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Sequence Compaction for Power Estimation:
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Abstract—Power estimation has become a critical step in the
design of today’s integrated circuits (IC’s). Power dissipation is
strongly input pattern dependent and, hence, to obtain accu-
rate power values one has to simulate the circuit with a large
number of vectors that typify the application data. The goal of
this paper is to present an effective and robust technique for
compacting large sequences of input vectors into much smaller
ones such that the power estimates are as accurate as possible
and the simulation time is reduced by orders of magnitude.
Specifically, this paper introduces the hierarchical modeling of
Markov chains as a flexible framework for capturing not only
complex spatiotemporal correlations, but also dynamic changes in
the sequence characteristics. In addition to this, we introduce and
characterize a family of variable-order dynamic Markov models
which provide an effective way for accurate modeling of external
input sequences that affect the behavior of finite state machines.
The new framework is very effective and has a high degree of
adaptability. As the experimental results show, large compaction
ratios of orders of magnitude can be obtained without significant
loss in accuracy (less than 5% on average) for power estimates.

Index Terms— Dynamic Markov modeling, hierarchical
Markov modeling, Markov sources, power estimation, vector
compaction.

I. INTRODUCTION

A. Basic Issues and Prior Work

COMPUTER-AIDED design (CAD) tools play a signifi-
cant role in the efficient design of the high-performance

digital systems. In the past, time, area, and testability were
the primary concerns of the CAD community during the
optimization phase. With the growing need for low-power
electronic circuits and systems, power analysis and low-
power synthesis have become crucial tasks that must be also
addressed.

Having a gate-level implementation of the target circuit, to
estimate the dynamic power consumption, we have to sum over
all gates the average power dissipation due to the capacitive
switching currents; that is,

, where is the clock frequency, is the supply
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voltage, and are the capacitance and the average
switching activity at the output of gate, respectively. As
we can see, the average switching activity of every gate in the
circuit is a key parameter that needs to be correctly determined,
particularly if the node-by-node power estimation is of interest.
Since most of the power consumption for digital circuits
mapped with standard libraries comes actually from the output
load charging and discharging, throughout our presentation we
will neglect the internal power dissipation. This is in agreement
with the vast majority of work of other researchers who also
considered only external capacitance charging and discharging
in their power models.

Existing techniques for power estimation at gate- and
circuit-level can be divided in two main classes: dynamic and
static [1], [25].Dynamic techniques[2], [3] explicitly simulate
the circuit under a “typical” input stream. Consequently, their
results depend on the simulated sequence, and the required
number of simulated vectors is usually high. These techniques
can provide sufficient accuracy at the expense of large running
times. Switching activity information can be extracted by
doing exhaustive simulation on small circuits; it is, however,
unrealistic to rely on simulation results for large circuits. To
address this problem, a Monte Carlo simulation technique
was proposed in [4]. This technique uses an input model
based on a Markov process to generate the input stream
for simulation. The approach has two deficiencies. First,
the required number of samples, which directly impacts
the simulation run time, is approximately proportional to
the ratio between the sample variance and the square of
the sample mean value. For certain sequences, this ratio
becomes large, thus significantly increasing the simulation run
time. Second, if the sample distribution significantly deviates
from the normal distribution, the simulation may terminate
prematurely. Difficult distributions that cause premature
termination are bimodal, multimodal, and distributions with
long or asymmetric tails [5]. The efficiency of the existing
statistical techniques for power estimation in sequential
circuits is even lower than that for combinational circuits
[6], [7].

Static techniquesrely on probabilistic information about
the input stream (e.g., switching activity of the inputs, signal
correlations, etc.) to estimate the internal switching activity
of the circuit. These techniques generally provide sufficient
accuracy with low computational overhead. However, they
cannot accurately capture factors such as slew rates, glitch
generation, and propagation. In addition, a major challenge
in probabilistic power estimation approaches is the ability to
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(a) (b)

Fig. 1. Data compaction for power estimation.

account for internal dependencies due to the reconvergent fan-
out in the target circuit. This problem, which we will refer
to as the “circuit problem,” is by no means trivial. Indeed,
a whole set of solutions have been proposed, ranging from
approaches which build the global ordered binary decision
diagrams (OBDD’s) [8] and, therefore, capture all internal
dependencies, to efficient techniques which partially account
for dependencies in an incremental manner [9]–[12].

The authors have pointed out the importance of correlations
not only inside the target circuit, but also at its primary inputs
[13]. We will refer to this issue as the “input problem” and
mention that it is important not only in power estimation,
but also in low-power design. Generating a minimal-length
sequence of input vectors which satisfies some prescribed
statistics is a nontrivial task. The reason is that the input
statistics that must be preserved or reproduced during sequence
generation may be quite complex. On the other hand, it is
impractical to simulate large circuits using millions or even
tens of thousands of input vectors and, therefore, the length of
the simulation sequence is another important issue that must
be considered.

The research presented in this paper shifts the focus from
the “circuit problem” to the “input problem” and proposes an
original solution for power estimation based on the paradigm
of sequence compaction. This kind of technique is appealing
because it is practically independent of the actual implemen-
tation of the target circuit. It can, therefore, be used early
in the design cycle when the structure of the circuit has not
been determined yet. The basic idea is illustrated in Fig. 1.
To evaluate the total power consumption of a target circuit
for a given input sequence [Fig. 1(a)], we first derive the
Markov model of the input sequence and then, having this
compact representation, we generate a much shorter sequence

, equivalent with , which can be used with any available
simulator to derive accurate power estimates [Fig. 1(b)].

The key element in this schema is the actual Markov
model used to represent the initial input sequence. In [14] and
[15], preliminary efforts in using this methodology have been
presented. As the experimental results show, for homogeneous
input sequences, these approaches perform very well. Large
compaction ratios of 1–3 orders of magnitude have been
obtained without significant loss (less than 5% on average) in
the accuracy of power estimates. However, for input sequences
that exhibit widely different transition behaviors over time, the
overall accuracy can suffer because the probabilistic model
used in [14] and [15] is aflat model; that is, it models
the average behavior of the input sequence, but does not

adapt very well to changes in the input characteristics. For
real sequences which may contain a mixture of stimuli with
very different switching activities, a compaction technique
with higher adaptability is clearly needed. In addition to
this, the model considered in [14] and [15] is based only
on a first-order Markov chain. As it will be shown later in
this paper, this is not sufficient for sequence compaction for
power estimation in finite state machines (FSM’s). Temporal
correlations longer than one clock cycle may affect the overall
behavior of the FSM and, therefore, result in very different
power consumptions.

In what follows, we will address these two issues and
provide a new framework for sequence compaction which can
be successfully applied to both combinational and sequential
circuits.

B. Overview of the New Approach

The foundation of the new approach is probabilistic in
nature; it relies onadaptive (dynamic) modeling of binary
input streams as Markov sources of information. The adaptive
modeling technique itself (known in the data compression
literature asdynamic Markov chainor DMC modeling[16])
was recently used in power estimation [15]. However, the
model in [15] is not completely satisfactory for our purposes.
In this paper, we thus extend the initial formulation to cap-
ture not only correlations between successive input patterns,
but also temporal dependencies of higher orders by using
dynamic Markov trees of order (DMT ). We also provide
an original solution to distinguish between subsequences with
different transition behaviors by structuring the input space
as a multilevel stochastic process calledhierarchical Markov
model.

As a final note, we mention that for both combinational and
sequential compaction, by using the DMC modeling technique
that we propose, we do not produce new vectors; that is, all
patterns that occur in the final compacted sequence, are also
present in the original one. This is a fundamental theoretical
difference compared to the case when new vectors are allowed
in the final sequence [17], [24]. Because the search space
is much larger in the latter case, our problem of sequence
compaction is more constrained compared to the case of
producing shorter sequences when new vectors are allowed.

In summary, both simulation-based and analytic techniques
for power estimation may benefit from this research. The issues
being raised are new and represent an important step toward
reducing the gap between the simulative and probabilistic
techniques commonly used in power estimation.

C. Organization of the Paper

The remainder of this paper is organized into four main sec-
tions. Section II reviews the background necessary to under-
stand the proposed methodology. Sections III and IV present
in detail the probabilistic models for sequence compaction
which are applicable to combinational and sequential circuits,
respectively, and the experimental results obtained on common
benchmark circuits. Finally, in Section V, we summarize our
major contribution.
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Fig. 2. Sequence characterization with STG and transition matrix.

