(few/2) - Vi E””“p % vector is equally likely to be followed by any other remaining

is the number of transitions at the output of gat@hen vector pattern. In Fig. 4(b) we cgn5|der qnother sequeigewhich
is completely deterministic and highly correlated. It has an

v;, followed by vectory;, is applied at the input of the circuit. o )

. . . ! verage value of 1.33 transitions per step, thus producing less
Assuming that the input sequence is approximated by another; .

. s .. activity compared taS;.

input sequence such that the new set of transition probabiliti

e : . -
e . uppose that we duplicate 25 times the original sequence
satisfiespi; —pi.,| = 0(c), then the error made in the valuesl and 100 times the sequen§g, getting two new sequences

Cy, - nk;, whereCy, is the output capacitance of gateandn};

1This means that the multiplicity of the root = 1 in the equation
Q=X 7isone. 2\We assume that the last vector is linked to the first one.
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power value stabilizes after applying only tens of vectors.
However, in practical applications, the set of stimuli may
contain a mixture of vectors, each one very different as far
as the average switching activity per bit is concerned.

A compaction procedure based on random walks in graphs
where some pairs of vectors have very small transition prob-
abilities, has the potential drawback of “hanging” into a
small subset of states. This causes an erroneous power value,
depending on which component (low or high activity) is visited
more often. The same type of phenomenon is observed for
statistical methods when the distribution is very different from
a normal one (e.g., bimodal distributions), or when selecting
Fig. 5. The transition graph for the composite sequesite from the initial sequence only the first few hundred vectors.

Thus, to compact large sequences that contain nonhomoge-
neous power behaviors, a technique with high adaptability is
T T needed.

We use hierarchical Markov models to structure the input
space into aierarchy of macro and microstates at the first
(high) level in the hierarchy we have a Markov chain of
macrostates; at the second (low) level, each macrostate is in
turn characterized by a Markov chain for all its constituent
microstates. Our primary motivation for this hierarchical struc-
ture is to enable a better modeling of the different stochastic
levels that are present in sequences that arise in practice. As
consequence, by exploiting the first level in the hierarchical
Markov model, such models will make the approach highly
adaptable to the behavior of the input sequence.

After constructing the hierarchy of the input sequence,
. . ‘ , K . ; . starting with some macrostate, a compaction procedure with
0 100 200 300 4Q?meg?gp 600 700 800 900 a specified compaction ratio is applied to compact the set of

microstates within that macrostate. The control then returns to
Fig. 6. Average power dissipation for C17. the higher-level in the hierarchy and, based on the conditional

probabilities that characterize the Markov chain at this level,
S¥ andS?, respectively? Based ons# andS#, we construct a new macrostate is entered and the process repeats until the
now a new sequencé&* which is formed by concatenat-end of the sequence (last macrostate) is reached. By doing so,
ing Sf& and Sj& for an infinite number of times [that is, we combine the advantages offered by the hierarchical model
S* = (§#¥@S#)*]; the transition graph representation of thigvith the flexibility of the DMC modeling technique.
new “macrosequence” is given in Fig. 5. The question now 2) Micro/Macrostate Modeling:Having the  transition
becomes, how will the average power consumption look likgraph associated to a vector sequence, our task now
as a function of time, whers* is applied to any circuit? is to partition this transition graph into subgraphs that
Obviously, the sequencg” has two very different modes: onecorrespond to different behaviors (in particular, different
where much activity is generated at the primary inputs, and’@wer consumptions). To this end, we first provide some
second one where about one single input bit toggles at evéigeful definitions and results.
time step. In Fig. 6 we can see the effect of these two differentDefinition 5—Weighted Transition GrapA: weightedtran-
regimes on average power consumption for benchmark CEftion graph is a directed graph where any edge from stdte
Starting initially with S, after 300 time steps the value ofstates; is labeled with a conditional probability;; = p(s;|s;)
average power stabilizes around 1LV; then, when the anda weightw;;* associated to the transition — s;.
characteristics of the input sequence change, the power valuPefinition 6—Weight of a Random Wallthe weight of a
goes down toward 7Q:W and finally, due to the increaserandom walkin a weighted transition graph is given by
of the switching activity at the primary inputs, it comes up
This type of behavior is very common in practice. More 5085

precisely, only homogenous input sequences (which Come\}\llﬂerewij is the weight associated with transitien— s;.

statistically similar vectors) W|II.exerC|se the cw_cwt such t.hat Definition 7—¢, 6)-Property: A weighted transition graph
the value of average power will converge rapidly. A typical

example is a set of pseudorandom vectors where the aver!asggald to have thee( 6)-propertyif there exists a grouping

150 , , Y Be'nchma}rk C17Y

(=
(=]

average power _.

[$2]
[=)
L

SHere # is used to symbolize that sequenesand S, are repeated fora  “We shall see later in this section the meaning of these weights for our
finite number of times. particular application.
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{51, S2, -+, Sp} on the set of statesy, sz, - -+, s,} of the
transition graph satisfying
* (e-criterion):V s; € Sk, s; € S; thenp(s;|s;) < e and
p(sjlsi) < &
* (6-criterion): V Sy, for any two statess;, s; € Sk, si,
s; connected by an edgé Wy, s.t. |[Wy — w;;| < 6. ;
Also, if k < I, W}’'s are such thaW, < W;. S.’'s are .
calledmacrostatesvhereass; € S, are calledmicrostates
within macrostates;. )
The intuitive reason for the above definition is that ,
conditional probabilities from any microstate i, to another Fig. 7. A two-level hierarchy for sequence'.
microstate inS; (S, # S;) are negligible £-criterion), and
all transitions among microstates belonging to the samaee preserved, then th&tate probability distributionof the
macrostate have similar weighté-¢riterion). For instance, initial (flat) sequence is completely captured. O
in Fig. 5 microstates “10,” “21,” “26,” and “29” form the Proof: Let s; be any state from the original sequence.
macrostateSf (with high activity), while “15,” “30,” and Then, its probability is given by
“31” form Sf (with low activity).

A particular microstate may generally appear in more than plsi) = > p(siSk) = > p(silSk) - p(Sk)
one macrostate since not only the vector itself, but also the Sk Sk
context in which it appears is important (as in Definition = Zpk(si) - p(Sk)
7, the weight value for a transition determines whether the Sk

microstates belong to that particular macrostate or not). There- - )

fore, thegrouping of states is done such that transitions ar&¢herepx(s;) denotes the state probability sf in macrostate

clusteredaccording to their associated weights. Sk- - _ u
From what has been defined, it becomes possible to hier-T"uS, the state probabilities are the same if they are pre-

archically structure the input space. Specifically, instead 8frved inside each macrostate and also the probability distri-

considering the input sequence as a flat sequence of vectBHion for macrostates is correctly captured.

it can be seen as a structured multilevel discrete stochastid "€orem 3:Having a hierarchical model satisfying tise

process calledhierarchical Markov mode{HMM). We note criterion, if 'Fra_nsmon probabilities of the microstates are.

that HMM generalizes the familiar Markov chain concept b .reserved within each macrostate and if the state probabili-

making each of its macrostates a stochastic model on its oW ©f macrostates are correctly captured, then the transition

i.e. each macrostate is a Markov model as well. For instan®soPabilities of the initial sequence are reproduced with an
1 J D

the graph in Fig. 5 can be represented hierarchically as shoWﬁor;eSSf_th_?g or eq“."’?' o bability b
below, where the macrostal%l# identifies the high activity q ’roo. b € transmog probabiiity between two states
mode andS} the low activity one. ands; can be expressed as

