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Abstract- A method is introduced for model order reduction of
large circuits extracted from layout. The algorithm, which is
based on balanced realization, can be used for reducing the order
of circuits before circuit-level simulation. In contrast to Pade-
based algorithms which match the reduced order system with
original system in some given frequencies, balanced realization
based model algorithms provide a nearly optimal matching over
all frequencies. Hence the balanced realization method produces
stable and more accurate results compared to the Pade-based
algorithms for model reduction. In addition given an upper bound
for error, it is possible to compute the minimum degree for the
reduced order model a priori. A numerically efficient method for
balanced truncation of large circuits using the Arnoldi algorithm
is presented and experimental results are reported.

I. Introduction
As the minimum feature size in VLSI chips reaches 0.1
micrometers and the frequency reaches 1GHz, the
interconnections become the dominant determinants of
performance.  Under these conditions, an accurate circuit
simulation is needed to provide the performance characteristics of
the circuit. Since the frequency is high, the interconnections
should be modeled as distributed elements rather than lumped
elements.  Because of the circuit density and features of deep sub-
micron process and interconnect technology, many parasitic
resistors, capacitors and inductors should be considered. This
causes the extracted circuit to have an extremely large number of
linear elements. No computer program can perform simulation for
such high dimensions in a reasonable amount of time. This creates
the need for methods to change the given networks to simpler
networks so that we can simulate them.
   The first work in this area is AWE [1], which is a method for
approximating the transfer function with a reduced order method
using the Pade approximation. There exist methods that enable
AWE to handle large dimension [2][3][4][5]. A disadvantage of
these algorithms is that starting with the system equations, we
cannot a priori predict the degree of the reduced system.
    The problem of model order reduction has been studied in
control engineering [6][7][ 8] where effective methods have been
developed. One such method is model reduction using balanced
realization, which attempts to minimize the difference of the
reduced order model with the original model over all frequencies.
In this method we are guaranteed to obtain a stable reduced-order
system given a stable initial system. Furthermore, we can obtain a
bound on the error over all frequencies and it can be shown that
the solution is optimal. This method can be used for both single-
input, single-output systems and multi-input, multi-output
systems. Silveira [9] used this method for modeling a transmission
line. In this paper, we extend his work to model reduction of very
large linear circuits. Also we use a provably more efficient
technique for achieving the balanced realization.
We introduce the state space form and the system norms in section
II. In section III we present balanced realization and model
reduction using balanced realization. Section IV gives a fast
efficient numerical method for solving the required equations
using the Krylov subspace methods. Experimental results are
given in section V.

II. State Space Form and System Norms
In this section we introduce the definitions and mathematical tools
used in this paper. Using any circuit equation formulation method
such as the modified nodal analysis, sparse tableau, etc., a lumped
linear, time invariant system can be described by the following
system of first order differential equations [10]:

uDxCyuExMxF
������� +=+−=   , .

   Here vector x
�

 represents the capacitor voltages and inductor
currents in the circuit, matrix M represents the contribution of
memory-less elements such as resistors, matrix F  represents the
contribution from memory elements such as capacitors and
inductors, y

�
 is the output vector, and u

�
 is the input vector to the

network. The x
�

 vector is called the state vector. Matrix E
represents how the energy is coupled from the inputs to the states
whereas matrix C shows how the states are related to the outputs.
We also have matrix D that is due to terms that directly couple
energy from input to output. The given equation can be

manipulated to: uDxCyuBxAx
������� +=+=   ,  .

   This is the standard state space formulation for a linear system.
Given the state space matrix (A,B,C,D), the transfer function of

the system can be written as: DBAsICsG +−= −1)()( .