II. BACKGROUND ON FINITE-ORDER MARKOV CHAINS

In this section we present the basic definitions and notations
that will be used in the paper. Far from being exhaustive, we
restrict our attention to only those concepts that are required
by our presentation. For a complete documentation, the reader
is referred to monographs [18], [19].

A stochastic processis defined as a family of random
variables { , } defined on a given probability space
and indexed by the parameter, where varies over the index
set . The stochastic process is said to bestationary when
it is invariant under an arbitrary shift of the time origin. In
this case, the values assumed by the random variable
are calledstates,and the set of all possible states forms the
state-spaceof the process.

A Markov process{ , } is a stochastic process
whose future evolution depends only on its current state and
not on its past. This is the so called “Markov property”
and defines a fundamental subclass of stochastic processes.
We shall assume that the transitions out of state are
independent of time and, in this case, the Markov process
is said to betime-homogeneous.

If the state-space of a Markov process isdiscrete, the
Markov process is referred to as a Markov chain (MC). In
the following, we consider only MC’s with finite state-space.
If we assume that the index set is also discrete, then we
have adiscrete-parameterMC. We may assume without loss
of generality that 0, 1, 2, and denote a generic
MC as .

Definition 1—Lag-One MC:A discrete stochastic process
is said to be a lag-one MC if, at any time step

and for all states , the following holds:

(1)

The conditional probabilities are
called single-step transition probabilitiesand represent the
conditional probabilities of making a transition, at time step

, from state to state . In homogeneous MC’s these
probabilities are independent ofand consequently written as

, for all 1, 2, . The matrix
, formed by placing in row and column , for all and

, is called thetransition probability matrix. We note that is
a stochastic matrixbecause its elements satisfy the following
two properties: and .

An equivalent description of the MC can be given in
terms of itsstate transition graph(STG). Each node in the
STG represents a state in the MC, and an edge labeled
(from node to node ) implies that the one-step transition
probability from state to state is .

Example 1: Let and be two 2-bit sequences, of length
48, as shown in Fig. 2(a). These two sequences, have exactly
the same set of first-order temporal statistics that is, they
cannot be distinguished as far as wordwise one-step transition
probabilities are concerned. In fact, in Fig. 2(b) we provide the
wordwise transition graph for these two sequences. Each node
in this graph is associated to a distinct pattern that occurs in
and (the upmost bit is the most significant one, e.g., in,

“1,” “2,” “3,” , “1”). Each edge
represents a valid transition between any two valid patterns
and has a nonzero probability associated with it. For instance,
the pattern “3” in and is always followed by “1” (thus
the edge between nodes “3” and “1” has the probability 1),
whereas it is equally likely to have either “0,” “2,” or “1” after
pattern “1.” Starting with different initial states and using a
random number generator we may, of course, generate other
sequences equivalent with and as far as the one-step
transition probabilities are concerned. We can then see the
graph in Fig. 2(b) as a compact, canonical, characterization of
sequences and . Suppose now that we want to compute
the occurrence probability of the string “01 10” that is,
the probability that the transition 1 2 is taking place in .
To this effect, we just use ,
which gives the value of 1/6. If we are interested in finding
the two-step transition probability 0 1 1 in , then
using , we
get the value of 1/6. The matricial representation, equivalent
with the STG, is given in Fig. 2(c). We can easily verify
that the sum of all elements on each row is 1,thus being
indeed a stochastic matrix.

Definition 2—Recurrent State:A state in the MC is called
recurrent if the probability of returning in this state after

steps is greater than zero. Otherwise, the state is called
transient. If the greatest common divisor over all such integers

is , then the state is also calledaperiodic.
In our subsequent discussion, we will consider thatall states

are recurrent since all transient states vanish after a small
number of steps.

Definition 3—Nondecomposable MC:A Markov chain is
said to benondecomposableif every state can be reached from
every other state in a finite number of steps.
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Note: The STG in Fig. 2(b) is nondecomposable; we note
that, in general, the STG associated to any input sequence of
vectors is also nondecomposable.

Changes of states over time steps are given by
probability rules simply expressed in terms of . Let us
denote by the probability of transition from stateto state

in exactly steps, namely: ,
whatever the integer . It can be easily seen that probabilities

(which are called -step transition probabilities) represent
the entries of the matrix (called -step transition matrix),

. The matrix itself is still a stochastic matrix and
satisfies the identity , , ( is by
definition the unit matrix ) or just the system of equations

, known as theChapman–Kolmogorov
equations [18]. In other words, to go fromto in exactly
( ) steps, it is necessary to go first from to an
intermediate state, in steps, and then from to in the
remaining steps. By summing over all possible intermediate
states , we consider all possible distinct paths leading from

to in ( ) steps. Assuming stationarity, if
denotes thestate probabilityvector of the MC, then from
Chapman–Kolmogorov equations we have that .

Theorem 1—[19]: For a nondecomposable MC, the equa-
tion has a unique solution that represents the
stationary distributionof the MC.

Note: If the Markov chain is aperiodic, then converges
to a stable matrix when , and can be found to be
any row of the limiting matrix.

Definition 4—Lag- MC: A discrete stochastic process
is said to be alag- MC if, at any time step ,

we have

(2)

It should be noted that any lag-MC can be reduced to a
lag-one MC based on the following result.

Proposition 1—[19]: If is a lag- MC then
where , , , , is a

multivariate first-order MC.
Consequently, the study of lag-MC’s is practically reduced

to the study of the properties satisfied by lag-one MC’s. We
will subsequently refer mostly to lag-one MC’s but, by virtue
of Proposition 1, all results easily translate to lag-MC’s.

III. SEQUENCECOMPACTION FORCOMBINATIONAL CIRCUITS

In what follows, we will use elements from the theory of
discrete-parameter time-homogeneous MC’s to derive a prob-
abilistic model for sequence compaction for power estimation
in combinational circuits.

A. Problem Formulation

As shown in Fig. 3, we model the “tuple” (input_sequence,
target_circuit) by the “tuple” (Markov_chain, target_circuit),
whereMarkov_chain represents the Markov chain that models
the input_sequenceand target_circuit is the combinational

Fig. 3. The tuple (Markov-Chain, target_circuit).

circuit where power consumption has to be determined. Let
denote a random variable associated to primary inputs of

the circuit shown in Fig. 3; is then the probability that
the input is at time step . We are interested in defining the
probabilities and because they completely
capture the characteristics of the input that feeds the target cir-
cuit. Using these probabilities, the vector compaction problem
can be formulated as follows.

Problem Formulation: For a sequence of length , find
another sequence of length (consisting of a subset
of the initial sequence), such that theaverage transition
probability on the primary inputs is preservedwordwise,for
two consecutive time steps. More formally, the following
condition should be satisfied:

(3)

where and are the probabilities in the original and
compacted sequences, respectively, andis an infinitesimal
quantity.

This condition simply requires that the joint transition
probability for the primary inputs is preserved within a given
level of error, for any two consecutive vectors. We want to
prove now that indeed, by having satisfied relation (3), it is
guaranteed to produce a new sequence which is asymptotically
close to the original one as far as the total power consumption
in the target circuit is concerned. The proof will involve several
intermediate results as shown subsequently.

Proof of Correctness:As stated in the previous section,
represents the stochastic matrix associated to the original

input sequence, i.e., , where , are any
two consecutive vectors. To produce an equivalent sequence
from a reference one, one should preserve the word-level
transition probabilities. This essentially becomes the problem
of preserving both conditional and state probabilities because

, where is the th component of the
state probability vector and represents the transition
probability of going from vector to vector . (From
Theorem 1, it can be seen thatis the left eigenvector that
corresponds to the eigenvalue in the general equation

.) At this point, we emphasize the importance of
stationarity condition for defining the state probability vector

.
To complete the proof, we note that every stochastic matrix

has one as simple eigenvalue and all other eigenvalues have
absolute values less than one. (This is in fact a consequence



MARCULESCU et al.: SEQUENCE COMPACTION FOR POWER ESTIMATION 977

(a) (b)

Fig. 4. Two sequences and their corresponding transition graphs.

of the Perron–Frobenius theorem [20] which states that for
every matrix with nonnegative entries, there exists a simple,1

positive eigenvalue greater than the absolute value of any other
eigenvalue.) This result is very important because it makes
possible to analyze the effect of perturbation of matrixon
the eigenvectors that correspond to the eigenvalue one. To
this end, let us assume that the newly generated sequence is
characterized by the matrix where
( represents the error induced by perturbations) and
. We can write where and

. Because characterizes a sequence of vectors,
it is also a stochastic matrix and, therefore, it has an eigenvalue

. But, from the theory of algebraic functions [21], for
any eigenvector of corresponding to the simple eigenvalue

, there exists an eigenvector of corresponding to
the simple eigenvalue , such that
(read as “zero of epsilon”), where is any power series
in (convergent for sufficiently small ) having the form

. As a consequence, since ,
it is easy to see that .