Note: It should pointed out that, in general, the high-level = o o
Markov chain is not autonomous; that is, some conditiona?(szs’) o Z p(5i535) + Z Pi55551)

probabilities may be different from 1. For example, if the Si,ssfesk Ssésf‘sffél

initial sequence is structured a$; @S,@S;@S,@S; (having _

thus three modes), then in the high-level Markov chain we = ; pisisi) - p(Sk) +Sz; pra(sis;) - p(SeS)
havep(S3|S2) = p(S1|S2) = 0.5 (because it is equally likely g b

to go from S; to either S or 5y). where pi.(s;s;) is the transition probability between mi-

The initial problem of compacting a flat input sequencgrostates;; ands; inside macrostats), andp(s;s;) denotes
becomes equivalent to that cdmpacting a hierarchpf sub-  the transition probability between those states if they belong
sequences. Since vectors in each macrostate are gathered qgl%acrostatess’k, Sl, respective]y_ Since our assumption

the sames-criterion, the compaction is now done inside eacy that the hierarchy satisfies thecriterion, we have that
macrostate. This avoids the “hang-up” problem mentioned ml(sisj) < ¢ and hence

Section 11I-B1 because all macrostates are guaranteed to be
visited as their transition probabilities “scale-up” after hierar-  p(s;s;) < Z pi(sis;) - p(Sk) + € - Z p(SkS;)
chization. For instance, in Fig. 5, the transition probabilities Sk Sk, S
betweens? andS¥ are 0.013 and 0.010, respectively; in the = 3 pilsisy) - p(Sk) + <
hierarchical organization shown in Fig. 7, these probabilities N s Prisisi » ’
become one.
We now present some useful results for HMM characterihus, if the macrostate probability distribution and the tran-
zation. sition probabilities inside each macrostate are preserved, then
Theorem 2:If the state probability of each macrostate anthe actual transition probabilities are preserved up to some
the state probabilities for all microstates within a macrostaggror ¢.
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Theorem 4:If the hierarchy satisfies the,(6)-property (as 4 Benchmark C17
in Definition 7), then the weight of a random walk in the flat T
model satisfies

W< p(Se) Wete: > > p(SkS)

5 Sk, St, k#l 5i,55
5:€5k, ;€5

“wi; 6 (5)

w
n
.

w

N
[4,]
¥

wherep(Sy,) is the probability of being in macrostatg., W,

is the weight associated to macrostaig (as in Definition

6) andp(Sk.S;) = p(Sk)p(S:|Sk) is the transition probability

from macrostates;, to macrostate’;. O
Proof: Let W be the weight of the initial sequence. Then,

using Definition 6 and Theorem 3, we have

W < Z Z pr(sis;) - p(Sk) -wi; + ¢

_ average Hamming distance
nN
;

)
-
H

0 100 200 300 400 500 600 700 800 900

time step
8:,8; Sp
Fig. 8. Average Hamming distance variation.
Z p(SkSI) . wij.
8,85

51 €Sk, 55€ 51, kAl (subsequences) in the initial input sequence and then apply

On the other hand, if;, s; are in the same macrostafig and the €, 6)-grouping of microstates based on their associated
the hierarchy satisfies thecriterion, then there is somd’,,  weights. Once we identify these different subsequences in

such thatjw;; — Wx| < 8. Hence, we also have the initial sequenc&™, our compaction procedure works fine
regardless of the power consumption values that would arise
W< Y prlsisy) - p(Sk) - (Wi +6) +¢ from the application of these two subsequences to the target
51,85 Sk circuit.
Z p(SiSy) - wij To structure the input space, we propose to useae
iy erage Hamming distance over a variable-size sliding window
51 €50, 5;€51, k£l because, from our investigations, it is a reliable indicator of
from where it follows the above claim. m the level of activity. We will explain subsequently how this

In other words, a random walk on the hierarchical Marko{indow is actually used to calculate the average Hamming
model preservesup to some error the average weight of th@istance. _ o _ _
original sequence. The first term in the above sum repre-IN the particular situation described in Example 2 (see
sents the average weight per macrostate, whereas the se¢dfld8). based on the Hamming distance criterion, the input
accounts for the weight of transitions between them. sequence can be roughly classified into *high activity” and
This general formulation applies immediately to our probloW activity” macrostates. While this kind of partitioning
lem defined in Section IlI-A. In fact, if the input sequence i high and low activity modes can always be used, in
hierarchically structured, Theorem 3 guarantees that inequalfffictice it is better to have a more refined model. For instance,
(3) is still satisfied. Moreover, Theorem 4 guarantees that tifghe set of all possible values for the Hamming distance is
average power value is maintained. This is very importafitvided in three equally-sized regions that correspond to low,
from a practical point of view because the hierarchical mod@edium and high activity, then we can identify more than two
has the advantage of beirigghly adaptiveas opposed to a modes of ope_rathn. A more refined model might be rqulred
flat processing of the input sequence which does well onify Some applications where a large number of operational
“on average.” modes exist (e.g., an initialization mode, an active mode, a
3) A Hamming Distance-Based Criterion for Microstatétandby mode, and a sleep mode). We also note that the
Grouping: In practice, it is hard to determine the weighy; 2verage Hamming distance may not always capture the specific
for each individual transition. Specifically, an exact procedukehavior of different groups of bits in the input sequence. For
would require detailed information about the circuit (e.g., itStance, a criterion based on average Hamming distance may
internal structure and capacitive loads) and a fast simulatiBft distinguish between the two cases where either the most
procedure to derive the exact power consumption for each pggnlflcant bits (MSB) are more active than the least significant
of vectors in the original sequence. In practice, such an atterljé (LSB) or vice versa. These two cases, however, may
may be unsatisfactory due to the simulative overhead and tRguce different power modes (even if the average Hamming
requirement to have detailed circuit information. Thereforélistance is the same). To handle this situation, we refine the
we adopt a differentgircuit-independentriterion to structure high-level Markov model as follows. Instead of having only
the input space. low and high activity macrostates, we define four macrostates
As suggested in Example 2, what we need is an indicator of* low activity LSB and low activity MSB;
the level of activity at theprimary inputsof the circuit. To this 5That is, if more than three out of five bits change, we are in the high
end, we must correctly identify the different stochastic levelgtivity mode; otherwise in the low activity one.
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* low activity LSB and high activity MSB; that correspond to pairs of consecutive vectesss. ), (vavs),
« high activity LSB and low activity MSB; oy (Up—2tp_1), (Un_1vn)], we grow simultaneously the trees
« high activity LSB and high activity MSB; DMT; inside each macrostate (the low-level of the hierarchy)

and, in this way, we structure the input space to achie@@d also the DMT tree for the sequence of macrostates (the
a stronger correlation between the behavior of the inpligh-level of the hierarchy). Vectors within each macrostate are
sequence and the power modes induced by this sequencé&&fuenced together in the same DMT the input sequence
the target circuit. In the current implementation, the user haatisfies the, ¢)-property, the transitions introduced this way
the freedom to specify the number of groups of bits to b0 not significantly change the characteristics (average weight
considered, as well as the number of macrostates per e@pHl transition probabilities) of the model. We continue to grow
group. Thus, at the expense of a more complex model, € trees at both levels of hierarchy as long as the Markov
are able to find a better hierarchization of the input sequeng@del is smaller than a user-specified threshold; otherwise we
which closely follows the power modes of the target circuitjust generate the new sequence up to that point and discard

We note that, in general, characterizing different groups lush) the model. A new Markov model is started again
bits as far as their average Hamming distance is concerndtid the process is continued until the original sequence is
does not imply that we have to always consider MSB versge@mpletely processed.
LSB. Instead, given the functionality/structure of the circuit For the generation phase itself, we use a modified version
and/or some knowledge about the primary input bits, we chthe dynamic weighted selection algorithm described in [22].
decide what different groups of bits have to (or may bdh general, by alternating the generation and flush phases in
characterized separately. We should also note, however, the DMC procedure, the complexity of the model can be
advantage of the original criterion (i.e., Hamming distancegffectively handled. The only remaining issue is to determine
besides the low complexity, is that it only requires the avaihow many vectors must be generated inside each macrostate
ability of a meaningful input trace. before a transition to another macrostate is performed. If a