   Consider that we have a direct term D. Without loss of
generality, we set this term to zero. After we reduce the order of
the system we simply add the D term to the resultant system. The
system, which has zero D term, is called a strictly proper system.
   To obtain a measure of how far two linear systems are from each
other, we need a method to calculate the difference between the
outputs of the systems for arbitrary input signals. First we define
the pl norm of the vector signal )(tz

�
 as [11]:
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  Consider that if we let p=2, the given norm is the Euclidean
norm of the energy of the given vector. Based on the assumption
we have on the input signals, different system norms can be
defined as explained next.
A. ∞Η  System Norm

Theorem (SVD) [11]: Any (complex) ml ×  matrix A may be

factorized into a singular value decomposition HVUA ∑= where
the ll ×  matrix U and the mm ×  matrix V are unitary, and the

ml ×  matrix ∑  contains a diagonal matrix 1∑  of real, non

negative singular values, iσ , arranged in a decreasing order as in:
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where },....,,,{ 3211 kdiag σσσσ=∑ ; ),min( mlk =  and

kσσσ ≥≥≥ ....21 and the singular values iσ  are positive

square roots of the k  largest eigen-values of both HAA  and

AAH : )()()( H
i

H
ii AAAAA λλσ == . Matrices U and V

are unit eigen-vectors of HAA  and AAH , respectively.
   Now consider a strictly proper linear stable system G(s). The

∞Η norm of a system is defined as [11]:

))((max)( 1 ωσ
ω

jGsG =∞

  In terms of performance we see that ∞Η norm is the peak of the

transfer function “magnitude”.

  The ∞Η norm also has several time domain performance

interpretations. For example it can be shown that [11]:
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   From the norms introduced it is evident that for strictly proper

systems, if we have a small ∞− )()( 21 sGsG then the systems

are almost identical and we can use )(2 sG  instead of )(1 sG .

B. Hankel Norm
We start by defining the Observibility and Controlibility
Gramians [11]. The Controlibility  Gramian is a measure of how
much the input energy is coupled to the states. The Observibility
Gramian is a measure of how the states and the output are coupled
to each other.  For the linear system given by (A, B, C, D), the
Controlibility Gramian is defined as:
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   It can be shown that if the eigen-values of the matrix A are to the
left of the ωj  axis ( iAi ∀< ,0)](Re[λ ) which means that if our

system is stable, then the Controlibility Gramian can be obtained
by solving the Lyapunov equation:

0=++ TT
rr BBAWAW

  In the same way, the Observibility Gramian is defined as:
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   Again it can be shown that if all the eigen-values of the A matrix
are to the left ωj  axis, the Observibility Gramian can be obtained

by:

0=++ CCAWWA T
oo

T

   Now the Hankel singular values of a system are defined as:
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  Usually the iσ 's are placed in a matrix as:
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Hankel singular norm of a system is defined as: 1)( σ=
H

sG

  The time domain performance interpretation of the Hankel norm
of a system is [11]:
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  The Hankel norm may be interpreted as a kind of induced norm
from past inputs to future outputs.

III. Model Reduction and Balanced Truncation
In this section the theory of model reduction based on balanced
realization is reviewed and two important theorems about the
order reduction of linear systems are presented. Consider a strictly
proper linear system (A, B, C). Suppose we change the basis of our
space by the linear transformation: xTz

�� =
  The state space form of the system in the new basis is written as:

uBzAz
���

� ˆˆ += , zCy
�� ˆ= where: TBBTATA == − ˆ,ˆ 1  , 1ˆ −= CTC

    It can be shown that the Gramians in this realization can be

obtained by [6] : T
rr TWTW −−= 1ˆ  and TWTW o

T
o =ˆ . It is

now clear that by choosing T properly, we can change many
properties of Gramains matrices.
    If the Observibility and Controlibility Gramians for a realization
of a system are equal to each other and  to the Σ  matrix, then that
realization is called a balanced realization. Moore [6] proposed
balancing the system and then discarding the states corresponding
to small Hankel singular values to obtain a reduced order model.
The basic idea behind this method is to equalize the coupling of
energy from input to states and from states to outputs, i.e. via the
linear transformation T so that the Observibility and Controlibility
Gramians become equal. Then states that have small coupling are
discarded. The procedure is as follows. First find a transformation
so that the system realization becomes balanced. (It is shown that
such a realization exists for every system [6].) Then divide the
state space form for that realization as:
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  The reduced order system has a degree of k  and is written as:

xCyuBxAx
������

1111   ,  =+= . Also the reduced order transfer

function can be written as: 1
1

111 )( BAsICGk
a

−−= .