Summarizing, we have that:
Corollary 1: If the stochastic matrix is properly pre-

served during the compaction process, then the transition
probabilities of the newly generated sequence areasymptot-
ically closeto the original ones, that is .

We have, thus, proved that we canasymptoticallyreproduce
an initial sequence by preserving its matrix. From a practical
point of view, let us see the implications of the above corollary
on total power consumption in a target circuit when the
original input sequence is approximated by a new one.

Corollary 2: If and are the values of the total power
consumption which are obtained for two sequences satisfying
the conditions in Corollary 1, then we have that

.
Proof: We have that

, where is the output capacitance of gateand
is the number of transitions at the output of gatewhen vector

, followed by vector , is applied at the input of the circuit.
Assuming that the input sequence is approximated by another
input sequence such that the new set of transition probabilities
satisfies , then the error made in the value

1This means that the multiplicity of the root� = 1 in the equation
� �Q = � � � is one.

of total power consumption is given by

Corollary 2 basically shows that, if the new sequence is
asymptotically close to the original one, then the same type
of asymptotic relationship holds for the total power values.
We have, therefore, proved that a first-order probabilistic
model issufficientto perform sequence compaction for power
estimation in combinational circuits. The remaining portion of
this section describes how we can efficiently do compaction
in practice.

B. Hierarchical Models

This section introduces the hierarchical modeling of Markov
chains as a flexible framework for capturing not only complex
spatiotemporal correlations, but also the dynamic changes in
the sequence characteristics.

1) Nonhomogeneous Sequences:In [14] and [15], the au-
thors present preliminary results in solving the vector com-
paction problem when only first-order temporal correlations
are taken into account. The Markov model used to represent
the initial input sequence is aflat model; that is, it models
only theaveragebehavior of the input sequence. The primary
disadvantage of any flat model is the fact that it does not adapt
very well to changes in the input characteristics. To illustrate
the significance of this issue, we consider the following
example.

Example 2: Let be a 5-bit sequence as shown in
Fig. 4(a); next to it, we represent the word-level transition
graph that corresponds to this sequence.2 This particular set
of inputs behaves like a pseudorandom sequence because any
vector is equally likely to be followed by any other remaining
pattern. In Fig. 4(b) we consider another sequence, which
is completely deterministic and highly correlated. It has an
average value of 1.33 transitions per step, thus producing less
activity compared to .

Suppose that we duplicate 25 times the original sequence
and 100 times the sequence, getting two new sequences

2We assume that the last vector is linked to the first one.
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Fig. 5. The transition graph for the composite sequenceS�.

Fig. 6. Average power dissipation for C17.

and , respectively.3 Based on and , we construct
now a new sequence which is formed by concatenat-
ing and for an infinite number of times [that is,

]; the transition graph representation of this
new “macrosequence” is given in Fig. 5. The question now
becomes, how will the average power consumption look like,
as a function of time, when is applied to any circuit?
Obviously, the sequence has two very different modes: one
where much activity is generated at the primary inputs, and a
second one where about one single input bit toggles at every
time step. In Fig. 6 we can see the effect of these two different
regimes on average power consumption for benchmark C17.
Starting initially with , after 300 time steps the value of
average power stabilizes around 110W; then, when the
characteristics of the input sequence change, the power value
goes down toward 70 W and finally, due to the increase
of the switching activity at the primary inputs, it comes up
toward 90 W.

This type of behavior is very common in practice. More
precisely, only homogenous input sequences (which contain
statistically similar vectors) will exercise the circuit such that
the value of average power will converge rapidly. A typical
example is a set of pseudorandom vectors where the average

3Here # is used to symbolize that sequencesS1 andS2 are repeated for a
finite number of times.

power value stabilizes after applying only tens of vectors.
However, in practical applications, the set of stimuli may
contain a mixture of vectors, each one very different as far
as the average switching activity per bit is concerned.

A compaction procedure based on random walks in graphs
where some pairs of vectors have very small transition prob-
abilities, has the potential drawback of “hanging” into a
small subset of states. This causes an erroneous power value,
depending on which component (low or high activity) is visited
more often. The same type of phenomenon is observed for
statistical methods when the distribution is very different from
a normal one (e.g., bimodal distributions), or when selecting
from the initial sequence only the first few hundred vectors.
Thus, to compact large sequences that contain nonhomoge-
neous power behaviors, a technique with high adaptability is
needed.

We use hierarchical Markov models to structure the input
space into ahierarchyof macro- and microstates: at the first
(high) level in the hierarchy we have a Markov chain of
macrostates; at the second (low) level, each macrostate is in
turn characterized by a Markov chain for all its constituent
microstates. Our primary motivation for this hierarchical struc-
ture is to enable a better modeling of the different stochastic
levels that are present in sequences that arise in practice. As
consequence, by exploiting the first level in the hierarchical
Markov model, such models will make the approach highly
adaptable to the behavior of the input sequence.

After constructing the hierarchy of the input sequence,
starting with some macrostate, a compaction procedure with
a specified compaction ratio is applied to compact the set of
microstates within that macrostate. The control then returns to
the higher-level in the hierarchy and, based on the conditional
probabilities that characterize the Markov chain at this level,
a new macrostate is entered and the process repeats until the
end of the sequence (last macrostate) is reached. By doing so,
we combine the advantages offered by the hierarchical model
with the flexibility of the DMC modeling technique.

2) Micro/Macrostate Modeling:Having the transition
graph associated to a vector sequence, our task now
is to partition this transition graph into subgraphs that
correspond to different behaviors (in particular, different
power consumptions). To this end, we first provide some
useful definitions and results.

Definition 5—Weighted Transition Graph:A weightedtran-
sition graph is a directed graph where any edge from stateto
state is labeled with a conditional probability
and a weight 4 associated to the transition .

Definition 6—Weight of a Random Walk:The weight of a
random walkin a weighted transition graph is given by

(4)

where is the weight associated with transition .
Definition 7—( )-Property: A weighted transition graph

is said to have the (, )-property if there exists a grouping

4We shall see later in this section the meaning of these weights for our
particular application.
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, , , on the set of states , , , of the
transition graph satisfying

• ( -criterion): , then and
;

• ( -criterion): , for any two states , , ,
connected by an edge, s.t. .

Also, if , ’s are such that . ’s are
calledmacrostateswhereas are calledmicrostates
within macrostate .

The intuitive reason for the above definition is that
conditional probabilities from any microstate in to another
microstate in are negligible (-criterion), and
all transitions among microstates belonging to the same
macrostate have similar weights (-criterion). For instance,
in Fig. 5 microstates “10,” “21,” “26,” and “29” form the
macrostate (with high activity), while “15,” “30,” and
“31” form (with low activity).

A particular microstate may generally appear in more than
one macrostate since not only the vector itself, but also the
context in which it appears is important (as in Definition
7, the weight value for a transition determines whether the
microstates belong to that particular macrostate or not). There-
fore, thegrouping of states is done such that transitions are
clusteredaccording to their associated weights.

From what has been defined, it becomes possible to hier-
archically structure the input space. Specifically, instead of
considering the input sequence as a flat sequence of vectors,
it can be seen as a structured multilevel discrete stochastic
process calledhierarchical Markov model(HMM). We note
that HMM generalizes the familiar Markov chain concept by
making each of its macrostates a stochastic model on its own,
i.e., each macrostate is a Markov model as well. For instance,
the graph in Fig. 5 can be represented hierarchically as shown
below, where the macrostate identifies the high activity
mode and the low activity one.

Note: It should pointed out that, in general, the high-level
Markov chain is not autonomous; that is, some conditional
probabilities may be different from 1. For example, if the
initial sequence is structured as: (having
thus three modes), then in the high-level Markov chain we
have (because it is equally likely
to go from to either or ).

The initial problem of compacting a flat input sequence
becomes equivalent to that ofcompacting a hierarchyof sub-
sequences. Since vectors in each macrostate are gathered using
the same -criterion, the compaction is now done inside each
macrostate. This avoids the “hang-up” problem mentioned in
Section III-B1 because all macrostates are guaranteed to be
visited as their transition probabilities “scale-up” after hierar-
chization. For instance, in Fig. 5, the transition probabilities
between and are 0.013 and 0.010, respectively; in the
hierarchical organization shown in Fig. 7, these probabilities
become one.