To detect the changes in the input sequenograble-size subsequence of length; is assigned to the macrostatg,
sliding windowis used to compute the average value of thafter compaction with ratior, it has to be reduced td;/r.
predictor function (in our case, the Hamming distance). Ale note that inside all macrostates #@me compaction ratio
every time step, the average Hamming distance for all vect@fould be used, otherwise the composition of the sequence
starting with the first in the current macrostate and ending wi(as far as power consumption is concerned) may be totally
the current vector is computed. Next, we decide whether tdi#ferent than the composition of the initial sequence. On
behavior of the sequence has changed (that is, we are in @verage, each macrostate should be visited(p(S;) - M)
same macrostate or not) by comparing the average Hammiitges wherel/ is the length of the “macrosequence” (i.e., the
distances at steps- % and (p + 1) - k, wherek is a fixed length of the initial sequence of macrostates). Thus, each time
parameter (window increment size) apdis an integer. If amacrostaté; is visited a number of,; /(r-p(S;)- M) vectors
the difference between these average Hamming distancesideds to be generated. Since compaction is done only at the
larger than the parametérset by the user, then we start withmicrostate level, the length of the macrosequence is preserved
a new macrostate; otherwise, we remain within the currefibe generation procedure stops when exasflymacrostates
macrostate. are obtained). It is also noted that this strategy dussallow

We note that thesize of the chosen window increment“forbidden” vectors which means that those combinations that
should not be too small (due to the fragmentation, the higtid not occur in the original sequence, will not appear in the
level Markov chain becomes similar to the flat model) or tofinal compacted sequence either.
large (the low-level Markov chain becomes similar to the flat The overall strategy is depicted in Fig. 9. Starting with an
model). Our experience shows that a window increment siitgout sequence of length,, we perform a one-pass traversal
k of 50—100 vectors works very well in practice. We note thaif the original sequence to assign microstates to macrostates.
the e-criterion (if satisfied) is already accounted for by thidNext, we simultaneously build the trees DMTor the entire
procedure since all macrostates are guaranteed to be vishéetarchy (macro- and microstates). During this process, the
(due to the scaling of conditional probabilities in the highfrequency counts on DMTs edges are dynamically updated.
level model). This does not result in an incorrect value for the The next step in Fig. 9 does the actual generation of the
total power consumption, as is the case for the flat model. output sequence (of length). Our compaction procedure

works, in principle, with two different compaction strate-

C. Practical Considerations and Experimental Results gies. The first one is to monitor the current values of the

In the following, we describe a practical procedure fotrransmon probabilities and compare them with the transition

constructing the tree DMT[15] and generating the compactecg;\?vzgg“?ﬁe otht:eSé)tr;glc:}al f;;:;lri] t(i:((;, \évehcinmglse sd”;ffir'z?l(tzle
sequence. First, based on average Hamming distance cri b utciently

e-
rion explained in Section 11I-B3, the vectors of the original

mall, the generation procedure is halted. This way, we are
sequence are assigned to macrostates. During the second ble to satisfy any user specified error level for the transition
versal of the original sequence [when we extract the bit-le

f o . )

‘gbablhtles. The second strategy is to set the compaction

statistics of each individual vector and also those statisti[:astIO upfront, perfor”? compactpnz and t.h en compute the .e rror
induced by compactioma posteriori In this second scenario,

6p . k represents the size of the window. the user may define the largest value of the compaction ratio
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of length L
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Gate-level logic simulation; Ga:e;livel logic stimui_ation; Compacted sequence
otal power estimation of length L« LO

Two-step DMC modeling;
build DMT’s for top and »| Generate a compacted
low level models and update sequence L

them dynamically

total power estimation

Comparison

Fig. 9. The experimental setup for combinational circuits.

ToTtaL Power CoNSUMPTION (uW @ ZC-JFANIIBI:ZE) FIOR ISCAS’85 QRrcuiTs (4000 VECTORY
Flat model Hierarchical model

Estimated Estimated Estimated Estimated Estimated Estimated

Circ.t (iuiﬁlber P ower for power for power for power for power for power for power for
puts | initial seq. r=2 r=5 r=10 r=2 r=5 r=10
C432 36 1810.02 1473.30 1491.58 1230.77 1875.22 1888.42 1906.84
C499 41 4390.79 3931.30 5341.74 6126.58 4477.09 4497.01 4591.46
C880 60 3788.22 4337.18 4504.40 2803.14 3921.61 3851.42 40006.19
C1355 41 3783.35 4300.08 3065.71 4333.81 3828.45 3910.45 3933.25
C1908 33 6352.07 4947.08 4565.87 7094.39 6127.82 6145.49 6493.44
3540 50 14471.46 17153.07 9005.19 3527.65 14797.30 15056.43 15021.08
C6288 32 104158.25 86586.18 81100.59 82652.47 101407.12 98112.01 96295.36
Avg. % err. 16.40 23.64 31.45 2.67 3.55 4.74

based on the stationarity hypothesis which should be satisfiaa standard benchmarks was consistent with the error found
on any segment of the original sequence that is compactediependently by the manufacturers. This consistency is not
More precisely, the shortest subsequence where the stationasityprising because, at least if our assumptions are satisfied,
hypothesis must be satisfied limits the highest compaction ragigr approach is essentially independent of the target circuit.
that can be achieved. No matter what strategy is used, if theThe sequences in Table | contain three types of subse-
initial sequence has the length, and the newly generatedquences: a high activity subsequence, followed by a low
sequence has the lenglh < Lo, then the outcome of this activity subsequence, and finally by a pseudorandom one.
process is a compacted sequence, equivalent to the initial g get a deeper intuition about the characteristics of these
as far as total power consumption is concerned; we say thal&uences, we will consider subsequently the particular case
compaction ratioof r = Lo/L was achieved. of testbench C6288 which will be also referred later in
Finally, a validation step is included in the strategy; Weyis section. The bit-level switching activities (for the input
resorted to an in-house gate-level logic simulator develop quence of C6288) vary in the range of 0.24 to 0.53 for

>/ 1 1
under S1S. The total power consumption of some ISCAS'S he first subsequence (vectors 1-2500), 0.17 to 0.61 for the

benchmarks has been _megsured_ for the initial and the.cosrg'cond one (vectors 2501-3700), and finally, 0.45 to 0.54 for
pacted sequences, making it possible to assess the effective

€ss
of the compaction procedure (under both zero- and real-de ¢ bseudorandom sequence (vectors 3701-4000). In terms of
models).

t% average Hamming distance variation, the values are 10.33,
In Table I, we provide the real-delay results for a set 0%

.91, and 16.11 for the first, second, and third subsequence,
highly biased sequences (of length 4000) which represent inpgEPectively. We note that these average numbers do not fully
stimuli for real applications and have been provided to us

strate the differences in characteristics among these three

a chip manufacturer. We point out that while we had acceS¥Psequences and, therefore, we present in Fig. 10 the varia-
to these real input sequences, we could not obtain also tipn of the Hamming distances associated to these sequences.
description of the actual chips. Consequently, we used thes&fom this graph, we can see that the Hamming distance

real input sequences with standard benchmarks taken fr¥afies much faster for the first subsequence compared to the
ISCAS suite and evaluated the quality of the results. In the erfgcond one; this abrupt change in the characteristic of the input
we were pleased to learn that the error we found experimentiggguence can be noticed after the first 2500 vectors. On the
other hand, after 3700 vectors, we enter in the pseudorandom
domain where the Hamming distance stabilizes around value

"For more accuracy, a switch-level simulator (e.g., Power Mill [3]) may b 3 ; )
16. These three very different subsequences induce different

used.
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1l \ o Fig. 11. The two-level hierarchy for C6288.
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REsuLTS OBTAINED FOR SIMPLE RANDOM SAMPLING
Number of vector

'||.. M‘.. 500 , Circuit | Max. | Avg. | >5% | >6% | >10%

. Error violations (%)
pairs

time step Ca32 | 3300 | 2176 | 11 | 07 | 04

Fig. 10. Hamming distance variation for C6288. C499 1500 862 1.4 1.3 0.2
C880 3990 2705 1.8 04 0.7

power consumptions in the circuit C6288. For instance, the gigg: iggg 2}1‘61 i; 1(3) g'z
power dissipated during the first mode is 96 37508/, Cas20 | 2320 | 1246 2'0 1'3 0'4
. ! 4 . . .