  Theorem 1 [8] : Let G(s) be a stable rational transfer function
with Hankel singular values nσσσ >>> �21  where each 

iσ

has multiplicity ir  and let )(sGk
a  be obtained by truncating the

balanced realization of )(sG to the first ( krrr +++ �21 ) states.

Then: )(2)()( 21 nkk
k
a sGsG σσσ +++≤− ++∞

�

  Theorem 2 [8]: Let G(s) be a stable rational transfer function of
degree n  with Hankel singular values nσσσ >>> �21 .  Let

H(s) be any arbitrary stable transfer function of degree nr < . It

can be shown that: 1)()( +∞ ≥− ksHsG σ
  Theorem 3 [12] The relative error of reduced-order model is:
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   After computing the Hankel singular values of a matrix using
these theorems, we can find the proper degree for the reduced
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system and also the absolute and relative error for this
approximation.

IV. Numerical Methods for Large Systems
Safonov and Chiang [7] have shown that a reduced system can be
directly obtained without calculating the balanced realization.
Procedure Safonov-Chiang:
Input Data: A,B,C,D,k

 1. Compute matrices kRV ,  and kn
kLV ×ℜ∈,  whose columns form

bases for the respective right and left eigen-spaces of orWW

associated with the “big” eigen-values 22
1 ,, kσσ � .

 2. Let kR

T

kL VVE ,,= , compute its singular value decomposition:

EVU T
EkE =Σ .

 3. Let kn
EkLL UVS ×−

ℜ∈Σ= 2
1

, , kn
EkRR VVS ×−

ℜ∈Σ= 2
1

, ,

compute the state space realization:

          R
T

L ASSA =ˆ            BSB T
L=ˆ

           RCSC =ˆ                  DD =ˆ

End Procedure

   The thk  order approximation to the original transfer function is:

DBAsICsG ˆˆ)ˆ(ˆ)(ˆ 1 +−= − which is exactly the same as doing

truncation for the balanced realization. The numerical robustness
of the given algorithm depends on how the bases kRV ,  and kLV ,

are calculated.  It is also clear that we still need to calculate rW

and oW  which are the solutions of the Lyapunov equation.

   Looking at the procedure, it is clear that dimensions of

rW , oW , kRV , and kLV ,  are high. (I.e., equal to the order of the

original system). The rest of the algorithm works with reduced
order matrices, which can easily be handled. Therefore, we need
an algorithm for solving the Lyaponuv equations and an algorithm
for obtaining the big eigenvalues and the corresponding
eigenvectors of the matrix orWW .

   Saad [12] proposed a method for solving Large Lyapunov
equations. The method is based on solving the Lyapunov
equations directly using the formula:
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with a Krylov subspace method. In this approach we need to
generate an orthonormal basis : ],...,[ 1 mm vvV =  of the Krylov

subspace mK  via the well-known Arnoldi algorithm.

Arnodi  Algorithm:
Input Data: A,b

1. Compute 
21 / bbv = .

For  j=1,2,…,m
2a. Compute jAvw = .

2b. Compute coefficients jih ,  such that ∑
=

−=
j

i
iji vhww

1
,  is

Orthogonal to all previous svi ' .

2c. Compute 
2,1 wh jj =+  and jjj hwv ,11 / ++ = .