We now present some useful results for HMM characteri-
zation.

Theorem 2: If the state probability of each macrostate and
the state probabilities for all microstates within a macrostate

Fig. 7. A two-level hierarchy for sequenceS�.

are preserved, then thestate probability distributionof the
initial (flat) sequence is completely captured.

Proof: Let be any state from the original sequence.
Then, its probability is given by

where denotes the state probability of in macrostate
.
Thus, the state probabilities are the same if they are pre-

served inside each macrostate and also the probability distri-
bution for macrostates is correctly captured.

Theorem 3: Having a hierarchical model satisfying the-
criterion, if transition probabilities of the microstates are
preserved within each macrostate and if the state probabili-
ties of macrostates are correctly captured, then the transition
probabilities of the initial sequence are reproduced with an
error less than or equal to.

Proof: The transition probability between two states
and can be expressed as

where is the transition probability between mi-
crostates and inside macrostate and denotes
the transition probability between those states if they belong
to macrostates , , respectively. Since our assumption
is that the hierarchy satisfies the-criterion, we have that

and hence

Thus, if the macrostate probability distribution and the tran-
sition probabilities inside each macrostate are preserved, then
the actual transition probabilities are preserved up to some
error .
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Theorem 4: If the hierarchy satisfies the (, )-property (as
in Definition 7), then the weight of a random walk in the flat
model satisfies

(5)

where is the probability of being in macrostate ,
is the weight associated to macrostate (as in Definition
6) and is the transition probability
from macrostate to macrostate .

Proof: Let be the weight of the initial sequence. Then,
using Definition 6 and Theorem 3, we have

On the other hand, if , are in the same macrostate and
the hierarchy satisfies the-criterion, then there is some
such that . Hence, we also have

from where it follows the above claim.
In other words, a random walk on the hierarchical Markov

model preservesup to some error the average weight of the
original sequence. The first term in the above sum repre-
sents the average weight per macrostate, whereas the second
accounts for the weight of transitions between them.

This general formulation applies immediately to our prob-
lem defined in Section III-A. In fact, if the input sequence is
hierarchically structured, Theorem 3 guarantees that inequality
(3) is still satisfied. Moreover, Theorem 4 guarantees that the
average power value is maintained. This is very important
from a practical point of view because the hierarchical model
has the advantage of beinghighly adaptiveas opposed to a
flat processing of the input sequence which does well only
“on average.”

3) A Hamming Distance-Based Criterion for Microstate
Grouping: In practice, it is hard to determine the weight
for each individual transition. Specifically, an exact procedure
would require detailed information about the circuit (e.g., its
internal structure and capacitive loads) and a fast simulation
procedure to derive the exact power consumption for each pair
of vectors in the original sequence. In practice, such an attempt
may be unsatisfactory due to the simulative overhead and the
requirement to have detailed circuit information. Therefore,
we adopt a different,circuit-independentcriterion to structure
the input space.

As suggested in Example 2, what we need is an indicator of
the level of activity at theprimary inputsof the circuit. To this
end, we must correctly identify the different stochastic levels

Fig. 8. Average Hamming distance variation.

(subsequences) in the initial input sequence and then apply
the ( , )-grouping of microstates based on their associated
weights. Once we identify these different subsequences in
the initial sequence , our compaction procedure works fine
regardless of the power consumption values that would arise
from the application of these two subsequences to the target
circuit.

To structure the input space, we propose to use theav-
erage Hamming distance over a variable-size sliding window
because, from our investigations, it is a reliable indicator of
the level of activity. We will explain subsequently how this
window is actually used to calculate the average Hamming
distance.

In the particular situation described in Example 2 (see
Fig. 8), based on the Hamming distance criterion, the input
sequence can be roughly classified into “high activity” and
“low activity” macrostates.5 While this kind of partitioning
into high and low activity modes can always be used, in
practice it is better to have a more refined model. For instance,
if the set of all possible values for the Hamming distance is
divided in three equally-sized regions that correspond to low,
medium and high activity, then we can identify more than two
modes of operation. A more refined model might be required
in some applications where a large number of operational
modes exist (e.g., an initialization mode, an active mode, a
standby mode, and a sleep mode). We also note that the
average Hamming distance may not always capture the specific
behavior of different groups of bits in the input sequence. For
instance, a criterion based on average Hamming distance may
not distinguish between the two cases where either the most
significant bits (MSB) are more active than the least significant
bits (LSB) or vice versa. These two cases, however, may
induce different power modes (even if the average Hamming
distance is the same). To handle this situation, we refine the
high-level Markov model as follows. Instead of having only
low and high activity macrostates, we define four macrostates

• low activity LSB and low activity MSB;
5That is, if more than three out of five bits change, we are in the high

activity mode; otherwise in the low activity one.
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• low activity LSB and high activity MSB;
• high activity LSB and low activity MSB;
• high activity LSB and high activity MSB;

and, in this way, we structure the input space to achieve
a stronger correlation between the behavior of the input
sequence and the power modes induced by this sequence in
the target circuit. In the current implementation, the user has
the freedom to specify the number of groups of bits to be
considered, as well as the number of macrostates per each
group. Thus, at the expense of a more complex model, we
are able to find a better hierarchization of the input sequence
which closely follows the power modes of the target circuit.

We note that, in general, characterizing different groups of
bits as far as their average Hamming distance is concerned,
does not imply that we have to always consider MSB versus
LSB. Instead, given the functionality/structure of the circuit
and/or some knowledge about the primary input bits, we can
decide what different groups of bits have to (or may be)
characterized separately. We should also note, however, the
advantage of the original criterion (i.e., Hamming distance),
besides the low complexity, is that it only requires the avail-
ability of a meaningful input trace.

To detect the changes in the input sequence, avariable-size
sliding window is used to compute the average value of the
predictor function (in our case, the Hamming distance). At
every time step, the average Hamming distance for all vectors
starting with the first in the current macrostate and ending with
the current vector is computed. Next, we decide whether the
behavior of the sequence has changed (that is, we are in the
same macrostate or not) by comparing the average Hamming
distances at steps 6 and , where is a fixed
parameter (window increment size) andis an integer. If
the difference between these average Hamming distances is
larger than the parameterset by the user, then we start with
a new macrostate; otherwise, we remain within the current
macrostate.

We note that thesize of the chosen window increment
should not be too small (due to the fragmentation, the high-
level Markov chain becomes similar to the flat model) or too
large (the low-level Markov chain becomes similar to the flat
model). Our experience shows that a window increment size

of 50–100 vectors works very well in practice. We note that
the -criterion (if satisfied) is already accounted for by this
procedure since all macrostates are guaranteed to be visited
(due to the scaling of conditional probabilities in the high-
level model). This does not result in an incorrect value for the
total power consumption, as is the case for the flat model.

C. Practical Considerations and Experimental Results

In the following, we describe a practical procedure for
constructing the tree DMT[15] and generating the compacted
sequence. First, based on average Hamming distance crite-
rion explained in Section III-B3, the vectors of the original
sequence are assigned to macrostates. During the second tra-
versal of the original sequence [when we extract the bit-level
statistics of each individual vector and also those statistics

6p � k represents the size of the window.

that correspond to pairs of consecutive vectors , ,
, , ], we grow simultaneously the trees

DMT inside each macrostate (the low-level of the hierarchy)
and also the DMT tree for the sequence of macrostates (the
high-level of the hierarchy). Vectors within each macrostate are
sequenced together in the same DMT. If the input sequence
satisfies the (, )-property, the transitions introduced this way
do not significantly change the characteristics (average weight
and transition probabilities) of the model. We continue to grow
the trees at both levels of hierarchy as long as the Markov
model is smaller than a user-specified threshold; otherwise we
just generate the new sequence up to that point and discard
(flush) the model. A new Markov model is started again
and the process is continued until the original sequence is
completely processed.