68 231.38uW for the second one, and finally, 338 948,28/ cease | 7270 | saz2 14 W) 03

for the pseudorandom subsequence. While the numbers are
slightly different for the other circuits reported in Table I, the
qualitative explanation and the details given here for C6288 the lack of adaptability which characterizes the flat model
remain valid for all other examples. when applied to multimodal sequences.

As shown in Table I, the initial sequences were compactedOnce again, we note that the assumption of stationarity
with three different compaction ratios (namely= 2, 5, and s essential for our compaction procedure. Moreover, even if
10). This table includes the total power dissipation measurgtk stationarity hypothesis is satisfied, the convergence result
for the initial sequence (column 3) and for the compactad Corollary 2 states that if the error on input conditional
sequence (columns 4-9). The time in seconds (on a Spprebabilitiese converges to zero, then the difference between
20 workstation with 64 MB of memory) necessary to reathe total power values converges also to zero. However, we
and compress data with DMC modeling was below 5 s in allere not able to prove that this convergencerienotonic,
cases, either for the flat or for the hierarchical model. Sing® oscillations may occur for a specific run. It is however
the compaction with DMC modeling is linear in the numbegxpected that the general tendency is to get a smaller error
of nodes in the structure DMT this value is far less than for a smaller compaction ratio when a large number of runs
the actual time needed to simulate the uncompacted sequeigeaken into consideration.

During these experiments, the number of states allowed in thene present in Fig. 11 a typical case, that is the two-
Markov model was 20 000, on average (about 500 KB). Thersel hierarchy obtained for the benchmark C6288 in Table .
sequences satisfied thecriterion fore = 0.001, while the We indicate for each macrostate the number of microstates
parametets in Definition 7, was set to be 0.05(# of input included in it; for instance, the largest macrostate contains
bits). (This corresponds to having up to 20 macrostates in th®60 microstates, while the smallest has only 80 microstates.
hierarchical model.) As we can see, for these particular values of parameters

As we can see in Table |, the quality of results is very and §, we have identified five modes (macrostates) in
good, even when the length of the initial sequence is reduag@ input sequence, each one containing a very different
by one order of magnitude. Thus, for C432 in Table I, insteachimber of microstates. We also note that the conditional
of simulating 4000 vectors with an exact power of 1810.0grobabilities at the highest level of the hierarchy scaled-up
#W, only 800 vectors with an estimate of 1888 4%/ or just after hierarchization.

400 vectors with a power consumption estimated as 1906.84inally, we compare our results generated by HMM with
#W may be used. This reduction in the sequence length reimple random sampling of vector pairs from the original
a significant impact on speeding-up the simulative approactsssjuences. In simple random sampling, we performed 1000
where the running time is proportional to the length of theimulation runs with 0.99 confidence level and 5% error level
sequence which must be simulated. For instance, using tve each circuif. We report in Table Il the maximum and
PowerMill simulator [3], the average speed-up obtained fawverage number of vector pairs needed for total power values
simulation time of benchmarks and sequences in Table |t converge [1], [4]. We also indicate the percentage of error
11. By comparison, if the flat model is used for the sameolations for total power values, using as thresholds 5%,
benchmark, the relative errors in power prediction are 18%8This means that the probability of having a relative error larger than 5%
and 32%, respectively. The primary reason for this inaccuraisyonly 1%.
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TABLE Il temporal effects (i.e., pairs of consecutive vectors) to perform
REsuLTS OBTAINED FOR HMM A PPROACH sequence compaction. In the case of FSM’s, this is not
sufficient. In this section, we present a solution for compacting

Error violations (%)

an initial sequence such that the steady-state and transition
... | Number e . .
Circuit >5% | >6% | >10% probabilities of the signal lines are almost the same.

of vectors

C432 800 2.6 0.6 0.0 L
Ca99 800 01 0.0 0.0 A. Finite-Order Memory Effects
C880 800 2.8 0.9 0.0 Information about the steady-state and transition proba-
C1355 | 800 0.1 0.0 0.0 bilities is very important because both of them completely
C1908 | 800 0.1 0.0 0.0 characterize the FSM behavior. In particular, they have im-
C3540 | 1200 1.6 0.3 0.0 mediate application in power estimation area because, for
C6288 | 3600 15 0.0 0.0 sequential circuits, temporal correlations longer than one time

step can affect the overall behavior of the FSM and, therefore,

6%, and 10%. Using different seeds for the random numb{ﬁsu't in very different power consumptions. This point is
¢

; - - ; strated by a simple example.
generator (and, therefore, choosing different initial states in t ] .
sequence generation phase), we run a set of 1000 experim fexample 3:Let S, and.s; be two 4-bit sequences of length
for the HMM technique. In Table Ill, we give the results=o: as shown in Fig. 12(a). These two sequences have exactly

obtained with the hierarchical model, for the same thresholg S3M€ set qf f!rst-order temporal statlstlcs_ as shoy\{n n
used in simple random sampling Ig. 12(b). In this figure, we provide the wordwise transition

Once again, the results obtained with HMM modelin raph for these two sequences where the topmost bit is the

technique score very well and prove the robustness of &St significant bit (.., ISy, v1 = vz = 17" w3 =

present approach. As we can see, using fewer vectors, the "~ Y26 = 9°). Suppose now thats; and 3, are fed

accuracy of HMM is higher than the one of simple randort the benchmarks8 from the menc'91 sequential circuits:
sampling in most of the cases. Noteworthy examples aydite. Looking at different internal nodes of the circuit, it
benchmarks C499, C1908, and C6288, where less than 65’/310t_ed that t_he total number Of. tra_ns_itio_ns made b_y each
of the maximal number of vector pairs needed in randoﬂ’f)oél,e |Tv|very dlffetrr(]entt vi[/hlen the circuit is St!mUITez%VKAﬁE .
sampling for convergence are sufficient for HMM to achiev r =2. Moreover, the fotal power consumption a Z1s
higher accuracy and confidence levels. 84 and 476.W, respectively, showing a difference of more
In Table IV, we provide the real-delay results for a sdhan 24% even for this small circuit. This raises the natural
of long seque’nces having the length of 200000 vectors. \g%js“on’ “why does this difference appear_?,” d_espite the fact
generated these sequences by setting the most significant 51 ?nd i? hg_\;fe thetsame SJ.G _sh(:yvn n lt:Ig.t 125ij6; The
of the bits to realize a counted sequence and the remain @>on for this difierent power dissipation 1S _tﬁ and oz
bits to be random. For the typical example C6288, we h ea different set of secpnd—order statlst|c§, thqt is, the sets
two different modes in the input sequence, a low- (vectoP triplets (three consecutive vectors) are quite different. For

