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Abstract—Demand response is a key element of the smart grid
technologies. This is a particularly interesting poblem with
the use of dynamic energy pricing schemes which ientivize
electricity consumers to consume electricity moremdently in
order to minimize their electric bill. On the other hand
optimizing the number and production time of power
generation facilities is a key challenge. In this aper, three
models are presented for consumers, utility compaes, and a
third-part arbiter to optimize the cost to the parties
individually and in combination. Our models have hgh
quality and exhibit superior performance, by realigic
consideration of non-cooperative energy buyers andellers
and getting real-time feedback from their interactons.
Simulation results show that the energy consumption
distribution becomes very stable during the day utizing our
models, while consumers and utility companies paper cost.

INTRODUCTION

There is no substitute for the status of electrizaérgy,
which dramatically fuels both the development afreamy
and the improvement of people's living standard.
Availability of affordable and sustainable elecatienergy
has been the key to prosperity and continued socio-
economic growth of nations and the world [1]. Twey
characteristics of electrical energy are that ite@sy to
distribute but hard to store. More precisely, eleat
energy can be transmitted to a faraway place witly a
tiny loss, but unlike other common forms of enesggh as
chemical or kinetic, electricity must be used ass ibeing
generated. If storage is needed, it must typicdlly
converted immediately into another form of energgtsas
potential, kinetic, or electrochemical.

The huge difference between energy consumptioddeve
at peak usage time and off-peak times has resintewbt
only cost inefficiencies and potential brownoutsdan
blackouts, but also environmental pollution due ower
provisioning of the Power Grid and the resultingergy
waste [7]. Utility companies are interested inugdg the
peak demand of energy consumers so that theircamsbe
reduced. However, the power demand depends on

exogenous factors and varies dramatically as atibmof
time of day and seasonal factors [10].

An ideal method to solve this problem is dynamic
energy pricing [2]-[10]. Dynamic changes in enepgices
provide an incentive for the customers to shifirtleaergy
consumption from peak-energy-use hours to off-geaks,
thus save money on their monthly electrical bilt the
same time, by proper use of energy, utility compargave
capital expenditure by not having to add new poplants
to the Grid in order to meet the customers’ peakrho
demands. So, dynamic energy pricing can beneft b
consumer and the producer in an economical way.

Implementing dynamic energy pricing faces many
challenges. The most difficult step is how to pecedi
people’s reaction to various dynamic energy pricing
schemes, which calls for accurate models and pedcti
algorithms. In addition, the price of electricaleegy can
have a significant effect on the national and local
economies. Improper dynamic energy pricing canltésa
decrease of economic activites or even economic
dislocation. That is why governments impose retons on
electrical energy prices.

Existing research on dynamic energy pricing can be
classified into two categories: profit maximizatidior
utility companies [10] or cost minimization for
customers [7] and [8]. In reality, each of uiltompanies
and customers tend to make their decisions basetheon
reaction of the other. Works such as the ones/]n [B]
and [10] fail to consider the feedback effectsween the
two, and cannot give a “closed loop” solution.

In the classical economics problems between sedieds
buyers, economists always give suggestions to ¢fers
based on the reaction of the buyers or vice veexause
although the government would like to maximize togl
social welfare, we still need to consider sellard auyers
as non-cooperative and always making decisionsdbase
their own best solution. This is also the case dpbergy
users and utility companies. Considering this fabtee
models of dynamic energy pricing are presentedhis t
paper to solve the cost minimization problem fahei the



energy consumers or the utility companies. In aalulit
another contribution of this paper is to presetitia model
which is a combination of the first two where adkack
system is created and managers can make theiriatecis
based on the reaction of customers and power
generation$11]-[12].

The remainder of this paper is organized as follaws
the next section, we present our models for optigizhe
cost of both costumers and power generations. @eliti
reports the simulation results. The paper is categuin
SectionlV.

Il. MODELS AND COSTOPTIMIZATION METHODS

As stated above, three types of optimization proklare
presented in this paper. For each problem, a cklaedel
is created and an optimal solution is discussedinified
electricity bill is used in all the models.

The first model deals with task scheduling problems
Under the given daily price function, we act as aude
owner to decide when to start each task in order to
minimize the total electrical energy bill. The sedanodel
is for engineers in the utility company. The enedgynand
at each time is given and the problem is to deeilether
to turn on or turn off power generation facilitismeet the
energy requirements while minimizing the cost te dtility
company. In the third model, we analyze the probleam
a global manager's perspective to decide the price
distribution in order to maximize the total sociatlfare.
This time we assume that both customers and utility
companies are making their own optimal choicesfarttia
good solution based on repeatedly calling for im&t fwo
models.

