High-Level Power Modeling, Estimation, and Optimization

Enrico Macii
Politecnico di Torino
Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

In the past, the major concerns of the VLSI designers were
area, performance, cost, and reliability. In recent years,
however, this has changed and, increasingly, power is being
given comparable weight to area and speed. This is mainly
due to the remarkable success of personal computing de-
vices and wireless communication systems, which demand
high-speed computation and complex functionality with low
power consumption. In addition, there exists a strong pres-
sure for manufacturers of high-end products to keep power
under control. The main driving factors for lower power
dissipation in these products are the costs associated with
packaging and cooling, and circust reliability.

Tools for the automatic design of low-power VLSI sys-
tems have thus become mandatory. More specifically, fol-
lowing a natural trend, interests of researchers have lately
shafted to the investigation of high-level power modeling,
estimation, synthesis, and optimization techniques that ac-
count for power dissipation as the primary cost factor.

This paper provides a non-exhaustive survey of the most
successful and imnovative ideas in this area that have ap-
peared in the literature in the last few years.

1 Introduction

Today’s electronic systems are designed starting from spec-
ifications given at a very high level of abstraction. This
is because many EDA tools accept as input a design ex-
pressed in a high-level hardware description language (e.g.,
VHDL, Verilog), and can automatically produce the corre-
sponding transistor-level implementation with very limited
human intervention.

Since power consumption has become a critical issue in
the development of digital systems, tools that allow one
to control the power budget during the various phases of
the design process are in high demand. Given an initial
specification of the behavior of the system, several synthe-
sis/optimization steps are required to generate a power-
efficient transistor-level description (i.e., a net-list).

“Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.”

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

Massoud Pedram
University of Southern California
Dept. of Electrical Eng.—Systems

Los Angeles, CA 90089

Fabio Somenzi
University of Colorado
Dept. of Electrical and Computer Eng.
Boulder, CO 80309

In order to make the search of the optimal solution as
effective as possible, at each level of abstraction an “im-
provement loop” is used. In such a loop, a power an-
alyzer/estimator ranks the various design, synthesis and
optimization options, and thus helps in selecting the one
that is potentially more effective from the power stand-
point. Obviously, collecting the feed-back on the impact
of the different choices on a level-by-level basis, instead
of just at the very end of the flow (i.e., at the transistor-
level), enables a shorter development time. On the other
hand, this paradigm requires the availability of power es-
timators, as well as synthesis and optimization tools, that
provide accurate and reliable results at the various levels
of abstraction.

In this paper, we review some of the most relevant con-
tributions to the field of high-level power modeling, esti-
mation, synthesis, and optimization that have appeared in
the literature in the last few years.

2 Power Modeling and Estimation

This section describes techniques for power estimation and
analysis at different design levels.

2.1 Statistical Sampling

Existing techniques for power estimation at the gate and
circuit-level can be divided into two classes: Static and
dynamic [1]. Static techniques [2, 3, 4, 5, 6, 7, 8] rely
on probabilistic information about the input stream (such
as the mean activity of the input signals and their corre-
lations) to estimate the internal switching activity of the
circuit. While these are very efficient, their main limitation
is that they cannot accurately capture factors such as slew
rates, glitch generation and propagation, and DC fighting.
Dynamic techniques [9, 10] explicitly simulate the circuit
under a “typical” input stream. They can be applied at
both the circuit and gate-level. Their main shortcoming is,
however, that they are very slow. Moreover, their results
are highly dependent on the simulated sequence. To alle-
viate this dependence, and thereby produce a trustworthy
power estimate, the required number of simulated vectors
is usually high, which further exacerbates the run time
problem.

To address this problem, a Monte Carlo simulation tech-
nique was proposed in [11]. This technique uses an input
model based on a Markov process to generate the input
stream for simulation. The simulation is performed in an

iterative fashion. In each iteration, a vector sequence of
fixed length (called sample) is simulated. The simulation
results are monitored to calculate the mean value and vari-
ance of the samples. The iteration terminates when some
stopping criterion is met. This approach suffers from two
major shortcomings. First, the required number of sam-
ples, which directly impacts the simulation run time, is ap-
proximately proportional to the ratio between the sample
variance and the square of the sample mean value. For cer-
tain input sequences, this ratio becomes large, thus signifi-
cantly increasing the simulation run time. Second, there is
a general concern about the normality assumption on the
sample distribution. Since the stopping criterion is based
on such assumption, if the sample distribution significantly
deviates from the normal distribution, the simulation may
terminate prematurely. Difficult distributions that cause
premature termination include bi-modal, multi-modal, and
distributions with long or asymmetric tails.

A more efficient sampling procedure, called Stratified
Random Sampling, is introduced in [12]. The key idea
is to partition the population into disjoint subpopulations
(called strata) in such a way that the power consumption
characteristics within each stratum becomes more homo-
geneous. The units in each sample are then allocated pro-
portional to sizes of the strata. This generally results in a
significant reduction in the sampling variance. The strat-
ification itself is based on a low-cost predictor (e.g., zero-
delay power estimation) which needs to be evaluated for
every unit in the population. Experimental results on a
large set of Iscas’85 benchmarks under non-random input
sequences show a 10X improvement in the sampling effi-
ciency compared to the technique of [11].

Existing statistical techniques for the estimation of the
mean power in sequential circuits consist of two phases:
Warm-up period and random sampling. Both of these
phases require a large number of simulated vectors. This
makes the efficiency of power estimation for sequential cir-
cuits much lower than that for combinational circuits [13].

In addition to estimating the mean value of the power
dissipation in a circuit, theory of order statistics and strat-
ified sampling techniques have been used to estimate the
maximum power dissipation [14] and the cumulative distri-
bution function for the power dissipation [15]. This infor-
mation is very useful to chip designers who are interested
in reliability analysis, and the AC/DC noise analysis.