For the generation phase itself, we use a modified version
of the dynamic weighted selection algorithm described in [22].
In general, by alternating the generation and flush phases in
the DMC procedure, the complexity of the model can be
effectively handled. The only remaining issue is to determine
how many vectors must be generated inside each macrostate
before a transition to another macrostate is performed. If a
subsequence of length is assigned to the macrostate,
after compaction with ratio , it has to be reduced to .
We note that inside all macrostates thesame compaction ratio
should be used, otherwise the composition of the sequence
(as far as power consumption is concerned) may be totally
different than the composition of the initial sequence. On
average, each macrostate should be visited
times where is the length of the “macrosequence” (i.e., the
length of the initial sequence of macrostates). Thus, each time
a macrostate is visited a number of vectors
needs to be generated. Since compaction is done only at the
microstate level, the length of the macrosequence is preserved
(the generation procedure stops when exactlymacrostates
are obtained). It is also noted that this strategy doesnot allow
“forbidden” vectors which means that those combinations that
did not occur in the original sequence, will not appear in the
final compacted sequence either.

The overall strategy is depicted in Fig. 9. Starting with an
input sequence of length , we perform a one-pass traversal
of the original sequence to assign microstates to macrostates.
Next, we simultaneously build the trees DMTfor the entire
hierarchy (macro- and microstates). During this process, the
frequency counts on DMT’s edges are dynamically updated.

The next step in Fig. 9 does the actual generation of the
output sequence (of length). Our compaction procedure
works, in principle, with two different compaction strate-
gies. The first one is to monitor the current values of the
transition probabilities and compare them with the transition
probabilities of the original sequence. When the difference
between the two sets of probabilities becomes sufficiently
small, the generation procedure is halted. This way, we are
able to satisfy any user specified error level for the transition
probabilities. The second strategy is to set the compaction
ratio upfront, perform compaction, and then compute the error
induced by compactiona posteriori. In this second scenario,
the user may define the largest value of the compaction ratio
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Fig. 9. The experimental setup for combinational circuits.

TABLE I
TOTAL POWER CONSUMPTION (�W @ 20 MHz) FOR ISCAS’85 CIRCUITS (4000 VECTORS)

based on the stationarity hypothesis which should be satisfied
on any segment of the original sequence that is compacted.
More precisely, the shortest subsequence where the stationarity
hypothesis must be satisfied limits the highest compaction ratio
that can be achieved. No matter what strategy is used, if the
initial sequence has the length and the newly generated
sequence has the length , then the outcome of this
process is a compacted sequence, equivalent to the initial one
as far as total power consumption is concerned; we say that a
compaction ratioof was achieved.

Finally, a validation step is included in the strategy; we
resorted to an in-house gate-level logic simulator developed
under SIS.7 The total power consumption of some ISCAS’85
benchmarks has been measured for the initial and the com-
pacted sequences, making it possible to assess the effectiveness
of the compaction procedure (under both zero- and real-delay
models).

In Table I, we provide the real-delay results for a set of
highly biased sequences (of length 4000) which represent input
stimuli for real applications and have been provided to us by
a chip manufacturer. We point out that while we had access
to these real input sequences, we could not obtain also the
description of the actual chips. Consequently, we used these
real input sequences with standard benchmarks taken from
ISCAS suite and evaluated the quality of the results. In the end,
we were pleased to learn that the error we found experimenting

7For more accuracy, a switch-level simulator (e.g., Power Mill [3]) may be
used.

on standard benchmarks was consistent with the error found
independently by the manufacturers. This consistency is not
surprising because, at least if our assumptions are satisfied,
our approach is essentially independent of the target circuit.

The sequences in Table I contain three types of subse-
quences: a high activity subsequence, followed by a low
activity subsequence, and finally by a pseudorandom one.
To get a deeper intuition about the characteristics of these
sequences, we will consider subsequently the particular case
of testbench C6288 which will be also referred later in
this section. The bit-level switching activities (for the input
sequence of C6288) vary in the range of 0.24 to 0.53 for
the first subsequence (vectors 1–2500), 0.17 to 0.61 for the
second one (vectors 2501–3700), and finally, 0.45 to 0.54 for
the pseudorandom sequence (vectors 3701–4000). In terms of
the average Hamming distance variation, the values are 10.33,
9.91, and 16.11 for the first, second, and third subsequence,
respectively. We note that these average numbers do not fully
illustrate the differences in characteristics among these three
subsequences and, therefore, we present in Fig. 10 the varia-
tion of the Hamming distances associated to these sequences.

From this graph, we can see that the Hamming distance
varies much faster for the first subsequence compared to the
second one; this abrupt change in the characteristic of the input
sequence can be noticed after the first 2500 vectors. On the
other hand, after 3700 vectors, we enter in the pseudorandom
domain where the Hamming distance stabilizes around value
16. These three very different subsequences induce different
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Fig. 10. Hamming distance variation for C6288.

power consumptions in the circuit C6288. For instance, the
power dissipated during the first mode is 96 375.08W,
68 231.38 W for the second one, and finally, 338 948.28W
for the pseudorandom subsequence. While the numbers are
slightly different for the other circuits reported in Table I, the
qualitative explanation and the details given here for C6288
remain valid for all other examples.

As shown in Table I, the initial sequences were compacted
with three different compaction ratios (namely 2, 5, and
10). This table includes the total power dissipation measured
for the initial sequence (column 3) and for the compacted
sequence (columns 4–9). The time in seconds (on a Sparc
20 workstation with 64 MB of memory) necessary to read
and compress data with DMC modeling was below 5 s in all
cases, either for the flat or for the hierarchical model. Since
the compaction with DMC modeling is linear in the number
of nodes in the structure DMT, this value is far less than
the actual time needed to simulate the uncompacted sequence.
During these experiments, the number of states allowed in the
Markov model was 20 000, on average (about 500 KB). These
sequences satisfied the-criterion for 0.001, while the
parameter in Definition 7, was set to be 0.05(# of input
bits). (This corresponds to having up to 20 macrostates in the
hierarchical model.)

As we can see in Table I, the quality of results is very
good, even when the length of the initial sequence is reduced
by one order of magnitude. Thus, for C432 in Table I, instead
of simulating 4000 vectors with an exact power of 1810.02

W, only 800 vectors with an estimate of 1888.42W or just
400 vectors with a power consumption estimated as 1906.84

W may be used. This reduction in the sequence length has
a significant impact on speeding-up the simulative approaches
where the running time is proportional to the length of the
sequence which must be simulated. For instance, using the
PowerMill simulator [3], the average speed-up obtained for
simulation time of benchmarks and sequences in Table I is
11. By comparison, if the flat model is used for the same
benchmark, the relative errors in power prediction are 18%
and 32%, respectively. The primary reason for this inaccuracy

Fig. 11. The two-level hierarchy for C6288.

TABLE II
RESULTS OBTAINED FOR SIMPLE RANDOM SAMPLING

is the lack of adaptability which characterizes the flat model
when applied to multimodal sequences.

Once again, we note that the assumption of stationarity
is essential for our compaction procedure. Moreover, even if
the stationarity hypothesis is satisfied, the convergence result
in Corollary 2 states that if the error on input conditional
probabilities converges to zero, then the difference between
the total power values converges also to zero. However, we
were not able to prove that this convergence ismonotonic,
so oscillations may occur for a specific run. It is however
expected that the general tendency is to get a smaller error
for a smaller compaction ratio when a large number of runs
is taken into consideration.

We present in Fig. 11 a typical case, that is the two-
level hierarchy obtained for the benchmark C6288 in Table I.
We indicate for each macrostate the number of microstates
included in it; for instance, the largest macrostate contains
1560 microstates, while the smallest has only 80 microstates.
As we can see, for these particular values of parameters

and , we have identified five modes (macrostates) in
the input sequence, each one containing a very different
number of microstates. We also note that the conditional
probabilities at the highest level of the hierarchy scaled-up
after hierarchization.

Finally, we compare our results generated by HMM with
simple random sampling of vector pairs from the original
sequences. In simple random sampling, we performed 1000
simulation runs with 0.99 confidence level and 5% error level
on each circuit.8 We report in Table II the maximum and
average number of vector pairs needed for total power values
to converge [1], [4]. We also indicate the percentage of error
violations for total power values, using as thresholds 5%,

8This means that the probability of having a relative error larger than 5%
is only 1%.
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TABLE III
RESULTS OBTAINED FOR HMM A PPROACH

6%, and 10%. Using different seeds for the random number
generator (and, therefore, choosing different initial states in the
sequence generation phase), we run a set of 1000 experiments
for the HMM technique. In Table III, we give the results
obtained with the hierarchical model, for the same thresholds
used in simple random sampling.