A. Model for Homeowners

Figure 1shows an example of a task scheduling isalut
based on the given electricity price function. Hetght of
the task box in this figure signifies the amountpafver
each household task consumes while running.
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Figure 1. An example of the task scheduling problem

In this paper, a slotted time model is assumedafbr
models, i.e., all system cost parameters and @ntdras
well as scheduling decisions are provided for disctime
intervals of constant length. The scheduling episcthus
divided into a fixed number of equal-sized timetsign the
experiment, a day is divided into 24 time slots¢cheaf
duration 1 hour). Tasks can be launched only at the
beginning of one of these time slots and will benpteted
at the end of the slots.

We definePrice function, B), as the price of one unit
of energy (kwWh) at time slot. In the first model, we
assume thaP(i) is fixed and pre-announced by the utility
company before the start of the day, which meanssdo
owners can make their decisions about the wholelddy
their decisions does not affect the energy pricetion.

In this model, we also assume that there are a auofb
tasks in each house that should be executed delilgse
tasks are identified by indgx The set of task indexes is
denoted byK={1, ...,N}. For each task, the earliest start
time, eqj), the latest end timde(j), energy consumption
per time slot C(j), and the duration of taskim«]), are
specified.

To solve the task assigning problem, two additional
definitions are neededtart time, §), which represents the
time slot when a task starts amalsk operation matrix,
M(i,j),which represents the operating condition of g¢ask
j at time slot i. We séti(i,j)=1 when at time slat taskj is
operating. OtherwisMi(i,j)=0.

Using the above definition, the homeowner's cost
minimization problem can be modeled as follows. €giv
P(i), C(j), andTimg(j), eqj), le(j), we are to assigh(j) for
eachj. The problem is to minimize the total cost

Cost,, = Z Z PCGIM(,))
iJ

subject to:
) = eq))
S(j)+Time(j)<le(j)

whereM(i,j) can be found by the following method:
Initialize M(i,j)=0 for alli and;j;

for each {
for (i=9(j),i<S()+T(j), i++)
M(i,j)=1;

}

In this model, for simplicity, we assume that etadk is
independent of other tasks. We use a greedy atgorib
find the minimal cost: foifimgj)=k, from the earliest start
time to the latest possible start time, we caleulat the
values ofP(i)+P(i+1)+....+P(i+k-1) and find the minimal
sum. Then we put this task into these timeslotpeRethe
above steps until all the tasks are arranged.nitsaaply be
proven that the proposed greedy algorithm obtahmes t
global optimum solution.



B. Model for Utility Companies

As stated earlier, utility companies have beeningllto
reduce the peak demand from energy consumers. Bem w
the demand is given, the engineers in the utildgnpany
should decide whether to turn on or turn off theveo
generation facilities. Many times a utility compaprefers
to waste some amount of energy in order to avoid
repeatedly turning its power generation on and affd
thus, avoid the resulting large amount of startpprating
costs. For example, in Los Angeles, some buildingthe
downtown area may turn on their lights all nightd avaste
energy although there is no body inside. This téldone
to reduce the power generation startup cost.

In this model, we act as an engineer to considev ho
many power generation facilities will operate atleéime,
T(i), when theenergy demand for each time, Con(8
given. For a utility company, we assume thatdperating
price of one power generation facility per tinte, theprice
of turning onone power generation faciliti,,, theprice of
turning off one power generation facilityPys, and the
amount of energy one power generation facility oéfer,
i.e., the load it can service are specified.

To solve this problem, we assign each power geioarat
facility an integer number from 1 to Max-number. \t&n
then create gpower generation operation matrix(ilj),
which represents the operating condition of eaclvgpo
generation j at time slot i. We séf(i,j)=1 if power
generation facilityj is operating at time slat Otherwise
L(i,j)=0. For simplicity, we assume that we can turnaon
power generation facility with the smallest numbed turn
off an operating power generation facility with tleegest
number. This means we will never haléi, j)=0 but
L(i,j+1)=1.L(i,j) andT(i) can be translated from each other.