2.2 Probabilistic Compaction

Another approach for reducing the power simulation time
is to compact the given long stream of bit vectors using
probabilistic automata [16]. The idea is to build a Stochas-
tic State Machine (SSM) which captures the relevant sta-
tistical properties of a given, long bit stream, and then
excite this machine by a small number of random inputs
so that the output sequence of the machine is statistically
equivalent to the initial one. The relevant statistical prop-
erties denote, for example, the signal and transition proba-
bilities, and first-order spatio-temporal correlations among
bits and across consecutive time frames. The procedure

then consists of decomposing the SSM into a set of de-
terministic state machines, and realizing it through SSM
synthesis with some auxiliary inputs. The compacted se-
quence is generated by uniformly random excitement of
such inputs.

An improved algorithm for vector compaction is pre-
sented in [17]. The foundation of this approach is also prob-
abilistic in nature: It relies on adaptive (dynamic) model-
ing of binary input streams as first-order Markov sources
of information and is applicable to both combinational and
sequential circuits. The adaptive modeling technique itself
(best known as dynamic Markov chain modeling) was re-
cently introduced in the literature on data compression [18]
as a candidate to solve various data compression problems.
This original formulation is extended in [17] to manage not
only correlations among adjacent bits that belong to the
same input vector, but also correlations between successive
patterns. The model captures completely spatial correla-
tions and first-order temporal correlations and, conceptu-
ally, it has no inherent limitation to be further extended
to capture temporal dependencies of higher orders.

A hierarchical technique for compacting large sequences
of input vectors is presented in [19]. The distinctive feature
of this approach is that it introduces hierarchical Markov
chain modeling as a flexible framework for capturing not
only complex spatio-temporal correlations, but also dy-
namic changes in the sequence characteristics such as dif-
ferent input modes. The hierarchical Markov model is used
to structure the input space into a hierarchy of macro- and
micro-states: At the first level in the hierarchy there is a
Markov chain of macro-states describing the input modes,
whereas at the second level there is a Markov chain of
micro-states describing the internal behavior of each input
mode.

Results of these approaches show 1-4 orders of mag-
nitude compaction (depending on the initial length and
characteristics of the input sequence) with negligible error
(i.e. < 5% in most cases) using PowerMill as the simulator.
As a peculiar property, note that none of these approaches
needs the actual circuit to compact the input sequences.

2.3 RT-Level Power Estimation

Most RT-level power estimation techniques use capacitance
models for circuit modules and activity profiles for data
or control signals [20, 21, 22]. Such techniques, which are
commonly known as power macro-modeling, consist of gen-
erating circuit capacitance models for some assumed data
statistics or properties. The statistics of input data are
gathered during behavioral simulation of the circuit.

The power factor approzimation technique [20] uses an
experimentally determined weighting factor to model the
average power consumed by a given module over a range of
designs. The weakness of this technique is that it does not
account for the effect of input data activity on the module
power. In contrast, the stochastic power analysis technique
[21] is based on an activity-sensitive macro-model which
maintains that switching activities of high order bits de-
pend on the temporal correlation of data, whereas lower or-

der bits behave randomly. The module is thus completely
characterized by its capacitance models in the most signif-
icant bit and least significant bit regions. The break-point
between the regions is determined based on the applied
signal statistics collected from simulation runs. Going fur-
ther in this direction, one can use a bitwise data model as
follows:

Pur=0.5V>fY " CiE;s (1)

where n is the number of inputs for the module in question,
C; is the (regression) capacitance for input pin ¢, and E; is
the switching activity for the i-th pin of the module. The
above equation can be made more accurate by including,
for example, spatio-temporal correlation coefficients among
the circuit inputs; this will however significantly increase
the number of variables in the macro-model equation and
thus the equation evaluation overhead.

The abovementioned macro-models are (multi-cycle) cu-
mulative, in the sense that they can be used to predict the
average power under a sequence of input vectors. In some
applications, however, it is essential to estimate the circuit
power on a cycle-by-cycle basis. Addressing this need, a
cycle-accurate power macro-model is introduced in [23]. As
an example, one can re-write Equation 1 as:

Pur, =05V > CiFi (2)

7

where Pwry denotes the power consumption of the module
at cycle k, E; is the switching activity (it can assume a
value of either 0 or 1) for the i-th input of the module at
cycle k and is obtained from functional simulation of the
system in which the module is placed. The above equation
illustrates that macro-modeling can be used to estimate
the power consumption at each cycle; this ability is critical
to the statistical approach described in [24].

The authors of [23] describe an automatic procedure for
cycle-accurate macro-model generation based on statistical
sampling for the training set design and regression analy-
sis combined with appropriate statistical tests for macro-
model variable selection and coeflicient calculation. The
statistical framework enables prediction of the power value
and the confidence level for the predicted power value.

Experimental results show that power macro-models with
arelatively small number of input variables (when carefully
trained), predict the module power with a typical error
of 5-10% for the average power and 10-20% for the cycle
power.

2.4 Behavioral-Level Power Estimation

The typical approach for behavioral-level power prediction
is to assume some RT-level template and produce esti-
mates based on that assumption. Important choices in-
clude hardware partitioning, type of 1/O, memory orga-
nization, pipeline design, synchronization scheme, bus ar-
chitecture, and controller complexity. Fortunately, the de-
signers or the environment often provide hints as to what
choices should be made.

Three approaches are possible at this level:

1. Do a quick synthesizeof the circuit and then estimate
power using either RT-level or gate-level techniques
described previously.

2. Use profiling to determine activity factors for vari-
ous resources. These activities are then plugged into
appropriate power macro-model equations.