Once again, the results obtained with HMM modeling
technique score very well and prove the robustness of the
present approach. As we can see, using fewer vectors, the
accuracy of HMM is higher than the one of simple random
sampling in most of the cases. Noteworthy examples are
benchmarks C499, C1908, and C6288, where less than 60%
of the maximal number of vector pairs needed in random
sampling for convergence are sufficient for HMM to achieve
higher accuracy and confidence levels.

In Table IV, we provide the real-delay results for a set
of long sequences having the length of 200 000 vectors. We
generated these sequences by setting the most significant half
of the bits to realize a counted sequence and the remaining
bits to be random. For the typical example C6288, we had
two different modes in the input sequence, a low- (vectors
1–100 000) and a high-activity one (vectors 100 001–200 000).
The bit-level switching activity varies in the range of 0–0.67
for high-activity subsequence and is 0.5 for the low-activity
one. The average Hamming distance is 8.48 and 16 for the
first and second subsequence, respectively. In terms of power
dissipation, for the first and second regimes, the values are
593.75 W and 246 763.92 W, respectively.

The sequences in Table IV were compacted with three
different compaction ratios (namely, 10, 100, and 1000) and
the total power consumption was estimated for each individual
benchmark. Using a Sparc 20 workstation with 64 MB of
memory, the time necessary to read and compress data was
less than 10 s in all cases.

As we can see, the quality of results is very good, even when
the length of the initial sequence is reduced by two or three
orders of magnitude. This reduction in the sequence length has
a significant impact on speeding-up the simulative approaches
where the running time is proportional to the length of the
sequence which must be simulated.

IV. SEQUENCE COMPACTION FORSEQUENTIAL CIRCUITS

The approach presented in Section III is applicable only
to combinational circuits because it considers only first-order

temporal effects (i.e., pairs of consecutive vectors) to perform
sequence compaction. In the case of FSM’s, this is not
sufficient. In this section, we present a solution for compacting
an initial sequence such that the steady-state and transition
probabilities of the signal lines are almost the same.

A. Finite-Order Memory Effects

Information about the steady-state and transition proba-
bilities is very important because both of them completely
characterize the FSM behavior. In particular, they have im-
mediate application in power estimation area because, for
sequential circuits, temporal correlations longer than one time
step can affect the overall behavior of the FSM and, therefore,
result in very different power consumptions. This point is
illustrated by a simple example.

Example 3: Let and be two 4-bit sequences of length
26, as shown in Fig. 12(a). These two sequences have exactly
the same set of first-order temporal statistics as shown in
Fig. 12(b). In this figure, we provide the wordwise transition
graph for these two sequences where the topmost bit is the
most significant bit (e.g., in , “1,”
“2,” , “9”). Suppose now that and are fed
to the benchmark from the ’91 sequential circuits
suite. Looking at different internal nodes of the circuit, it
is noted that the total number of transitions made by each
node is very different when the circuit is simulated with
or . Moreover, the total power consumption at 20 MHz is
384 and 476 W, respectively, showing a difference of more
than 24% even for this small circuit. This raises the natural
question, “why does this difference appear?,” despite the fact
that and have the same STG shown in Fig. 12(b). The
reason for this different power dissipation is that and
have a different set of second-order statistics; that is, the sets
of triplets (three consecutive vectors) are quite different. For
instance, the triplet (1, 2, 7) in does not occur in ; the
same observation applies to the triplet (5, 2, 3) in. The
conclusion is that having the same set of one-step transition
probabilitiesdoes notimply that the set of second-order or
higher-order statistics are identical and, as it was just illustrated
in this small example, higher-order statistics can make a
significant difference in FSM’s total power consumption. The
initial problem of compacting an initial input sequence can
be now cast in terms of power as follows: can we transform
a given input sequence into a shorter one, such that the new
body of data is a good approximation of the initial sequence
as far as total power consumption is concerned?

B. Problem Formulation

The focus is now turned from the input sequence to the
actual target circuit and to the investigation of the effect of
input statistics on its transition probabilities (primary inputs
and present state lines). As shown in Fig. 13, we model
the “tuple” (input sequence, target circuit) by the “tuple”
(Markov chain, FSM), where Markov chain models thein-
put sequenceand FSM is the sequential machine where the
transition probabilities have to be determined. In what follows,

, will denote the random variables associated to the
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TABLE IV
TOTAL POWER (�W @ 20 MHz) FOR LONG SEQUENCES (200 000 VECTORS)

(a) (b)

Fig. 12. Two sequences with the same first-order statistics.

Fig. 13. The tuple (Markov-Chain, FSM).

inputs and state lines of the target sequential machine;
is the probability that, at time step, the input is and the
state is .

We are interested in defining the joint probabilities
and because, as shown in Fig. 13, they
completely capture the characteristics of the input (primary
inputsandpresent state lines) that feeds the next state and the
output logic of the target circuit. In addition, having defined
the joint random variables “ ” and “ ,” the
vector compaction problem for sequential circuits becomes
essentially the vector compaction problem for combinational
circuits as presented in Section III-A.

Problem Formulation: For a sequence of length , find
another sequence of length (consisting of a subset
of the initial sequence), such that theaverage joint transition

probability on the primary inputsand present state lines is
preservedwordwise, for two consecutive time steps. More
formally, the following condition should hold:

(6)

where and are the probabilities in the original and
compacted sequences, respectively.

This condition simply requires that the joint transition
probability for inputs and states is preserved within
a given level of error for two consecutive time steps. We
note that, because the vector compaction problem is given in
terms of joint probabilities and ,
the proof of correctness in Section III-A remains also valid
for the sequential case. Once again, the stationarity condition
on primary inputsand state lines of the FSM is essential for
this result.

Finally, we point out that in our approach, we do not
make any attempt to compact the subsequence in the original
sequence that is used for the initialization of the target FSM.
More precisely, if the original sequence consists of two
components, one being the initialization sequence of the target
FSM ( ) (usually 50–100 vectors) and the other being
a regular set of vectors that excite the FSM ( ), then

. We do consider for compaction only the
component. (Usually, and thus is the

prime candidate for compaction.) This is primarily because we
do not want to alter the initializability properties of the FSM
and also because we need stationary behavior on the state lines
of the FSM to have our compaction procedure work.
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(a) (b)

Fig. 14. Two STG’s obtained for the signal lines (xnsn) of benchmarkdk17.

C. The Effect of Finite-Order Statistics on FSM Behavior

We will investigate now the conditions that can guarantee
that relation (6) is satisfied. Under the general assumptions of
stationarity and ergodicity [18], the following result can be
proved.

Theorem 5: If the sequence feeding a target sequential
circuit has order , then a lag- Markov chain which correctly
models the input sequence, also correctly models the-step
conditional probabilities of the primary inputsand internal
states, that is

(7)

Proof: Since is a lag- Markov chain, we can first
prove that, for any , the following holds:

Let be the joint transition
probability for inputs and states overconsecutive time steps.
Then we have

if

otherwise.

For the first alternative we have

which becomes

Dividing both sides by , and using
the fact that

we obtain exactly (7). For the second alternative,
if is not a
valid sequence, then

and this concludes our proof.
We note, therefore, that, preserving order-statistics for

the inputs implies also that order-statistics will be captured
for inputs and state lines. As long as the ordercorrectly
models the input sequence, we cannot produce new transi-
tions of the FSM and, therefore, “forbidden” subsequences of
order . However, by using DMT, we may introduce new
subsequences of order higher thanbut this is irrelevant for
the functionality of the FSM as long as we are guaranteed by
Theorem 5 that the conditional probabilities (and thus steady
state probabilities) for inputs and state lines are preserved.

We also note that, in particular, the first-order statistics of
the joint probabilities defined in (6) are implicitly preserved.
However, modeling a-order source with a lower order model
may introduce accumulative inaccuracies. From a practical
point of view, this means that underestimating a high-order
source, it is possible not to correctly preserve even the first-
order transition probabilities and thus violate the requirement
in (6). In terms of power consumption, this will adversely
affect the quality of the results as we can see from the
following example.