Our goal is to minimize the total cost of the uili
company (namelycost), which consists of the total
operating cost and the total turning on and offt.cofe
problem formulation is as follows:

min cost, = Z(T(i)PC + Add (i)Pyy + Sub(i)Poy;)
i

subject to:
Add(i) =0
Add()) <T@ -T@{-1)
Sub(i)=0
Sub(i) < T(i—1)—T(%)
T(i)load = Con(i)Vi
where the last constraint forces the amount of ggner
provided by the power generations in each time ¢ b
greater than amount of energy needed at that time.
For this model, we use an algorithm that we refeas
the filling method This method can be proven to find the
optimal solution. The steps of this algorithm akofwing.

1. Calculate the minimal(i) based on the constraints and
calculate the correspondimgi,j):
For each {
T[i] = Con{i]/load + 1;
for(j=1; j<T[i]+1; j++)
LIl =1,
for(j=T[i]+1; j<number of time slotgi++)
L[i](j] = 0;
}
2. Calculate the number of time slots needed to besfil
expense = (R + Po)/PcC
3. Fill L(i,j) by change several 0 to 1:
for(k=0; k<expensgk++){
for eachi j{
i{f( L[illj1 == 1)
if(L[i+2+K][j] == 1)
{

for(1=0; I<k+1; I++)
L[i+1+][j] = 1;
}

}
}
}
4. Translatel(i,j) to T(i): T(i) = X; L(i,))

C. Model for Global Controller

A solution for each of the above problems is prepgo
reach a minimized cost for homeowners or power
generations. But these models are far from complete
because our goal is to maximize the social welfaleo
note that there exists a connection between homemwn
and utility companies so that one’s action exentsnapact

to the other. Considering this, a feedback systam i
required.

Homeowners and utility companies are generally non-
cooperative and always make their own optimal dewtis
Based on this, what we should be acting like a a@lob
controller that manages the whole system whereyewuer
inside the system is making its own choice.

Unlike our first model, this model does not assusne
fixed price function,P(i). Instead, the price is what the
third-part arbiter should decide, although still epr
announced to homeowners. However, since energg [gic
very sensitive to the national and local economadsiost
every national or local government will impose pric
constraints on utility companies. In this model, somsider
two price constraints explained below.

First, Average price Hs a price that government gives
in order to regulate the profit of a utility comparor the
company to arrange the price as a function of t&hog it
should have:
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In addition,Pnaxand P are given to regulate the upper

and the lower bounds of price at each time.
Pmin < P(i) < Pmax

Differently from the second model in this papere th
energy consumption of each tim@on(i) is not fixed.
Instead, we should calculate this value after &lé t
homeowners have made their decisions i.e.,

Con(i) = Fix(i) + Z CHHIM(, j)

J
where Fix(i) represents the fixed energy consumption at
each time.

The objective function will then be to maximize the
social welfare, which means minimizing the totalstco
Considering that the cost for homeowners will be th
income of power generations, we take the cost fonaf
the second model as our final cost, except fordatitianal
consideration: the maximal number of power genemnati
facilities, Tmay, is needed. For a relatively long time
consideration, saving one power generation meavisagsa
space, human and repair cost. As a result, wettekeost
function as:

Cost = Costy + aTmax
wherea is a factor that represents the total fixed cost f
having one power generation. So the problem of
maximizing the social welfare is as follows:
Minimize
Cost = aTpgy + Z(T(i)PC + Add ()P, + Sub()P,sf)
L

subject to:
Add(i)=0
Add()) <T@ -T@{-1)
Sub(i)=0
Sub(i) <T(i — 1) — T(i)

T(Dload = Fix(i) + Z C(HM(, j) Vi

J
T(i) < Tmax
1
?Z P(i) < Pave

L
P(i) < Ppax
P(i) 2 Prin

In this problem, P(i) changes the behavior of the
customers and affects the electricity demand irh dae,
andT,,q -

The problem of minimizing the Cost is an NP complet
problem and we use simulated annealing to find alpe
optimal solution. Details of this method are asofigk.

1. Set allP(i))=P_ave

2. Based on giverP(i), call the homeowner model,
assign all tasks and calculate total energy conompof
each timeCon(i)

3. Based on the calculatedon(i), all the engineer
model, assign each power generation, calculatetdted
cost

4. Randomly change the price distributiB@) within
the constraints, repeat step 2 and 3 and calccdete new

5. If cost_newcost accept the new solution, if not
accept in a certain probability based on the teatpesT

6. Cool down and repeat from step 2 uiitiieaches a
certain value.

Ill.  SIMULATION RESULTS

To demonstrate the effectiveness of the proposed
algorithms, cases corresponding to the aforesaicingr
models are examined.