3. Develop proper analytical models for estimating the
switched capacitance as a function of the circuit ac-
tiwvity and the circuit complexity.

The first approach requires the development of a quick syn-
thesis capability which mimics a full synthesis program.
This is a difficult problem (especially in the presence of
tight timing constraints) which needs further research. In
the second approach, static profiling (based on analysis
of the behavioral description) or dynamic profiling (based
on direct simulation of the behavior under a typical input
stream) are used to capture data activity in the circuit
[25, 26]. Important statistics include number of operations
of a given type, number of busses, register and memory
accesses, and number of 1/O operations executed within
a given period. Instruction-level or behavioral simulators
are easily adapted to produce this information while the
statistical techniques described previously can be used to
improve the efficiency of these simulators. The key prob-
lem in the third approach is estimation of the circuit activ-
ity and the circuit complexity. Some parameters that re-
late to circuit activity include the input activity (entropy),
the output activity (entropy), and the circuit functional-
ity. Some parameters that influence the circuit complex-
ity include number and type of arithmetic and/or Boolean
operations in the behavioral description, number of states
and/or transitions in a controller description, and number
of cubes (literals) in a minimum sum-of-products (factored-
form) expression of a Boolean function. Works reported in
[27, 28, 29, 30, 31, 32] are steps in this direction.

3 Synthesis

Power constraints must be taken into account during the
various synthesis phases. In this section, we focus on oper-
ation scheduling and resource allocation, as well as supply
voltage scheduling and control synthesis. We start with a
control-data-flow graph (CDFG) description of the design,
on which some power-oriented algorithmic transformations
have been already applied (see, for example, [33]), and we
target the generation of an RT/gate-level implementation
whose power dissipation is under control.

3.1 Operation Scheduling

The goal of a scheduling algorithm is to associate each
primitive operation appearing in the CDFG with the time
interval (also called control step) in which the operation is
to be executed so as to satisfy some design constraints.
When the target is power minimization, operations should
be scheduled so that resources that are not performing

useful computations in a given control step can be shut
down. In other words, the basic objective of a power-
oriented scheduling algorithm is to enable, at a higher level
of abstraction, power management techniques commonly
exploited at the architectural-level (see Section 4.4).

The scheduling algorithm proposed in [34] attempts to
assign the operations involved in determining and control-
ling the flow of the data within the system to the earliest
possible time intervals. This allows to establish which com-
putational units are strictly required to determine the final
result of each specific computation. Obviously, unused re-
sources can be disabled during the system execution, thus
producing a beneficial effect on the global power budget.
To reach this goal, mutually exclusive operations are iden-
tified in the CDFG and scheduled for execution in time
frames occurring after the decision on which unit must be
activated has been taken. In this way, all mutually exclu-
sive units, but one, are guaranteed to be shut down during
the current computation. In addition, if mutually exclu-
sive operations are scheduled in the same time interval, it
may be possible to make them sharing the corresponding
resource, thus yielding a potential further power savings.

3.2 Resource Allocation

The objective of resource allocation is to assign registers
and functional units to variables and operations in the
CDFG, respectively, and to specify the interconnection of
the various resources in terms of busses and multiplexors.

Three classes of resources must be considered, namely
registers, functional units, and interconnections. Tradi-
tionally, the allocation has been carried out separately, one
class of resources at a time (serial allocation). Usually, the
power consumed by a resource mainly depends on the input
switching activity induced by the data being stored or pro-
cessed. Since, in reality, the patterns flowing in a circuit
have specific probability distributions, the way registers
and functional units are allocated in the CDFG heavily
impacts the switching activities at the interfaces of the re-
sources. Effective, graph-based algorithms for register [35]
and functional unit [36] allocation rely on an accurate com-
putation of the probability density functions at the inputs
of the various resources, given the probability distributions
for the system primary inputs.

Unfortunately, in some cases, serial allocation may re-
sult in sub-optimal solutions, i.e., designs using more in-
terconnections than required; it may then be convenient
to perform the three operations concurrently (simultaneous
allocation). The technique of [37] considers data-dominated
designs, and targets a combined minimization of the total
circuit capacitance and the switching activities at the in-
puts of the registers and the functional modules. The first
objective is reached by limiting the total number of re-
sources 1n the final design implementation and by keeping
under control the required amount of steering logic and in-
terconnect. The minimization of the input switching activ-
ities, on the other hand, is obtained through exploitation
of the correlations that may exist between the data words
traveling and being stored within the circuit.

Alternatives to the low-power allocation approaches il-
lustrated above are available in the literature [38, 39, 40,
41]; we do not discuss them here for space reasons.

3.3 Multiple Supply Voltage Scheduling

Supplying different voltages to different parts of a chip may
reduce the global energy requirements of a design at a very
limited cost in terms of algorithmic and/or architectural
modifications. This is because the modules of the chip
which are part of the critical paths are powered at the
maximum allowed voltage, thus preventing any power re-
duction but, at the same time, avoiding any delay increase;
the power consumed by the macro-components that are
not on the critical paths, on the other hand, is minimized
through proper voltage scaling.

The presence on the same chip of circuitry powered at
different voltages imposes the use of level shifters at the
boundaries of the various modules. Obviously, the area
and power costs due to such shifters must be considered
while evaluating the quality of the optimized circuit.

An important phase in the design flow multi-powered
systems is that of assigning the most convenient supply
voltage, selected from a fixed number of values, to each
operation in the CDFG. The problem to be solved is then
the scheduling of the supply voltages so as to minimize the
power dissipation under throughput/resource constraints.