1-100000) and a high-activity one (vectors 100001-200 008J51a"e: the triplet (1’|.2’ ) iﬁﬁ do.esl hoLOSu irﬂl;TtEe
The bit-level switching activity varies in the range of 0-0.6 ame observation applies to the triplet (5, 2, 3)dn The

for high-activity subsequence and is 0.5 for the low-activit onclusion is that having the same set of one-step transition
one. The average Hamming distance is 8.48 and 16 for repbabilitiesdoes notimply that the set of second-order or
first.and second subsequence respectively. In terms of po igher-order statistics are identical and, as it was just illustrated

dissipation, for the first and second regimes, the values é?eth'.s‘ sma'II examp!e, h|gr’1er-order statistics can make a
593.75,W and 246 763.92\W, respectively. significant difference in FSM'’s total power consumption. The

réitial problem of compacting an initial input sequence can

The sequences in Table IV were compacted with thri} tin t f foll ! 1 ;
different compaction ratios (namely, 10, 100, and 1000) a § now cast in terms ot power as 1ollows: can we transform

the total power consumption was estimated for each individ given input sequence into a -shor_ter one, Sl.JC.h. that the new
benchmark. Using a Sparc 20 workstation with 64 MB ody of data is a good approximation of the initial sequence
. ion i ?
memory, the time necessary to read and compress data %gar as total power consumption is concerned?
less than 10 s in all cases. _
As we can see, the quality of results is very good, even whBn Problem Formulation

the length of the initial sequence is reduced by two or threeThe focus is now turned from the input sequence to the
orders of magnitude. This reduction in the sequence length Rgsual target circuit and to the investigation of the effect of
a significant impact on speeding-up the simulative approachggut statistics on its transition probabilities (primary inputs
where the running time is proportional to the length of thgnd present state lines). As shown in Fig. 13, we model
sequence which must be simulated. the “tuple” (nputsequence targetcircuit) by the “tuple”
(Markov.chain, FSM), where Markov.chain models thein-
putsequenceand FSM is the sequential machine where the
The approach presented in Section Ill is applicable ontyansition probabilities have to be determined. In what follows,
to combinational circuits because it considers only first-ordey,, s,, will denote the random variables associated to the

IV. SEQUENCE COMPACTION FOR SEQUENTIAL CIRCUITS
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TABLE IV
ToTAL Power (uW @ 20 MHZz) FOR LONG SEQUENCES (200 000 \ECTORY

Circuit Ngmber of .P(.)\tver for | Estimated power | Estimated power | Estimated power
inputs initial seq. for r=10 for r = 100 for r = 1000
C432 36 2817.36 2694.91 2990.50 3033.51
C499 41 5654.54 5488.53 5479.64 5425.83
C880 60 6173.67 6153.70 6241.48 5762.76
C1355 41 4884.23 4754.19 4755.69 4671.19
C1908 33 7524.10 7413.19 7376.26 7354.60
C3540 50 19250.26 18158.39 19649.61 20014.07
C6288 32 123678.29 111104.11 113955.95 113658.88
Avg. % err. 2.64 2.99 5.07
Vag .. V3¥oVy
10100011000001010001100000
00010110100000001011010000 S,
00011000011000001100001100
10110110110111011011011011
10100011000011000001010000
00010110100110100000001000 S,
00011000011000011000001100

10110110110110110111011011

(@) (b)

Fig. 12. Two sequences with the same first-order statistics.

probability on the primary inputsand present state lines is

input target 5 . . .
circ%lit preservedwordwise, for two consecutive time steps. More
j\ formally, the following condition should hold:

2, = out(xp,s,) |P(ZrSnTn—15n—1) — P (TnspTn_15n—1)| <€  (6)
Logic where p and p* are the probabilities in the original and
> compacted sequences, respectively. O

Spel = This condition simply requires that the joint transition
next(x,,s,) probability for inputs and statege;s;) is preserved within
Frl a given level of error for two consecutive time steps. We
il note that, because the vector compaction problem is given in
Fig. 13. The tuple MarkowChain FSM). terms of joint probabilitieg(z,s,) and p(x,$,Zn_15,-1),

the proof of correctness in Section IlI-A remains also valid

inout d state | fthe t i ial . for the sequential case. Once again, the stationarity condition
INPULS and state fines ot Ie target sequentia mach(me’"‘g") on primary inputsand state lines of the FSM is essential for
is the probability that, at time stejp, the input isz,, and the this result

state ISsp. _ . . Finally, we point out that in our approach, we do not

We are interested in defining the joint probabiliti@S.s,)  make any attempt to compact the subsequence in the original
and p(znsnap-15,-1) because, as shown in Fig. 13, theyequence that is used for the initialization of the target FSM.
completely capture the characteristics of the input (primagyqre precisely, if the original sequencg consists of two
inputsand present state lines) that feeds the next state and fgmponents, one being the initialization sequence of the target
output logic of the target circuit. In addition, having definegtgp (Sinit) (usually 50-100 vectors) and the other being
the joint random variablesz’,s,” and “z,s,zn—15n-1," the g regular set of vectors that excite the FSM.(), then
vector compaction problem for sequential circuits becomgs — Sinit@S,.,. We do consider for compaction only the
essentially the vector compaction problem for combinationg|.., component. (UsuallyS;,.;; < S,.., and thuss,., is the
circuits as presented in Section IlI-A. prime candidate for compaction.) This is primarily because we

Problem Formulation: For a sequence of lengthg, find do not want to alter the initializability properties of the FSM
another sequence of length < L, (consisting of a subset and also because we need stationary behavior on the state lines
of the initial sequence), such that tagerage joint transition of the FSM to have our compaction procedure work.
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(b)

Fig. 14. Two STG's obtained for the signal lines,(s,,) of benchmarkdk17.

C. The Effect of Finite-Order Statistics on FSM Behavior we obtain exactly (7). For the second alternative,

We will investigate now the conditions that can guarantde  “nSn¥n—18n—1Tn—28n—2 - - Ln_kSn—r IS NOL  a
that relation (6) is satisfied. Under the general assumptions'@id ~ sequence, then p(wysn|en 15n 1202802
stationarity and ergodicity [18], the following result can be Zn—k$n—k) = 0 and this concludes our proof. u
proved. We note, therefore, that, preserving ordestatistics for

Theorem 5:1f the sequence feeding a target sequentiHFe inputs implies also that ordérstatistics will be captured
circuit has ordett, then a lagk Markov chain which correctly for inputs and state lines. As long as the ordecorrectly

models the input sequence, also correctly modelsitiseep Models the input sequence, we cannot produce new transi-
conditional probabilities of the primary inputand internal tions of the FSM and, therefore, “forbidden” subsequences of

states, that is order k. However, by using DMJ, we may introduce new
subsequences of order higher thamut this is irrelevant for
P(ZnSnlTn-15n-1Tn—250-2 *** Tn—kSn—k) the functionality of the FSM as long as we are guaranteed by

=p(xp|Tr_1Zn—2 -~ Tn—x). (7) Theorem 5 that the conditional probabilities (and thus steady
state probabilities) for inputs and state lines are preserved.
We also note that, in particular, the first-order statistics of
the joint probabilities defined in (6) are implicitly preserved.
(TS| T 1Tn_g - Tn_i) However, modeling &-order source with a lower order model
may introduce accumulative inaccuracies. From a practical
point of view, this means that underestimating a high-order
P Sn—k|Tn—1Tn—2 - Tnk). source, it is possible not to correctly preserve even the first-
Let p(ZySnTn_1Sn_1 - Tn_rSn_i) be the joint transition Order transition probabilities and thus violate the requirement
probability for inputs and states ovkrconsecutive time steps.in (6). In terms of power consumption, this will adversely
Then we have affect the quality of the results as we can see from the
following example.