Example 4: Once again the sequences and in Exam-
ple 1 are considered and assume that they feed the benchmark

. It will be illustrated that indeed, if the input sequence
has order two, then modeling it as a lag-one Markov chain
will not preserve the first-order joint transition probabilities
(primary inputs and internal states) in the target circuit. We
simulated the benchmark (starting with the same initial
state “19”) for both sequences and we present in Fig. 14
[Fig. 14(a) is for and Fig. 14(b) is for ] the wordwise
transition graphs obtained for the signal lines ( ). The
benchmark has two primary inputs and three flip-flops,
therefore, in Fig. 14, any node is decimally encoded using
five bits. For instance, the initial state “19” corresponds to the
binary code “10 011” that is, “10” for primary inputs and “011”
for state lines. Starting from state “19” and applying “11” on
the primary inputs, the present state becomes “011,” therefore,
we enter the node “11 011” 27 in Fig. 14. As we can see,
because can be modeled as a first-order Markov source,
while must be modeled as a second-order Markov source,
the corresponding transition graphs are quite different. From
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a practical point of view, this means that if one high-order
source is underestimated (for instance, assuming that second-
or higher-order temporal correlations are not important), then
even the first-order transition probabilities in the target circuit
may not be preserved. In terms of power consumption, this
adversely affects the quality of the results as shown and
discussed in Example 3.

Corollary 3: If the sequence feeding the target circuit has
order one, then a lag-one MC will suffice to model correctly
the joint transition probabilities of the primary inputs and
internal states in the target circuit, that is

(8)

In other words, if the sequence feeding the target circuit can be
accurately modeled as a first-order Markov chain, then a first-
order power model can be successfully applied because the
whole “history” of the input is limited to only two consecutive
time steps. In this particular case, the compaction problem for
both FSM’s and combinational circuits becomes essentially
the same; that is, all that is needed is to efficiently model the
input sequence as a first-order Markov model.

D. Fixed and Variable-Order Markov Sources

1) The Order of a Markov Source:The next step is to de-
termine the order of a Markov source, because, as proved in
Theorem 5, knowing the correct value of, is essential for
FSM analysis. To this end, based on the probability of finding
a “block” of vectors , , , 9 in any sequence in

[denoted by ], we introduce the following
entropy-like quantities.

Definition 8—Block Entropy:The block entropyof length
is defined as

(9)
where .

Definition 9—Conditional Entropy:The conditional entro-
py associated with the addition of a new vector to the left
of an already existing block , , , is defined as

(10)

for and .
Definition 10—Source Entropy:Theentropy of a source,or

the uncertainty per step,is defined as

(11)

and often referred to asmetric entropyor entropy rate[19].
For stationary and ergodic processes, Khinchin [23] has

shown that in (9) is monotonically increasing, is
monotonically decreasing and the limit in (11) exists. We can
justify the term “conditional” used for the entropy in (10) by

9Because the process is stationary and ergodic, in this notation, the lower
indices 1, 2,� � �, n do not designate the absolute time instances, but the
sequencing among the vectors that occur within a block of lengthn.

proving that

(12)

which illustrates the mean uncertainty of a new vector ,
given the knowledge of vectors , , , , .
Therefore, the conditional entropy is a measure of the
predictability for the whole process.

Lemma 1: For any lag- Markov chain, it holds that
, .

Proof: We first show that . Then, we
can also write

...

From here by summation (after reducing the appropriate terms)
we get: ; using (10) we get the above
claim.

Due to statistical correlations extending over a range of only
iterations, for Markov sources of order, the conditional

uncertainty is decreasing until it eventually reaches its
limit value for [23]. The memory effects of the
source are reflected by thissaturation pointwhich means that
value of when the limit is reached exactly or with a good
approximation.

Example 5: In Fig. 15 we have the typical behavior for
a lag-one and a lag-two Markov sequences, that have been
generated by using a first– and a second-order recursive
relations, respectively. The two sources have the same order-
zero and order-one statistics, but different order-two statistics.
In both cases, the-step conditional entropy of the source
reaches its limit after few tens of vectors. In the first case,
the limit is , while in the case of the lag-two Markov
source, the limit is given by as expected according to the
above discussion.

Finally, we note that there may exist different subsequences
of order within a given initial sequence. For instance, we
may have an initial sequence which consists of two very
different second-order subsequences, and , generated
with a second-order Markov source (see Fig. 16). In this
case, the block entropy in Definition 8 (and implicitly the
source entropy in Definition 10) will be different for these
subsequences (despite the fact that both of them exhibit the
same type of second-order temporal correlations) and this is
enough for our approach to make the distinction. In Fig. 15,
we plot the variation of the conditional entropies as function
of time. We observe that, indeed, after time step 500, the
conditional entropies , stabilize to different values for

and .
2) Composite Sequences:In practice, lag- Markov chains

with fixed may not be a good enough approximation
for a given sequence. For example, a real sequence can
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(a) (b)

Fig. 15. The behavior of conditional entropies for a lag-one and a lag-two Markov sequences.

Fig. 16. The behavior of conditional entropies for two lag-two Markov
subsequences.

be a mixture of sequences, each generated from a different
order Markov source. We call such a sequence acomposite
sequenceto emphasize its nonhomogeneous characteristics.
When the sequence changes its behavior due to the change in
order, the stationarity and convergence hypotheses no longer
hold. For instance, if we consider two mixed sequences, the
first containing a lag-one followed by a lag-two Markov
subsequence, and the second a lag-two followed by a lag-one
Markov subsequence, the behavior of conditional entropies is
the one depicted in Fig. 17.

In the first case, after a sufficiently large number of steps,
and do not remain the same. Actually, in the long run, the
limit in (11) becomes , thus detecting an order of two for the
source. In this case, the convergence tois violated and thus
the sequence changes its order from one to two. In the second
case, after already being stabilized to the stationary values, the
conditional entropies , , , , tend to increase so that
the order of the second half of the sequence can no longer be
considered two.

This discussion provides a starting point for determining
the order of subsequences in a dynamic fashion. The only
requirement that has to be satisfied is the stationarity of each
subsequence and, in this case, the entire sequence is called
piecewise stationary. This is the basic hypothesis of all our
subsequent experiments. To test the condition of piecewise
stationarity, in practice we can use again the metric entropy
in conjunction with support from the simulation of the STG
of the machine. We also note that, for sequential circuits, we
consider piecewise stationary sequences that exhibit only a
single power mode. However, for sequences that have multiple
power modes, the hierarchization procedure in Section III can
be still applied but, in this case, we have to consider the
average Hamming distance on the primary inputsand state
lines of the FSM to build the hierarchical model. This implies
that some knowledge about the behavior and state encoding
of the FSM are available to the user.

3) Variable-Order Dynamic Markov Models:From results
shown in the previous sections, we need an efficient way to
model lag- Markov chains that could characterize the input
sequences that feed the target circuit. The structure DMTused
by authors in [15] is general enough to completely capture the
correlations among all bits of the same input vector and also
between successive input patterns. However, it has conceptu-
ally no inherent limitation to be further extended to capture
temporal dependencies of higher orders. For instance, if we
continue to define recursively DMT(starting with DMT ),
we can basically capture second-order temporal correlations.
For any sequence where , , are three consecutive
vectors (that is, ), the tree DMT looks like
in Fig. 18. The following result, gives the theoretical basis for
using the dynamic Markov trees to capture high-order temporal
correlations.

Theorem 6: The general structure DMTand its parameters
completely capture spatial and temporal correlations of order
.

Proof: Let be a string in DMT (the
substring belongs to the-level tree, DMT). We have that
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(a) (b)

Fig. 17. Typical behavior of conditional entropies for composite sequences.

Fig. 18. A second-order dynamic Markov tree.

and thus the lag- Markov chain characterizing the input can
be fully modeled by the DMT structure.

E. Practical Considerations and Experimental Results

The DMC modeling approach offers the significant ad-
vantage of being aone-pass adaptive technique. As a one-
pass technique, there is no requirement to save the whole
sequence in the on-line computer memory. Starting with
an initial empty tree DMT , while the input sequence is
scanned incrementally, both the set of states and the transition
probabilities change dynamically making this technique highly
adaptive. Also, using this data structure, we can easily account
for conditional entropies and detect the order of the Markov
source. Under stationarity conditions, the order is detected as
the minimum such that , for some and
any , , where is the maximum order of
the source to be detected. After that, if either this condition
becomes violated or the stationarity hypothesis does not hold,
the model is flushed and restarted. As in the combinational
case, for each dynamically grown tree, the generation phase is
driven by the user-specified compaction parameter ratio. We
also note that, as long as the ordermodels correctly the input

sequence, we cannot produce new transitions of the FSM and,
therefore, “forbidden” subsequences of order. (This is guar-
anteed by Theorem 5.) This is an essential capability needed to
avoid “hang-up” (“forbidden”) states of the sequential circuit
during the simulation process for power estimation.