A solution to the multiple supply voltage scheduling
problem has been proposed in [42]. The technique is based
on dynamic programming, and it exploits accurate timing
and power characterization of the library macro-modules.
The method guarantees optimal results for tree CDFGs,
but sub-optimal schedules for DAG CDFGs. Additional

work on this subject exists; some is reported in [43, 44].

3.4 Control Synthesis

Scheduling and allocation produce a combined description
of data-path and control logic. The latter is normally in
the form of a transition structure, whose most familiar rep-
resentation 1s a FSM or a collection of FSMs. A similar
combination of control and data is normally found in the
output of synthesis programs that start from RTL descrip-
tions. The translation of the FSMs into a structural de-
scription presents opportunities for reducing power con-
sumption and poses corresponding challenges, especially
when the control is complex and contains a large number
of latches. In this section, we outline an approach that
synthesizes a structural description from a state transition
graph (STG) suitable as input to logic-level optimization
techniques.

For controllers with more than a handful of latches, the
explicit representation of the STG is infeasible. Though
decomposition of the controller at the behavioral-level may
alleviate the problem, optimization opportunities may be
lost in the process. For this reason, symbolic techniques
based on Binary Decision Diagrams [45] are often applied
to the manipulation of large graphs. BDDs are used to
represent the transition relation of the graph. This re-
quires a preliminary encoding of the states, which is nor-

mally heuristically derived from the behavioral description.
The graph is then subjected to various transformations in-
tended to improve energy efficiency as well as other met-
rics. (These techniques are reviewed in Section 4.) Finally,
a detailed structural description must be produced from
the graph.

A direct translation of the transition relation into gates
should produce a structure that is relatively close to a
good final solution. Otherwise, the succeeding synthesis
algorithms are likely to produce sub-optimal results. The
problem when the transition relation is represented by a
BDD is that the obvious mapping of each BDD node to a
multiplexor results in networks that are large, deep, and
slow. Among the approaches that overcome this problem,
one builds a circuit in which transitions for a given input
vector propagate along a single path, which corresponds
to the selected path in the BDD; several optimizations are
then applied to control the cost of the circuit [46].

Another approach is based on the work of Minato [47].
Zero-suppressed BDDs can represent very large function
covers efficiently. Powerful factorization algorithms exist
that work on these symbolic covers. It is therefore possi-
ble to first flatten the multilevel representation provided
by the transition relation BDD and extract from the two-
level cover a multilevel network. Factoring can be guided
by low-power concerns, but the objective of the symbolic
techniques is to provide a link to existing logic-level opti-
mization tools, not to supplant them.

4 Optimization

There are many ways for reducing the power consump-
tion of an architectural description. Techniques based on
voltage down-scaling have been in use for a long time. Ap-
proaches aiming at reducing the dynamic component of
power, on the other hand, are more recent. In this section,
we focus on some solutions of the latter class.

4.1 Bus Encoding

It 1s known that bus capacitances are usually several or-
ders of magnitude higher than those of the internal nodes
of a circuit. Consequently, a considerable amount of power
can be saved by reducing the number of transitions at the
circuit input/output interfaces. This task can be accom-
plished by encoding the information transmitted over the
busses.

The Bus-Invert code of [48] is a simple, yet effective, low-
power encoding scheme. It works as follows: The Hamming
distance between two successive patterns is computed; if it
is larger than N/2, where N is the bus width, the current
address is transmitted with inverted polarity; otherwise,
it is transmitted as is. Obviously, a redundant bus line
is needed to signal to the receiving end of the bus which
polarity 1s used for the transmission of the incoming pat-
tern. The method guarantees a maximum of N/2 transi-
tions per clock cycle, and it performs well when patterns
to be transmitted are randomly distributed in time and no
information about their correlation is available. For this
reason, it is appropriate for data bus encoding.

Another technique, still applicable to data busses, has
been proposed in [49]. The basic observation which has
originated this work is that using a transition-based encod-
ing instead of a level-based encoding may limit the number
of transitions for non-equiprobable input lines. The idea
is then to first transform the input patterns in such a way
that input lines become as non-equiprobable as possible,
and then to apply a transition-based encoding to the so
obtained data words before transmission. The transfor-
mation of the input patterns is performed by by means of
limited-weight (or starvation) codes.

Concerning address busses, other techniques have been
explored. They all rely on the well-known fact that the
addresses generated by processors in ordinary computing
systems are often consecutive; it may then be convenient
to adopt the Gray code [50, 51] as encoding strategy. This
code achieves its asymptotic best performance of a sin-
gle transition per emitted address when infinite streams
of consecutive addresses are considered, and it is optimum
only in the class of irredundant codes. If some redundancy
is allowed, as for the Bus-Invert approach, better perfor-
mance can be achieved by resorting to the TO code [52],
which requires an extra line to signal when a pair of con-
secutive addresses 1s output on the bus. When such line
is high, the current bus value is frozen to avoid unneces-
sary switchings, and the new address is computed directly
by the receiver. On the other hand, when two addresses
are not consecutive, the redundant line is low, and the
bus operates normally. Several variants of the T0 code are
possible, some of which may incorporate the Bus-Invert
principle to exploit distinctive spectral characteristics of
the streams being transmitted.

The motivation for adopting a bus encoding scheme is
a reduction of the global power budget; then, the savings
achieved through a bus switching activity decrease must
not be offset by the power dissipated by the encoding and
decoding circuitry which is required at the bus terminals.
In addition, bus latency is usually a critical design con-
straint. Simultaneous optimization of power and timing
must then be targeted while synthesizing the logic for ad-
dress encoding/decoding.