Proof: Sincez, is a lagk Markov chain, we can first
prove that, for any: > &k + 1, the following holds:

= p(xn|xn—lxn—2 e xn—k)

P(Ensn - Tnoiesn—r) . Example 4: Once again the sequencgsand.S, in Exam-
P(En@n1 - TnkSn—t), I 7?‘”’““’“ 8i)=Sit1 ple 1 are considered and assume that they feed the benchmark
= i=n—k, --n—=1 " g17 1t will be illustrated that indeed, if the input sequence
0, otherwise. has order two, then modeling it as a lag-one Markov chain

will not preserve the first-order joint transition probabilities

For the first alternative we have , . i i o
(primary inputs and internal states) in the target circuit. We

P(Ensn - Tn-kSn—k) simulated the benchmawkk17 (starting with the same initial
=p(@nTn—1 '+ Tn—kSn—k) state “19") for both sequences and we present in Fig. 14
= p(En St Tno1 - Tnt)  D(Eno1 - Tn_) [Fig. .1-4(a) is for.Sy an(_JI Fig. 14(b) is.forSQ].the wordwise

) transition graphs obtained for the signal lines,£,). The
which becomes benchmarkdk17 has two primary inputs and three flip-flops,
P(TpSp T pSn—t) =P(Tp|Tn 1Tn_2 -+ Tpn k) therefore, in Fig. 14, any node is decimally encoded using
(T Trs - TrkSnt)- five bits. For instance, the initial state “19” corresponds to the

binary code “10011” that is, “10” for primary inputs and “011”
Dividing both sides by(z,, 1252 -+ 2, x5n—x), @and using for state lines. Starting from state “19” and applying “11” on
the fact that the primary inputs, the present state becomes “011,” therefore,
we enter the node “11011% 27 in Fig. 14. As we can see,
becauseS; can be modeled as a first-order Markov source,
while S, must be modeled as a second-order Markov source,
= p(@nsn—k|Tnor -+ Tpk)  P@n1 - Tnok) the corresponding transition graphs are quite different. From

p(xnsn e xn—ksn—k)

= p(xnxn—l T xn,—ksn,—k)
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a practical point of view, this means that if one high-ordgsroving that
source is underestimated (for instance, assuming that second-

or higher-order temporal correlations are not important), thef ='*n+1 — Hy
even the first-order transition probabilities in the target circuit = Z PVni1|Vntn—1 -+ V1) p(UnUp_1 -+ V1)
may not be preserved. In terms of power consumption, this (v, 1, --v1)
adversely affects the quality of the results as shown and .log P(Vpg1 [nUn 1 -+ v1) (12)

discussed in Example 3.

Corollary 3: If the sequence feeding the target circuit haghich illustrates the mean uncertainty of a new veator,,
order one, then a lag-one MC will suffice to model correctlgiven the knowledge of vectors,, v,—1, vp—2, -+, v1.
the joint transition probabilities of the primary inputs and herefore, the conditional entropl, is a measure of the

internal states in the target circuit, that is predictability for the whole process.
Lemma 1: For any lagk Markov chain, it holds that,, =

P (Ensn|Tn_15n-1) = p(@n|Tn_1). 8) Hi+(n—k) (Hys1 — Hp), Yn > k. O
Proof: We first show thath,, = hy, ¥Yn > k. Then, we

In other words, if the sequence feeding the target circuit can &gn also write
accurately modeled as a first-order Markov chain, then a first-
order power model can be successfully applied because the
whole “history” of the input is limited to only two consecutive M1 = Hiqz — Hen
time steps. In this particular case, the compaction problem for
both FSM’s and combinational circuits becomes essentially
the same; that is, all that is needed is to efficiently model the hiyn—1 =Hyp — Hp1.
input sequence as a first-order Markov model.

by = Hyq1 — Hi,

From here by summation (after reducing the appropriate terms)
we get:(n — k) - hy, = H,, — Hy; using (10) we get the above
D. Fixed and Variable-Order Markov Sources claim. -

1) The Order of a Markov SourceThe next step is to de- Due to statistical correlations extending over a range of only
termine the order of a Markov source, because, as provedkiriterations, for Markov sources of ordér, the conditional
Theorem 5, knowing the correct value bf is essential for uncertainty h,, is decreasing until it eventually reaches its
FSM analysis. To this end, based on the probability of findirgnit value h for n = k& [23]. The memory effects of the

a “block” of vectors(v,, v,_1, ---, v1)° in any sequence in source are reflected by théaturation pointwhich means that
S [denoted byp(v,v,_1 -+ v1)], we introduce the following value ofn when the limith is reached exactly or with a good
entropy-like quantities. approximation.
Definition 8—Block Entropy:The block entropyof length ~ Example 5:In Fig. 15 we have the typical behavior for
n is defined as a lag-one and a lag-two Markov sequences, that have been
generated by using a first— and a second-order recursive
H, = Z p(vnvn—1 - v1) - log p(vyvn—1 --- v1)  relations, respectively. The two sources have the same order-
(VnVn_1 V1) zero and order-one statistics, but different order-two statistics.
(9)  In both cases, the-step conditional entrop,, of the source
wheren > 1. reaches its limith after few tens of vectors. In the first case,

Definition 9—Conditional EntropyThe conditional entro- the [imit is k = k1, while in the case of the lag-two Markov
py associated with the addition of a new vectqr, to the left  source, the limit is given by, as expected according to the
of an already existing blockv,,, v,,—1, - - -, v1) is defined as zpgve discussion.

Finally, we note that there may exist different subsequences
of order & within a given initial sequence. For instance, we
may have an initial sequencg which consists of two very
different second-order subsequencés, and S», generated
with a second-order Markov source (see Fig. 16). In this
case, the block entropy in Definition 8 (and implicitly the
source entropy in Definition 10) will be different for these
subsequences (despite the fact that both of them exhibit the
same type of second-order temporal correlations) and this is
and often referred to ametric entropyor entropy rate[19].  enough for our approach to make the distinction. In Fig. 15,

For stationary and ergodic processes, Khinchin [23] hgge plot the variation of the conditional entropies as function
shown thatH,, in (9) is monotonically increasingt,/n IS of time. We observe that, indeed, after time step 500, the
monotonically decreasing and the limit in (11) exists. We caghnditional entropieshy, k1 stabilize to different values for
justify the term “conditional” used for the entropy in (10) bys, and ..

2) Composite Sequencetn practice, lagk Markov chains
9Because the process is stationary and ergodic, in this notation, the lower ) P d P 9

indices 1, 2,---, n do not designate the absolute time instances, but tIYg'th ﬁX?d k may not be a gOOd enoth approximation
sequencing among the vectors that occur within a block of length for a given sequence. For example, a real sequence can

hn = n+l — Hn (10)

forn > 1 andhg = H;.
Definition 10—Source EntropyThe entropy of a sourcegr
the uncertainty per stepis defined as

h = lim & = lim A, (12)

n—od n n—od
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Typical behavior for a lag-2 Markov source

15 Typical behavior for a lag-1 Markov source 15
> >
o (=%
e o
1} €1
[+ [+]
© o
c . j=
S ; 2
5 h1,h2, h3, .. 5
[=4 v g : c
8 8
0.5} E 0.5

00 50 100 150 200 250 300 350 400 450 500 0050 100 150 200 250 300 350 400 450 500
time step time step

(@) (b)

Fig. 15. The behavior of conditional entropies for a lag-one and a lag-two Markov sequences.