In these simulations, duration of a time slot isteeone
hour. For this reason, the minimum duration of skt&s
also set to one hour, and the durations of tasksraeger
multiples of one hour. Moreover, power consumptibithe
tasks is determined with a granularity of one hour.

The proposed algorithms have been implemented in
C++ code and tested for random cases.

In Table I, we act as a house owner and we asshate t
there are in total 10 tasks for us to assign. Bypgishe
algorithm provided above, the cost has been redinged
about 13.3% in average. Figure 1 shows the irstddition
and the final solution.

Table I. Cost Minimization for House Owners

" . Cost
Initial cost Final cost .
reduction
Expr. 1 1838 1594 13.3%
ar final solution _ 7
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Figure 2.Task assignment process



i
)

Figure 2shows the task assignment process. Initially, all =7

the tasks are assigned randomly. But after usingtask NN

assigning method, all the tasks are assigned abtiest- w 1|1 HHHAH pense=3
cost time slots based on meeting the earliest ttaet and

latest end time constraints. Remember that the gqsexb 15 -

greedy algorithm is optimal and its run time onamal _ Filup genersiors
machine for more than 100 tasks is less than ansleco o = =il genersors

In Table Il, we tested the model under three déffer
values forexpenseThe results show that as the value of
expenseincreases, the cost minimization effectiveness is
enhanced from 5.2% to 26.3%.

I T e e e e T e B e e e L

Table Il. Cost Minimization for Utl|lty Companies 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
— . (c)
Initial cost Final cost dCo?t Figure 3.Power generation working conditions for diferent
reduction expense profiles
expense 1 2223 2107 5.2% _ _

- In Table Ill, we use simulated annealing for cost
expense-2 2148 2303 16.2% minimization. We assume that 1 power generationeser
expense3 3713 2738 26.3% 10 houses and each house has 10 tasks so thaathet60

tasks in total. We can see from the tables thah bot
homeowners and power generations have significantly
Figure3 shows how our algorithm helps to assign the fill-u reduced their cost.
power generations for different valueefpense Table Ill. Cost Minimization for Combined Model
. Base-line cost| Final cost Cost
i expense=1 reduction
Utility 6939 4256 38.7%
companies
) Homeowners | 350200 293750 16.1%
o W | M nitial generators
In this table, base-line cost refers to the cosh icase
5 with initial scheduling for tasks in the homeownensd
I H initial state for power generations.
° 400
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —e—Final Price
(a) 250 ~—— Initial Price
300
5 7 250
200
i, pense=2 150
0N 100
I 50
15 N o
0 5 10 15 20 25 30
w7 | Figure 4. Price Distribution
s+ H D Figure 4 shows the change of price distribution.
I I Initially, we set average price to all the timetsloAfter
ok i . simulated annealing, the price distribution varigs to
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1_75%.

(b)



300
—&—Final energy consumption

250
—— Initial energy consumption

200
150
100

50

0 9 10 15 20 25 30
Figure 5.Energy consumption distribution

Figure 5 shows the change of energy consumption
distribution. Initially, the energy consumption éxits peak
and off-peak time behavior. But finally, the energy
consumption distribution turns out to be relativelgt
during the day. The energy consumption at the pieadk is
reduced about 50%.
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Figure 6. Power generation distribution

Figure 6 shows the change of power generation
distribution. Initially, we have to turn on a lof power
generation facilities in the peak time and turnaifthe off-
peak time. But finally, as the energy consumptiormg out
to be relatively flat, the number of power genenati
facilities needed to be turned on or turned off dmees
small. The maximum number of power generation ifesl
is reduced by about 50%.
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Figure 7. Simulated Annealing Steps
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Figure 7shows the change of total cost as a fumaifo
the simulated annealing steps. The cost reduces
significantly in the first steps and comes reldinaable in
the rest. The cost reduces down to about 40% obése-
line solution.

Runtime of the proposed heuristic for the third elad
less than 10 seconds for 100 aggregated task isehou
owners for a machine with a dual core processoh wit
frequency of 2.80 GHz. This run time is acceptatae
using this algorithm real-time.

IV. CONCLUSION

Three different models of cost minimization incloglitheir
problem formulation and solution were presented tiivee
models were implemented and tested for some rartdein
schemes. More specifically in our key model, custsnm
and power generation facilities are simultaneously
considered as non-cooperative, always making detssi
based on their own best solutions. A feedback syste
utilized such that a manager can make the bessidaci
according to the action and reaction of utility quamies
and customers. The results were compared to alipese-
solution with significant improvements.
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