4.2 Control Logic

Given an abstract specification, that is, the STG of the cir-
cuit controller, the optimization task consists of modifying
and encoding the graph in preparation for logic synthe-
sis. We review these techniques with particular emphasis
on those algorithms that can be applied to large circuits.
(Those that dissipate non-negligible amounts of energy.)
Among the modifications are decomposition and restruc-
turing. Decomposition techniques produce interconnected
FSMs from one large FSM, and they fall broadly into two
categories: Those based on the algebraic theory of [53], and
those based on the identification in the STG of subroutines
or coroutines [54]. A subroutine/coroutine corresponds to
a fragment of the STG augmented with a wait state. Shut-
down techniques (see Section 4.4) can be applied to the the
individual machines because only one is active at any point

in time. Both approaches to decomposition try to minimize
the activity along the lines connecting the sub-machines,
which tend to drive heavier loads. Decomposition naturally
helps tackling the complexity issue; however, no decompo-
sition algorithms are currently available that are applicable
to STGs with millions of states.

Restructuring of the STG is a generic term that encom-
passes those graph transformations that preserve equiva-
lence of behavior (or compatibility in the presence of don’t
care conditions). The best known of such transformations
is state minmimization. Algorithms are available for the min-
imization of very large, completely specified FSMs [55].
However, state minimization by itself may have a deleteri-
ous effect on both area and energy efficiency, especially for
large circuits. [t is more advantageous to use the knowl-
edge of the equivalence classes to identify don’t care con-
ditions and then use such conditions in conjunction with a
cost function that accounts for the desired cost metrics.

The problem of encoding a state transition graph for
low-power consumption has received considerable atten-
tion. Among the earliest works is [56]. The idea com-
mon to this and other encoding methods (see, for exam-
ple, [567, 58, 59, 60]) is to use the transition probability of
a given arc as a (partial) measure of its cost. The problem
is thus translated into the embedding of the state transi-
tion graph into a hypercube of suitable dimension so that
arcs of high cost connect states at low Hamming distance.
Standard search techniques can be applied to this combi-
natorial optimization problem.

When the STG is large, it is normally given in an al-
ready encoded form. The problem is then the one of re-
encoding. The initial encoding may come from a man-
ual design and therefore it may provide a useful starting
point. In general, however, it is not optimal from the
power view-point. The main difference between algorithms
for re-encoding [61] and those for encoding is in the size
of the problems they try to solve (millions of states vs.
thousands). To cope with very large graphs, BDD-based
techniques are used to manipulate the graphs and sets of
states; and the usual algorithms must be reformulated so
as to avoid any explicit iteration over states or edges. The
computation of the state probabilities can be carried out
exactly [62] or by resorting to approximate techniques [63].

So far we have concerned ourselves with the problem of
minimizing average power dissipation. The reader inter-
ested in peak power reduction is referred to [8].

4.3 Retiming

Changing the position of registers within a circuit so that
operations are performed in different clock cycles without
changing the overall behavior is known as retiming [64].
This technique has been adapted in [65] to reduce power in
pipelines. The key point is that a latch positioned at a gate
output inhibits the propagation of spurious activity. This
observation drives the iterative placement of the latches of
the pipeline. The cost function incorporates the number of
latches, so as to avoid a too negative impact on area (with
the attendant degradation of energy efficiency).

4.4 Shut-Down Techniques

Digital systems usually contain some logic which is not per-
forming useful computations at each clock cycle. Sizable
power reductions can then be achieved by shutting down
such logic during some proper cycles.

Pre-computation [66, 67] relies on the idea of duplicat-
ing part of the logic with the purpose of pre-computing
the circuit output values one clock cycle before they are
required, and then use these values to reduce the total
amount of switching in the circuit during the next clock
cycle. In fact, knowing the output values one clock cycle
in advance allows the original logic to be turned off during
the next time frame, thus eliminating any charging and
discharging of the internal capacitances. Obviously, the
size of the logic that pre-calculates the output values must
be kept under control, since its contribution to the total
power balance may offset the savings achieved by blocking
the switching inside the original circuit. Several variants
to the basic architecture can then be adopted to take care
of this problem; in particular, sometimes it may be conve-
nient to resort to partial, rather than global, shut-down,
i.e., to select for power management only a (possibly small)
subset of the circuit inputs.

An alternative technique, known as Gated Clocks [68,
69, 70], provides a way to selectively stop the clock, and
thus force the original circuit to make no transition, when-
ever the computation to be carried out at the next clock cy-
cle is useless. In other words, the clock signal is disabled in
accordance to the idle conditions of the logic network. For
reactive circuits, the number of clock cycles in which the
design is 1dle in some wait states is usually large. There-
fore, avoiding the power waste corresponding to such states
may be significant. The logic for the clock management is
automatically synthesized from the Boolean function that
represents the idle conditions of the circuit. It may well
be the case that considering all such conditions result in
an excessively large and power consuming circuitry to be
added to the original network. It may then be needed to
synthesize a simplified function, which dissipates the min-
imum possible power, and stops the clock with maximum
efficiency. The use of gated clocks has the draw-back that
the logic implementing the clock gating mechanism is func-
tionally redundant, and this may create major difficulties
in testing and verification. Hints on how to design highly-
testable gated clock circuits can be found in [71].

Guarded Fvaluation [72] is a shut-down strategy that
dynamically disables particular computing units any time
the results they produce are not used by other system com-
ponents. Some guard logic, consisting of a transparent
latch with an enable signal, 1s placed at the inputs of the
module being power managed. If the unit is active at a
given clock cycle, the enable signal lets the unit operate
normally. Otherwise, the unit is shut down. The pecu-
Liarity of the method is that the signal used to control the
guard logic already exists in the original circuit. Therefore,
neither additional logic, nor re-synthesis steps are required
when resorting to guarded evaluation, as opposed to the
cases of pre-computation and gated clocks.