Typical behavior for a composite source (lag-2 followed by lag-2) This discussion provides a starting point for determining
[ the order of subsequences in a dynamic fashion. The only
] requirement that has to be satisfied is the stationarity of each
i subsequence and, in this case, the entire sequence is called
piecewise stationaryThis is the basic hypothesis of all our
subsequent experiments. To test the condition of piecewise
1 stationarity, in practice we can use again the metric entropy
in conjunction with support from the simulation of the STG
of the machine. We also note that, for sequential circuits, we
consider piecewise stationary sequences that exhibit only a
: single power mode. However, for sequences that have multiple
power modes, the hierarchization procedure in Section Ill can
be still applied but, in this case, we have to consider the
‘ v ] average Hamming distance on the primary inpaitsl state
30— _560 TS BTG TG00 lines of the FSM to build the h|erarch|ca_l model. This |mpI|e§
time step that some knowledge about the behavior and state encoding

=y

'ocondmon.gj ent__r_ppy -

0

Fig. 16. The behavior of conditional entropies for two lag-two MarKO\Pf the FSM are available t‘? the user.
subsequences. 3) Variable-Order Dynamic Markov ModelsErom results

shown in the previous sections, we need an efficient way to

be a mixture of sequences, each generated from a differ8#del lagk Markov chains that_coqld characterize the input
order Markov source. We call such a sequenceomposite sequences-that fegd the target circuit. The structure Di%ed
sequencelo emphasize its nonhomogeneous characteristi®y, authors in [15] is general enough to completely capture the
When the sequence changes its behavior due to the changgd#ielations among all bits of the same input vector and also
order, the stationarity and convergence hypotheses no lonf§eiween successive input patterns. However, it has conceptu-
hold. For instance, if we consider two mixed sequences, tAY no inherent limitation to be further extended to capture
first containing a lag-one followed by a lag-two Markovemporal dependencies of higher orders. For instance, if we
subsequence, and the second a lag-two followed by a lag-&9#@tinue to define recursively DMT(starting with DMT;),
Markov subsequence, the behavior of conditional entropiesW& can basically capture second-order temporal correlations.
the one depicted in Fig. 17. For any sequence where;, v;, vy are three consecutive

In the first case, after a sufficiently large number of stéps, vectors (that isy; — v; — w), the tree DMT, looks like
and ko do not remain the same. Actually, in the long run, th# Fig. 18. The following result, gives the theoretical basis for
limit in (11) becomesh., thus detecting an order of two for theusing the dynamic Markov trees to capture high-order temporal
source. In this case, the convergencéads violated and thus correlations.
the sequence changes its order from one to two. In the secondheorem 6: The general structure DMTand its parameters
case, after already being stabilized to the stationary values, tampletely capture spatial and temporal correlations of order
conditional entropies., s, h4, ---, tend to increase so thatk. O
the order of the second half of the sequence can no longer be Proof: Let v = vovy --- v be a string in DM, (the
considered two. substringu; belongs to the-level tree, DMT,). We have that
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15 Composite source {lag-1 followed by lag-2) 15 Composite source (lag-2 followed by lag-1)
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Fig. 17. Typical behavior of conditional entropies for composite sequences.

sequence, we cannot produce new transitions of the FSM and,
therefore, “forbidden” subsequences of or@e(This is guar-
anteed by Theorem 5.) This is an essential capability needed to
avoid “hang-up” (“forbidden”) states of the sequential circuit
during the simulation process for power estimation.

The overall strategy is shown in Fig. 19. We assume that the
>DMT2

p(v)

input data is given in the form of a sequence of binary vectors.
Starting with an input sequence of length, we perform a
one-pass traversal of the original sequence and simultaneously
i build the basic tree DMZ; during this process, the frequency
POilviv)) :Vk counts on DMT;’s edges are dynamically updated. During
' ) this process, the order of the source is also determined.
The generation step is done using a modified version of
the weighted selection algorithm [22]. Finally, a validation
step is included in the strategy; we have used an in-house
p(uklvk—1vk—2 - vo) = plvovy --- wvk)/plvovt --- vi—1) gate-level logic simulator developed under SIS. The total
and thus the lag- Markov chain characterizing the input carpower consumption of some sequential benchmarks has been

P(Vj|Vi)

Fig. 18. A second-order dynamic Markov tree.

be fully modeled by the DM structure. B measured for the initial and the compacted sequences, making
it possible to assess the effectiveness of the compaction
E. Practical Considerations and Experimental Results procedure.

The DMC modeling approach offers the significant ad- Table V shows the gate-level power simulation results ob-
vantage of being @ne-pass adaptive techniquAs a one- tained for composite sequences of length 10000. The hybrid
pass technique, there is no requirement to save the whelracter of these sequences makes a significant difference in
sequence in the on-line computer memory. Starting witg'ms of total power consumption for all benchmarks. These
an initial empty tree DME, while the input sequence isSequences have been generated using different generators and
scanned incrementally, both the set of states and the transit®xhibit temporal correlation of various orders. More precisely,
probabilities change dynamically making this technique highlye have subsequences of order of two (of length 3000 vectors),
adaptive. Also, using this data structure, we can easily accoiffitowed by subsequences of order one (of length 4000) and
for conditional entropies and detect the order of the Markdinally, once again by subsequences of order two. As first-order
source. Under stationarity conditions, the order is detected ggnerators we use counted sequences restarted at random after
the minimumk such thath, — h,,| < ¢, for somee > 0 and @ fixed number of patterns have been generated. As second-
anyn = k+ 1, ---, K where K is the maximum order of order generators, we use sources of information based on
the source to be detected. After that, if either this conditidrbonacci sequences. Basically, we generate (on the appro-
becomes violated or the stationarity hypothesis does not hagidiate number of bits) Fibonacci sequences started at random
the model is flushed and restarted. As in the combinatioradfter a fixed number of patterns have been generated. (To
case, for each dynamically grown tree, the generation phasewwid the generation of completely deterministic sequences,
driven by the user-specified compaction parameter ratite we also add to the pure Fibonacci generator a low-level white
also note that, as long as the ordemodels correctly the input noise using a standard random number generator.) Because
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DMC modeling: build DMT, Adaptively find the
( Initial sequence ) > modeling; bul k order of the source;
of length Ly and dynamically update »| generate compacted

the counts on its edges Sequence

y

A 4 A
Gate-level logic simulation;| [Gate-level logic simulation;) Compacted sequence
total power estimation total power estimation of length L « Ly

Fig. 19. The experimental setup for sequential circuits.

TABLE V
ToTaL Power (uW @ 20 MHz) ForR CoMPOSITE INPUT SEQUENCES (10000 \VECTORS
Estimated power for r = 10 Estimated power for r = 20
Circuit -No. of P ower for Order O Order 1 Adaptive Order O Order 1 Adaptive
inp./FFs | initial seq.
s1196 14/18 5272.36 7212.58 5395.73 5237.65 7245.41 5501.05 4972.52
s1423 17/74 3964 .48 5771.69 417321 4048.88 5836.40 4046.63 3834.35
s510 19/6 1520.46 2232.08 1814.65 1527.91 2215.03 1953.39 1501.10
s5378 | 35/164 | 11566.16 14251.17 11711.97 11282.86 14325.13 11871.03 10990.86
$820 18/5 3131.51 4158.82 3368.83 3096.87 4178.75 3431.04 3196.87
§9234 | 36/211 | 10046.05 12797.24 9688.30 9573.48 12951.02 9672.07 9288.65
s953 16/29 764.92 1188.94 796.02 755.66 1186.26 805.89 731.35
Avg. % err. 38.29 6.20 1.82 38.80 8.04 4.18
bbara 4/4 771.16 790.23 842.87 769.97 806.44 749.96 766.41
bbtas 2/3 405.29 333.21 427.52 403.45 339.82 443.14 402.84
dk17 2/3 1392.67 1165.08 1258.88 1390.21 1135.61 1248.20 1388.09
donfile 2/5 3203.97 2455.90 3100.94 3197.36 2463.37 2997.86 3190.14
mc 32 33597 289.37 298.76 332.92 295.64 285.17 328.27
planet 7/6 8619.93 7753.93 7234.10 8401.28 7605.67 7097.61 8030.61
shiftreg 1/3 149.59 100.62 140.30 149.29 97.36 139.68 148.97
Avg. % err. 16.65 8.71 0.66 17.28 9.76 1.65