The overall strategy is shown in Fig. 19. We assume that the
input data is given in the form of a sequence of binary vectors.
Starting with an input sequence of length, we perform a
one-pass traversal of the original sequence and simultaneously
build the basic tree DMT; during this process, the frequency
counts on DMT ’s edges are dynamically updated. During
this process, the order of the source is also determined.
The generation step is done using a modified version of
the weighted selection algorithm [22]. Finally, a validation
step is included in the strategy; we have used an in-house
gate-level logic simulator developed under SIS. The total
power consumption of some sequential benchmarks has been
measured for the initial and the compacted sequences, making
it possible to assess the effectiveness of the compaction
procedure.

Table V shows the gate-level power simulation results ob-
tained for composite sequences of length 10 000. The hybrid
character of these sequences makes a significant difference in
terms of total power consumption for all benchmarks. These
sequences have been generated using different generators and
exhibit temporal correlation of various orders. More precisely,
we have subsequences of order of two (of length 3000 vectors),
followed by subsequences of order one (of length 4000) and
finally, once again by subsequences of order two. As first-order
generators we use counted sequences restarted at random after
a fixed number of patterns have been generated. As second-
order generators, we use sources of information based on
Fibonacci sequences. Basically, we generate (on the appro-
priate number of bits) Fibonacci sequences started at random
after a fixed number of patterns have been generated. (To
avoid the generation of completely deterministic sequences,
we also add to the pure Fibonacci generator a low-level white
noise using a standard random number generator.) Because
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Fig. 19. The experimental setup for sequential circuits.

TABLE V
TOTAL POWER (�W @ 20 MHz) FOR COMPOSITE INPUT SEQUENCES(10 000 VECTORS

the rule of Fibonacci is a second-order recursive relation,
we are guaranteed that second-order temporal correlations are
generated and, therefore, we can asses the effectiveness of
the adaptive model. For the typical case of , the bit-
level switching activity varies in the range of 0.33–0.5 for
the order two subsequences and 0.44–0.55 for the counted
subsequence. In terms of power consumption, the impact
of these different characteristics is illustrated by a 7025.31

W power consumption for the corresponding order two
subsequence and 2643.18W for the sequence of order one.

As shown in Table V, the initial sequences were compacted
with two different compaction ratios (namely 10 and
20) using three Markov models: one of order zero (that is,
assuming temporal independence on the primary inputs), one
of order one based on DMTand another one matching
the actual characteristics of the sequence. This table shows
the total power dissipation measured for the initial sequence
(column 3) and for the compacted sequence using all models
(columns 4–9). Using a Sparc 20 workstation with 64 Mbyte
of memory, the time necessary to read and compress data

was less than 10 s for all models. Since the compaction
with DMC modeling is linear in the number of levels in the
DMT structure, these time values are far less than the actual
time needed to simulate the original sequence. During these
experiments, the maximum number of nodes allowed in the
Markov model was 200 000.

As we can see, the most dramatic increase in the level
of error occurs for the model of order zero. This proves
that the temporal independence assumption on the primary
inputs impairs the accuracy of the estimation for all practical
purposes. This is because for a sequence generated with a
second-order source, a model that ignores temporal correla-
tions (or considers only pairs of consecutive vectors) cannot
preserve correctly even the first-order transition probabilities
on the primary inputs and state lines [that is, the probabilities

in our notation]. The error for the first-
order model is, on average, around 10%, while the adaptive
modeling technique provides accurate results, even for a
compaction ratio of 20. For example, for in
Table V, instead of simulating 10 000 vectors with an exact
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(a) (b)

Fig. 20. Node-by-node analysis for benchmarkplanet.

power value of 5272.36 W, one can use only 1000 vectors
( 10) with an estimate of 5237.65W.

Regarding the results presented in Table V, we note that for
order zero and order one experiments we report the best results
obtained over a set of 100 runs, while for the adaptive case,
we report the worst result. This way, we consider the worst-
case scenario for our adaptive sequence compaction approach
and ensure that even so, on average, the adaptive approach
works better. The reason behind this is the fact that the spread
of total power values obtained over a large number of runs
for the adaptive case is typically three orders of magnitude
smaller than in the case of using a fixed order one. For
instance, for , the standard deviation for the adaptive and
order-one models is 1.69 and 222.61, respectively. Similarly,
for the case of benchmark, the standard deviations
are 0.34 and 240.44 for the adaptive and order-one models,
respectively. Thus, it is expected that, with high confidence,
the adaptive approach will work better than the fixed order-one
model.

As for comparing our results with simple random sampling
technique for FSM circuits, we are unable to do so for the
following reason. Our compaction technique starts with a
finite input sequence and a user-specified compaction ratio
or error level, and performs compaction by DMC modeling
and sequence generation. We must, therefore, compare our
results with statistical sampling techniques which work on
finite populations (i.e., an input sequence with fixed length).
Although sampling techniques for combinational circuits under
a given input sequence have been developed and published in
the literature (hence, we could produce results of Tables II
and III), such techniques for FSM circuits are not known.
Note that Monte Carlo simulation (which is based on a simple
random sampling strategy) assumes an infinite population and
it synthesizes the input sequence used for sampling based on a
Markov model of bitwise activities. Hence, it cannot be used
for our comparison purpose.

Finally, we give in Fig. 20 thenode-by-nodeswitching
activity analysis for benchmarkplanet using a second-order

source on the primary inputs and a compaction ratio of
five. Using a lower-order model than the actual order of the
input sequence can significantly impair the ability of correctly
estimating the switching activity on a node-by-node basis.
While for the first-order model the absolute error10 achieves
a maximum value of 0.272 and a mean value of 0.057, it
decreases to 0.019 and 0.003, respectively, if a second-order
model is used. These results are typical for the whole set of
benchmarks that we analyzed. Based on these results, we can,
therefore, conclude that for FSM’s the adaptive technique is
the only technique appropriate for correctly modeling the input
sequence.

In Table VI, we provide the gate-level power simulation
results for a set of different initial sequences having a length of
200 000 vectors. Theinput datais set of composite sequences
consisting of a first-order temporally correlated subsequence
(length 100 000) followed by a second-order one. The first-
order subsequences are generated with counters restarted at
random after a fixed number of patterns have been generated.
The second-order sequences are generated with Fibonacci time
series. For the same typical example, the bit-level switching
activity varies in the range of 0.33–0.5 for the order-two
subsequences and 0.49–0.5 for the counted subsequence. In
terms of power consumption, we have a dissipation of 4225.11

W when the input sequence has order one and 7223.43W
for the other one.

To generate the results in Table VI, we use two different
strategies. First, we compact the input sequences with two
fixed compaction ratios and indicate the estimated values
of total power consumption (columns 4 and 5). Using a
Sparc 20 workstation with 64 Mbyte of memory, the time
necessary to read and compress data was less than 10 s
in all cases. In the second scenario (columns 6 and 7), we
consider a fixed threshold of 5% for the mean error of the
transition probabilities. We monitor the current values of the
transition probabilities and compare them with the transition

10The absolute error is defined asjswcomp � swexactj, whereswcomp is
the switching activity obtained using the compacted sequence.
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TABLE VI
TOTAL POWER (�W @ 20 MHz) FOR LONG SEQUENCES (200 000 VECTORS)

probabilities of the original sequence. When the difference
between the two sets of probabilities becomes sufficiently
small, the generation procedure is halted. In this way, we are
able to satisfy any user specified error level for the transition
probabilities.

As we can see, the average error in total power prediction is
below 2% for all benchmarks while the achieved compaction
ratio varies between 8 ( ) and 90 ( ) for large circuits
and 80 (planet) and 2380 (bbtas) for small ones. This reduction
in the sequence length has a significant impact on speeding-up
the simulative power estimation approaches where the running
time is proportional to the length of the sequence which must
be simulated.

V. CONCLUSION

In this paper, we addressed the issue of sequence com-
paction for power estimation from a probabilistic point of
view. More precisely, we proposed an original approach to
compact an initial sequence into a much shorter equivalent
sequence, which can be used with any available simulator to
derive power estimates in the target circuit.

A major contribution of this paper is that it introduces the hi-
erarchical modeling of Markov chains as a flexible framework
for capturing not only complex spatiotemporal correlations, but
also the dynamic changes in the input sequence characteristics.
In addition to this, we introduce and characterize a family
of variable-order dynamic Markov models which provide
an effective way for accurate modeling of external input
sequences that affect the behavior of FSM’s.

Results obtained on standard combinational and sequential
benchmarks, show that using this framework, large compaction
ratios can be obtained without significant loss in the accuracy
of total and node-by-node power estimates.
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