5

Conclusions

Tools for power estimation and optimization at the behav-
ioral and RT-level are younger and, therefore, less devel-
oped than those available at the gate and circuit-level. A
wealth of research results and a few pioneering commer-
cial tools have appeared nonetheless in the last couple of
years. We expect this field to remain quite active in the
foreseeable future. New trends and techniques will emerge,
some approaches described in this review will consolidate,
while others will become obsolete; this in view of tech-

nological and strategic changes in the world of consumer
microelectronics. In any case, a further increase in the level
of abstraction (e.g., system and software) at which power
reductions will be targeted should be expected.

References

(1]

(2]

(10]

(11]

(12]

(13]

(14]

M. Pedram, “Power Minimization in IC Design: Principles
and Applications,” ACM Trans. on Design Automation of
FElectronic Systems, Vol. 1, No. 1, pp. 3-56, 1996.

F. Najm, R. Burch, P. Yang, 1. Hajj, “Probabilistic Sim-
ulation for Reliability Analysis of CMOS VLSI Circuits,”
IEEFE Trans. on CAD, Vol. 9, No. 4, pp. 439-450, 1990.

A. Ghosh, S. Devadas, K. Keutzer, J. White, “Estima-
tion of Average Switching Activity in Combinational and
Sequential Circuits,” ACM/IEEE DAC-29, pp. 253-259,
Anaheim, CA, Jun. 1992.

C-Y. Tsui, M. Pedram, A. M. Despain, “Efficient Estima-
tion of Dynamic Power Dissipation Under a Real Delay
Model,” IEEE/ACM ICCAD-93, pp. 224-228, Santa Clara,
CA, Nov. 1993.

F. Najm, “Transition Density: A New Measure of Activity
in Digital Circuits,” IEEE Trans. on CAD, Vol. 12, No. 4,
pp. 310-323, 1993.

R. Marculescu, D. Marculescu, M. Pedram, “Efficient
Power Estimation for Highly Correlated Input Streams,”
ACM/IEEE DAC-32, pp. 628-634, San Francisco, CA,
Jun. 1995.

C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M.
Despain, B. Lin, “Power Estimation in Sequential Logic
Circuits,” IEEE Trans. on VLSI Systems, Vol. 3, No. 3,
pp. 404-416, 1995.

S. Manne, A. Pardo, R. I. Bahar, G. D. Hachtel, F.
Somenzi, E. Macii, M. Poncino, “Computing the Maxi-
mum Power Cycles of a Sequential Circuit,” ACM/IEEE
DAC-32, pp. 23-28, San Francisco, CA, Jun. 1995.

C. M. Huizer, “Power Dissipation Analysis of CMOS VLSI
Circuits by means of Switch-Level Simulation,” IEEFE Fu-
ropean Solid State Circuits Conf., pp. 61-64, 1990.

C. X. Huang, B. Zhang, A-C. Deng, B. Swirski, “The
Design and Implementation of PowerMill,” ACM/IEEE
ISLPD-95, pp. 105-110, Dana Point, CA, Apr. 1995.

R. Burch, F. Najm, P. Yang, T. Trick, “A Monte Carlo
Approach for Power Estimation,” IFEE Trans. on VLSI
Systems, Vol. 1, No. 1, pp. 63-71, 1993.

C-S. Ding, C-T. Hsieh, Q. Wu, M. Pedram, “Stratified
Random Sampling for Power Estimation,” IEEE/ACM
ICCAD-96, San Jose, CA, pp. 577-582, Nov. 1996.

T-L. Chou, K. Roy, “Statistical Estimation of Sequential
Circuit Activity,” IEEE/ACM ICCAD-95, Santa Clara,
CA, pp. 34-37, Nov. 1995.

A. Hill, C-C. Teng, S. M. Kang, “Simulation-Based Maxi-
mum Power Estimation,” IEEE ISCAS-96, Vol. IV, pp. 13-
16, Atlanta, GA, May 1996.

15]

(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

C-S. Ding, Q. Wu, C-T. Hsieh, M. Pedram, “Statistical
Estimation of the Cumulative Distribution Function for
Power Dissipation in VLSI Circuits,” ACM/IEEE DAC-
84, Anaheim, CA, Jun. 1997.

D. Marculescu, R. Marculescu, M. Pedram, “Stochastic
Sequential Machine Synthesis Targeting Constrained Se-
quence Generation,” ACM/IEEE DAC-33, pp. 696-701,
Las Vegas, NV, Jun. 1996.

R. Marculescu, D. Marculescu, M. Pedram, “Adaptive
Models for Input Data Compaction for Power Simula-
tors,” ACM/IEEE ASPDAC-2, pp. 391-396, Chiba, Japan,
Jan. 1997.

G. V. Cormack, R. N. Horspool, “Data Compression Using
Dynamic Markov Modeling,” Computer Journal, Vol. 30,
No. 6, pp. 541-550, 1987.

R. Marculescu, D. Marculescu, M. Pedram, “Power Esti-
mation Using Hierarchical Markov Models,” ACM/IEEE
DAC-34, Anaheim, CA, Jun. 1997.

S. Powell, P. Chau, “Estimating Power Dissipation of VL.ST
Signal Processing Chips: The PFA Techniques,” IEFE
Workshop on VLSI Signal Processing, Vol. IV, pp. 250-
259, 1990.

P. Landman, J. Rabaey, “Power Estimation for High-Level
Synthesis,” IEEE EDAC-93, pp. 361-366, Paris, France,
Feb. 1993.

D. Liu, C. Svensson, “Power Consumption Estimation in
CMOS VLSI Chips,” IEEE Journal of Solid State Circuits,
Vol. 29, No. 6, pp. 663-670, 1994.