End Algorithm

    Saad Procedure uses the following approximation (with

provable error bound): 1eeVbe mtH
m

tA β≈ where 1e  is the first

column of identity matrix,  
2

b=β  , [ ]ijm hH = . Substituting

this approximation into expression for W results in:
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It is then clear that 
mG is the solution to the mm ×  Lyapunov

equation: 011
2 =++ TT

mmmm eeHGGH β  which can be solved

using the Hammaring method [13]. The second Lyapunov
equation is solved in a similar way.
   The above algorithm considers single input, single output
circuits. (i.e., B , C  are vectors). Using a block Arnoldi algorithm
the multi input multi output case can also be solved  [14].
   In the same paper Safonov and Chiang also proposed a method
based on Schur decomposition of 

orWW  for obtaining the 
kRV ,
and

kLV ,
 after solving Lyaponuv equations.  All the eigenvalues and

eigenvectors are calculated and the k  left and right eigenvectors
corresponding to the largest eigenvalues are separated. However,
as it is clear from the algorithm, only the largest eigenvalues and
their corresponding eigenvectors are needed. Solving the
eigenvalue problem for largest and smallest singular values and
corresponding left and right eigenvectors for large sparse matrices
is a well known problem [15]. We can use an Arnoldi algorithm to
get the desired number of eigenvalues and largest right and left
eigenvectors. Details are omitted due to space restriction.
   The proposed algorithmic flow has been implemented in a
program named BTVA (Balanced Truncation Via Arnoldi):
Procedure BTVA:
Input A,B,C,k
1. Use the Saad procedure to calculate 

rW  and 
oW .

2. Use the Krylov subspace methods to calculate eigenvalues and
corresponding left and right eigenvectors of orWW ( klkr VV ,, , ).

3. Choose the degree for reduced order system based on the
calculated eigenvalues and desired error bound using Theorems 1
and 3 .

4. Compute the reduced order system CBA ˆ,ˆ,ˆ  using steps 2 and 3
of  the Safonov-Chiang Procedure .
End Procedure

V. Experimental Results
Some examples for reduced circuits using balanced realization are
given. First we consider an RLC tree, which is a case frequently
encountered in extracted VLSI circuits.
   Fig (1) shows the circuit and the response of the circuit by
Hspice and also shows the response by two reduced order systems.
It is clear that reduced system of order four is exactly identical to
the real system (It is not distinguishable on the figure from the
original response). The second order system has the same delay,
but a large error at 0=t .
   The next circuit is a RC tree network. It is clear that a reduced
order system of order 2 is identical to the original system Fig (2).
The reduced order 1 system is almost the same but has a large
error at time 0. Compared to AWE, the results are better, and in
addition, in this method we have guaranteed stability, error bound,
and the order of the reduced order system can be predicted ahead
based on the error bound we need.
   The next example is a multi output, single input system.  Fig (3)
shows the real response and also the approximated response. By
examining the Hankel singular values (cf. Table 1), we conclude
that a 2nd order approximation yields very high accuracy.
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Figure 1 RLC tree with the exact (Solid) second order (dotted)
and fourth order (dashed) step response approximation.

Figure 2 Large RLC circuit with 4th order approximation.
The Exact and approximated response are identical.

Figure 3 A multi input single output system and its real, first,
second order step responses.

1st order 2nd order Actual σ

-8.848e+10 -1.0604e+11 -5.362e+11 0.3408
-2.7188e+11 -5.683e+11 0.0616

-4.453e+11 0.0175

-2.688e+11 0.0025
-9.195e+11 0.0007
-1.098e+12 0.0001

Table 1 Poles of the actual and reduced-order models of Fig
(3) and Hankel singular values of the original system.

VI. Conclusions
The method introduced for approximating the linear parts of a
circuit has many advantages over the Pade based methods, which
are commonly used for model order reduction. We can get better
approximations to a circuit as well as many other beneficial
features using balanced realization based method. This method
results in very good second order approximation to any RC circuit.
For the case of RLC circuits, depending on the number of
capacitors and inductors, we usually obtain higher order
approximations
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