the rule of Fibonacci is a second-order recursive relatiowas less than 10 s for all models. Since the compaction
we are guaranteed that second-order temporal correlationswaith DMC modeling is linear in the number of levels in the
generated and, therefore, we can asses the effectivenes®MIT;, structure, these time values are far less than the actual
the adaptive model. For the typical case «fl96, the bit- time needed to simulate the original sequence. During these
level switching activity varies in the range of 0.33-0.5 foexperiments, the maximum number of nodes allowed in the
the order two subsequences and 0.44-0.55 for the counkéarkov model was 200 000.
subsequence. In terms of power consumption, the impactAs we can see, the most dramatic increase in the level
of these different characteristics is illustrated by a 7025.3f error occurs for the model of order zero. This proves
#W power consumption for the corresponding order twthat the temporal independence assumption on the primary
subsequence and 2643.48V for the sequence of order one.inputs impairs the accuracy of the estimation for all practical
As shown in Table V, the initial sequences were compactedrposes. This is because for a sequence generated with a
with two different compaction ratios (hamely = 10 and second-order source, a model that ignores temporal correla-
20) using three Markov models: one of order zero (that ispns (or considers only pairs of consecutive vectors) cannot
assuming temporal independence on the primary inputs), qmeserve correctly even the first-order transition probabilities
of order one based on DMTand another one matchingon the primary inputs and state lines [that is, the probabilities
the actual characteristics of the sequence. This table shqws, s,z,—1s,—1) in our notation]. The error for the first-
the total power dissipation measured for the initial sequenoeder model is, on average, around 10%, while the adaptive
(column 3) and for the compacted sequence using all modetsdeling technique provides accurate results, even for a
(columns 4-9). Using a Sparc 20 workstation with 64 Mbyteompaction ratio ofr = 20. For example, fors1196 in
of memory, the time necessary to read and compress daigdble V, instead of simulating 10000 vectors with an exact
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Fig. 20. Node-by-node analysis for benchmglanet

power value of 5272.3@W, one can use only 1000 vectorssource on the primary inputs and a compaction ratio of
(» = 10) with an estimate of 5237.65W. five. Using a lower-order model than the actual order of the
Regarding the results presented in Table V, we note that faput sequence can significantly impair the ability of correctly
order zero and order one experiments we report the best reseftimating the switching activity on a node-by-node basis.
obtained over a set of 100 runs, while for the adaptive cas&hile for the first-order model the absolute effoachieves
we report the worst result. This way, we consider the worst- maximum value of 0.272 and a mean value of 0.057, it
case scenario for our adaptive sequence compaction approdeereases to 0.019 and 0.003, respectively, if a second-order
and ensure that even so, on average, the adaptive appraaeldel is used. These results are typical for the whole set of
works better. The reason behind this is the fact that the spré¥gnchmarks that we analyzed. Based on these results, we can,
of total power values obtained over a large number of rutierefore, conclude that for FSM’s the adaptive technique is
for the adaptive case is typically three orders of magnitude only technique appropriate for correctly modeling the input
smaller than in the case of using a fixed order one. F8fdueNCe.
instance, fors5378, the standard deviation for the adaptive and In Table VI, we provide the gate-level power simulation
order-one models is 1.69 and 222.61, respectively. Similarfgsults for a set of different initial sequences having a length of
for the case ofs1423 benchmark, the standard deviation¢00000 vectors. Thmput datais set of composite sequences
are 0.34 and 240.44 for the adaptive and order-one mod‘ggpsisting of a first-order temporally correlated subsequence
respectively. Thus, it is expected that, with high confidencéength 100000) followed by a second-order one. The first-
the adaptive approach will work better than the fixed order-oREder subsequences are generated with counters restarted at
model. random after a fixed number of patterns have been generated.
As for comparing our results with simple random samplinghe second-order sequences are generated with Fibonacci time

technique for FSM circuits, we are unable to do so for theeries. For the same typical example, the bit-level switching
following reason. Our compaction technique starts with &Ctivity varies in the range of 0.33-0.5 for the order-two
finite input sequence and a user-specified compaction ratigPseduences and 0.49-0.5 for the counted subsequence. In
or error level, and performs compaction by DMC modelinberms of power consumption, we have a dissipation of 4225.11
and sequence generation. We must, therefore, compare ¥¥f When the input sequence has order one and 722343
results with statistical sampling techniques which work OW the other one. . .

finite populations (i.e., an input sequence with fixed length .TO generat_e the results in Table_VI, we use two dn‘ferent
Although sampling techniques for combinational circuits undé}rategles. First, we compact the input sequences with two

a given input sequence have been developed and publishe >ﬁﬁd compaction ratios and indicate the estimated values

: total power consumption (columns 4 and 5). Using a
the literature (hence, we could produce results of Tables Eparc 20 workstation with 64 Mbyte of memory, the time

and 1), such techniques for FSM circuits are not known,

. : L . ecessary to read and compress data was less than 10 s

Note that Monte Carlo simulation (which is based on a S|mppe .

random sampling strategy) assumes an infinite population a{ﬂda” cases. In the second scenario (columns € and 7), we
consider a fixed threshold of 5% for the mean error of the

it synthesizes the input sequence used for sampling based Whfsition probabilities. We monitor the current values of the

Markov model 9f bitwise activities. Hence, it cannot be usetgansition probabilities and compare them with the transition
for our comparison purpose.

F'nally’ we give In Fig. 20 thmOdefby'nOdeSW'tChmg 10The absolute error is defined BSvcomp — Stexact|, Wheresweomp is
activity analysis for benchmarglanet using a second-order the switching activity obtained using the compacted sequence.
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TABLE VI
ToTAL Power (uW @ 20 MHZz) FOR LONG SEQUENCES (200 000 \ECTORY
Estimated power for fixed Fixed error level (5% mean error
compaction ratio for transition probabilities)
.. |Noofinp./| Power for Estimated Number of
Circuit FFs F initial seq. r=10 r=100 power vectors ?qufired
s1196 14/18 5724.28 5723.42 5702.51 5714.14 2242
s1423 17/74 3544.75 3548.86 3548.02 3563.84 8984
$510 19/6 1685.12 1692.89 1307.42 1690.10 8002
s5378 35/164 9161.58 9139.20 9355.99 9169.60 11884
$820 18/5 3609.23 3608.02 3604.97 3616.75 5962
$9234 | 36/211 9570.30 9569.93 9568.40 957791 23922
s953 16/29 817.91 817.60 816.81 817.42 4922
Avg. % err. 0.12 3.62 0.20
bbara 4/4 777.10 777.10 776.29 776.71 1404
bbtas 2/3 422.18 422.19 42226 423.23 84
dk17 2/3 1381.27 1381.16 1380.02 1359.41 84
donfile 2/5 3250.47 3250.43 3249.96 3184.50 84
me 3/2 346.03 346.00 345.69 335.66 162
planet 7/6 7857.02 7859.57 7880.29 7881.93 2524
shiftreg 1/3 150.86 150.85 150.76 145.93 144
Avg. % err. 0.01 0.10 1.54
probabilities of the original sequence. When the difference REFERENCES

between the two sets of probabilities becomes sufficientl
small, the generation procedure is halted. In this way, we al

probabilities.

As we can see, the average error in total power prediction is
below 2% for all benchmarks while the achieved compactiot]
ratio varies between &9234) and 90 ¢1196) for large circuits
and 80 plane) and 2380 Ijbtag for small ones. This reduction [4]
in the sequence length has a significant impact on speeding-up
the simulative power estimation approaches where the runni g
time is proportional to the length of the sequence which must

be simulated.

V. CONCLUSION

paction for power estimation from a probabilistic point of

view. More precisely, we proposed an original approach tGg)
compact an initial sequence into a much shorter equivalent
sequence, which can be used with any available simulator

derive power estimates in the target circuit.

A major contribution of this paper is that it introduces the hi-
erarchical modeling of Markov chains as a flexible framework]
for capturing not only complex spatiotemporal correlations, but
also the dynamic changes in the input sequence characteristita.
In addition to this, we introduce and characterize a family
of variable-order dynamic Markov models which providei3
an effective way for accurate modeling of external input
sequences that affect the behavior of FSM's.

Results obtained on standard combinational and sequentia
benchmarks, show that using this framework, large compacti
ratios can be obtained without significant loss in the accura
of total and node-by-node power estimates.
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