Q. Wu, C-S. Ding, C-T. Hsieh, M. Pedram, “Statisti-
cal Design of Macro-Models for RT-Level Power Evalua-
tion,” ACM/IEEE ASPDAC-2, pp. 523-528, Chiba, Japan,
Jan. 1997.

C-T. Hsieh, C-S. Ding, Q. Wu, M. Pedram, “Statisti-
cal Sampling and Regression Estimation in Power Macro-
Modeling,” IEEE/ACM ICCAD-96, pp. 583-583, San Jose,
CA, Nov. 1996.

A. Chandrakasan, M. Potkonjak, J. Rabaey, R. Brodersen,
“Optimizing Power Using Transformations,” IEFEFE Trans.
on CAD, Vol. 14, No. 1, pp. 12-31, 1995.

N. Kumar, S. Katkoori, L. Rader, R. Vemuri, “Profile-
Driven Behavioral Synthesis for Low Power VLSI Sys-
tems,” IEEE Design and Test of Computers, Vol. 12, No. 3,
pp. 70-84, 1995.

K. Muller-Glaser, K. Kirsch, K. Neusinger, “Estimating Es-
sential Design Characteristics to Support Project Planning
for ASIC Design Management,” IEEE/ACM ICCAD-91,
pp. 148-151, Santa Clara, CA, Nov. 1991.

J. Rabaey, P. Landman, “Activity-Sensitive Architectural
Power Analysis for the Control Path,” ACM/IEEE ISLPD-
95, pp. 93-98, Dana Point, CA, Apr. 1995.

E. Macii, M. Poncino, “Exact Computation of the En-
tropy of a Logic Circuit,” IEFE GLS-VLSI-96, pp. 123-
128, Ames, TA, Mar. 1996.

D. Marculescu, R. Marculescu, M. Pedram, “Information
Theoretic Measures for Power Analysis,” IEEE Trans. on
CAD, Vol. 15, No. 6, pp. 599-610, 1996.

M. Nemani, F. Najm, “Towards a High-Level Power Esti-
mation Capability,” IEEE Trans. on CAD, Vol. 15, No. 6,
pp. 588-598, 1996.

A. Lioy, E. Macii, M. Poncino, M. Rossello, “Accurate En-
tropy Calculation for Large Logic Circuits Based on Output
Clustering,” IFEFE GLS-VLSI-97, pp. 70-75, Urbana, IL,
Mar. 1997.

A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey,
R. W. Brodersen, “Optimizing Power Using Transforma-

tions,” IFEE Trans. on CAD, Vol. 14, No. 1, pp. 12-31,
1995.

(34]

35]

[36]

(37]

(38]

(39]

40]

[41]

(42]

(43]

[44]

45]

[46]

(47]

48]

(49]

(50]

(51]

(52]

(53]

J. Monteiro, S. Devadas, P. Ashar, A. Mauskar,
“Scheduling Techniques to Enable Power Management,”
ACM/IEEE DAC-33, pp. 349-352, Las Vegas, NV, Jun.
1996.

J. M. Chang, M. Pedram, “Low Power Register Allocation
and Binding,” ACM/IEEE DAC-32, pp. 29-35, San Fran-
cisco, CA, Jun. 1995.

J. M. Chang, M. Pedram, “Module Assignment for Low
Power,” IEEE EuroDAC-96, pp. 376-381, Geneva, Switzer-
land, Sep. 1996.

A. Raghunathan, N. K. Jha, “Behavioral Synthesis for
Low Power,” IEEE ICCD-94, pp. 318-322, Cambridge,
MA, Oct. 1994.

L. Goodby, A. Orailoglu, P. M. Chau, “Microarchitectural
Synthesis of Performance-Constrained, Low-Power VLSI
Designs,” IEEE ICCD-94, pp. 323-326, Cambridge, MA,
Oct. 1994.

N. Kumar, S. Katkoori, L. Rader, R. Vemuri, “Profile-
Driven Behavioral Synthesis for Low-Power VLSI Sys-
tems,” IEEE Design and Test of Computers, Vol. 12, No. 3,
pp. 70-84, 1995.

R. San Martin, J. P. Knight, “Optimizing Power in ASIC
Behavioral Synthesis,” IEEE Design and Test of Comput-
ers, Vol. 13, No. 2, pp. 58-70, 1996.

R. Mehra, J. Rabaey, “Exploiting Regularity for Low-
Power Design,” IEEE/ACM ICCAD-96, pp. 166-172, San
Jose, CA, Nov. 1996.

J. M. Chang, M. Pedram, “Energy Minimization Us-
ing Multiple Supply Voltages,” ACM/IEEE ISLPED-96,
pp. 157-162, Monterey, CA, Aug. 1996.

S. Raje, M. Sarrafzadeh, “Variable Voltage Schedul-
ing,” ACM/IEEE ISLPD-95, pp. 9-14, Dana Point, CA,
Apr. 1995.

M. Johnson, K. Roy, “Optimal Selection of Supply Volt-
ages and Level Conversions During Data-Path Scheduling
Under Resource Constraints,” IEEFE ICCD-96, pp. 72-77,
Austin, TX, Oct. 1996.

R. E. Bryant, “Graph-Based Algorithms for Boolean Func-
tion Manipulation,” IEEE Trans. on Computers, Vol. 35,
No. 8, pp. 677-691, 1986.

L. Lavagno, P. C. McGeer, A. Saldanha, A. L.. Sangiovanni-
Vincentelli, “Timed Shannon Circuits: A Power-Efficient
Design Style and Synthesis Tool,” ACM/IEEE DAC-32,
pp- 254-260, San Francisco, CA, Jun. 1995.

S-1. Minato, “Zero-Suppressed BDDs for Set Manipula-
tion in Combinatorial Problems,” ACM/IEEE DAC-30,
pp. 272-277, Dallas, TX, Jun. 1993.

M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-
Power 1/O,” IEEE Trans. on VLSI Systems, Vol. 3, No. 1,
pp. 49-58, 1995.

M. R. Stan, W. P. Burleson, “Limited-Weight Codes for
Low-Power,” ACM/IEEE IWLPD-94, pp. 209-214, Napa
Valley, CA, Apr. 1994.

C. L. Su, C-Y. Tsui, A. M. Despain, “Saving Power in the
Control Path of Embedded Processors,” IEEE Design and
Test of Computers, Vol. 11, No. 4, pp. 24-30, 1994.

H. Mehta, R. M. Owens, M. J. Irwin, “Some Issues in
Gray Code Addressing,” IEEE GLS-VLSI-96, pp. 178-180,
Ames, TA, Mar. 1996.

L. Benini, G. De Micheli, E. Macii, D. Sciuto,
C. Silvano, “Asymptotic Zero-Transition Activity Encod-
ing for Address Busses in Low-Power Microprocessor-Based
Systems,” IEFEE GLS-VLSI-97, pp. 77-82, Urbana, IL,
Mar. 1997.

J. Hartmanis, R. E. Stearns, “Algebraic Structure Theory
of Sequential Machines,” Prentice-Hall, Englewood Cliffs,
NJ, 1966.

(54]

55]

[56]

(57]

(58]

(59]

[60]

[61]

(62]

(63]

[71]

(72]

S. Devadas, A. R. Newton, “Decomposition and Factoriza-
tion of Sequential Finite State Machines,” IEEE Trans. on
CAD, Vol. 8, No. 11, pp. 1206-1217, 1989.

B. Lin, A. R. Newton, “Implicit Manipulation of Equiv-
alence Classes Using Binary Decision Diagrams,” IEEFE
1CCD-91, pp. 81-85, Cambridge, MA, Oct. 1991.

K. Roy, S. C. Prasad, “Circuit Activity Based Synthesis for
Low Power Reliable Operations,” IEEE Trans. on VLSI
Systems, Vol. 1, No. 4, pp. 503-513, 1993.

E. Olson, S. M. Kang, “Low-Power State Assignment for
Finite State Machines,” ACM/IEEE IWLPD-94, pp. 63-
68, Napa Valley, CA, Apr. 1994.

C-Y. Tsui, M. Pedram, A. M. Despain, “Low Power State
Assignment Targeting Two- and Multi-Level Logic Im-
plementations, IEEE/ACM ICCAD-94, San Jose, CA,
pp. 82-87, Nov. 1994.

L. Benini, G. De Micheli, “State Assignment for Low Power
Dissipation,” IEEE Journal of Solid State Circuits, Vol. 30,
No. 3, pp. 258-268, 1995.

P. Surti, L. F. Chao, A. Tyagi, A. “Low Power FSM Design
Using Huffman-Style Encoding,” IEEE EDTC-97, pp. 521-
525, Paris, France, Mar. 1997.

G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F.
Somenzi, “Re-Encoding Sequential Circuits to Reduce
Power Dissipation,” IEEE/ACM ICCAD-94, pp. 70-73,
San Jose, CA, Nov. 1994.

G. D. Hachtel, E. Macii, A. Pardo, F. Somenzi, “Markovian
Analysis of Large Finite State Machines,” IEEE Trans. on
CAD, Vol. 15, No. 12, pp. 1479-1493, 1996.

C-Y. Tsui, M. Pedram, A. M. Despain, “Exact and Ap-
proximate Methods for Calculating Signal and Transition
Probabilities in FSMs,” ACM/IEEE DAC-31, pp. 18-23,
San Diego, CA, Jun. 1994.

C. E. Leiserson, J. B. Saxe, “Retiming Synchronous Cir-
cuitry,” Algorithmica, Vol. 6, No. 1, pp. 5-35, 1991.

J. Monteiro, S. Devadas, A. Ghosh, “Retiming Sequential
Circuits for Low Power,” IEEE/ACM ICCAD-93, pp. 398-
402, Santa Clara, CA, Nov. 1993.

M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M.
Papaefthymiou, “Precomputation-Based Sequential Logic
Optimization for Low Power,” IEEE Trans. on VLSI Sys-
tems, Vol. 2, No. 4, pp. 426-436, 1994.

J. Monteiro, J. Rinderknecht, S. Devadas, A. Ghosh, “Opti-
mization of Combinational and Sequential Circuits for Low
Power Using Precomputation,” 1995 Chapel Hill Conf. on
Advanced Research in VLSI, pp. 430-444, Chapel Hill, NC,
Mar. 1995.

L. Benini, P. Siegel, G. De Micheli, “Automatic Synthesis
of Gated Clocks for Power Reduction in Sequential Cir-
cuits,” IEEE Design and Test of Computers, Vol. 11, No. 4,
pp. 32-40, 1994.

L. Benini, G. De Micheli, “Transformation and Synthesis of
FSMs for Low Power Gated Clock Implementation,” IEEE
Trans. on CAD, Vol. 15, No. 6, pp. 630-643, 1996.

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi,
“Symbolic Synthesis of Clock-Gating Logic for Power Op-
timization of Control-Oriented Synchronous Networks,”
IEEE EDTC-97, pp. 514-520, Paris, France, Mar. 1997.

L. Benini, M. Favalli, G. De Micheli, Design for Testability
of Gated-Clock FSMs, IEEE EDTC-96, pp. 589-596, Paris,
France, Mar. 1996.

V. Tiwari, S. Malik, P. Ashar, “Guarded Evaluation:
Pushing Power Management to Logic Synthesis/Design,”
ACM/IEEE ISLPD-95 pp. 221-226, Dana Point, CA,
Apr. 1995.

