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Abstract - This paper addresses the problem of maximizing 

capacity utilization of the battery power source in a portable 
electronic system under latency and loss rate constraints. First, 
a detailed stochastic model of a power-managed, battery-
powered electronic system is presented. The model, which is 
based on the theories of continuous-time Markovian decision 
processes and stochastic networks, captures two important 
characteristics of today’s rechargeable battery cells, i.e., the 
current rate-capacity characteristic and the relaxation-induced 
capacity recovery. Next, the battery-aware dynamic power 
management problem is formulated as a policy optimization 
problem and solved exactly by using a linear programming 
approach. Experimental results show that the proposed method 
outperforms existing methods by more than 20% in terms of 
battery service lifetime. 

I. INTRODUCTION 

With the rapid progress in semiconductor technology, 
chip density and operation frequency have increased, making 
the power consumption in battery-operated portable devices 
a major concern. High power consumption reduces the 
battery service life. The goal of low-power design for 
battery-powered devices is, thus, to extend the battery 
service life while meeting a set of performance 
specifications. Dynamic power management (DPM) – which 
refers to a selective, shut-off or slow-down of system 
components that are idle or underutilized – has proven to be 
a particularly effective technique for reducing power 
dissipation in such systems.  

Early work on DPM described predictive shutdown 
approaches  [1] [2] that make use of “time-out” based 
policies. A power management approach based on discrete-
time Markovian decision processes was proposed in  [3]. The 
discrete-time model requires policy evaluation at periodic 
time intervals and may thereby consume a large amount of 
power even when no change in the system state has 
occurred. To surmount this shortcoming, a model based on 
continuous-time Markovian decision processes (CTMDP) 
was proposed in  [4]. The policy change under this model is 
asynchronous and, thus, more suitable for implementation as 
part of a real-time operating system environment. Reference 
 [5] improved on the modeling technique of  [3] by using 
time-indexed semi-Markovian decision processes. 

Although the abovementioned DPM techniques may 
effectively reduce the system power consumption, they are 
not able to obtain the optimal policy for a battery-powered 
system. This is because the characteristics of battery power 
source are not properly modeled and exploited in these 
techniques. As demonstrated by research results in  [6], the 
total energy capacity that a battery can deliver during its 

lifetime is strongly related to its discharge current rate. More 
precisely, as the discharge current rate increases, the 
deliverable capacity of the battery decreases. This 
phenomenon is called the (current) rate-capacity 
characteristic. Another important property of batteries, 
which was analyzed and modeled in  [7] [8], is often called 
the recovery characteristic (or relaxation effect.) This effect 
is due to the concentration gradient of active materials in the 
electrode and electrolyte that are formed during the battery 
discharge process. More precisely, the active material at the 
electrolyte-electrode interface is consumed by the 
electrochemical reactions during discharge. This material is 
replenished with new active materials through a diffusion 
process that is guided by the concentration gradient. Thus, 
the battery capacity is somewhat recovered in a state during 
which no current is drawn. Due to these two non-linear 
characteristics, a minimum power consumption policy does 
not necessarily result in the longest battery service life 
because the energy capacity of its power sources may be not 
fully exploited when the cut-off voltage of the battery is 
reached. 

To the best of our knowledge, there has been no reported 
work on integrating the general model of a power-managed 
portable electronic system with that of its power source – 
i.e., batteries. Indeed, this is the contribution of the present 
paper. An integrated model makes it possible to wholly and 
correlatively consider the statistical behavior of incoming 
tasks, the electrical features (e.g. current levels) of the 
electronic system, and the electrochemical characteristics of 
the batteries. Consequently, a systematic approach, which 
optimally determines a power-management policy that 
exploits both the advantages of battery management and 
discharge-rate shaping techniques, can be developed on the 
top of this model.  

In this paper, we present a novel battery-aware power 
management (BAPM) technique based on CTMDP.  The 
BAPM technique presented in this paper targets to maximize 
the battery service lifetime while meeting the given service 
timing constraints. It operates as dynamically selecting the 
operating modes of the electronic system and concurrently 
choosing the working battery if multiple batteries are 
available, based not only on incoming task features and 
electronic system states, but also on the characteristics and 
state of the batteries powering the system. More precisely, 
we extend the work in  [4] to achieve a complete model of a 
battery-powered portable system by introducing and 
incorporating a new CTMDP model of the battery source. 
This model correctly captures the two important battery 
characteristics, i.e., the recovery effect and current-capacity 
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curve. Furthermore, it considers the case of a multiple 
battery power source with a power switch that is controlled 
by the power management policy. Based on this model the 
battery-aware power management problem is formulated as a 
policy optimization problem based on the CTMDP theory 
and solved optimally by using linear programming (LP). 

The remainder of the paper is organized as follows: The 
related work is discussed in Section 2. In Section 3, the 
formal statement of our problem is presented. The model of 
the battery-powered portable power-managed system is 
described in Section 4. The solution technique for the 
optimal problem is described in Section 5.  In Section 6, we 
present the experiment results and we conclude in Section 7. 

II. RELATED WORK 

A number of battery models have been proposed. These 
can be divided into two categories: electrochemical model 
and stochastic model. The electrochemical models are based 
on diffusion equations and provide an accurate description 
of the underlying electrochemical process. A low level 
model for lithium-ion batteries and a high level model for 
the time-varying load were proposed in  [8] and  [9], 
respectively. A different high-level battery model based on 
discrete-time VHDL was presented  [10]. Compared to the 
electrochemical ones, the high-level models are more 
efficient but less accurate. These models require a 
predetermined workload profile. However, in most real 
situations, the workload is not a priori known. In fact, the 
workload often evolves as a random process. In these cases, 
stochastic models become very useful. These models 
describe the battery behavior as a stochastic process whose 
parameters are extracted from the electrochemical 
characteristics of the simulated battery.  

A number of stochastic models have been reported in the 
literature, e.g. a discrete-time Markovian chain model  [11]. 
The stochastic model in  [11] is a Markovian chain of the 
battery states of charge with forward and backward 
transitions corresponding to the normal discharge and 
recovery effect processes, respectively. The load is 
expressed as a stochastic demand on the charge units. This 
model is mainly focused on the recovery effect. In a later 
work  [12], the authors extended this model to incorporate 
the rate-capacity effect. Both models are based on discrete 
time Markov chain construction and are merely developed to 
predict the battery lifetime. In contrast, we propose an 
integrated model of a power-managed system, which can be 
used to develop battery-aware power management 
techniques. More precisely, our work is based on a CTMDP-
based stochastic model of a rechargeable battery and is 
suitable for development of system-level power management 
strategies. 

To exploit the two battery characteristics in an attempt to 
extend the lifetime of a mobile battery-powered system, two 
classes of techniques have been proposed: battery 
management  [14] [15]  and discharge-rate shaping 
 [16] [17] [18]. Battery management refers to the class of 
techniques for selecting and scheduling the battery to 
discharge at any given time in a multiple-battery mobile 
system. A round robin policy was presented in  [13]. Several 

battery-scheduling policies were studied and compared in 
 [14]. Some of these policies are based on battery state-of-
charge information, which can be measured with Smart 
Battery technologies. 1  Reference  [15] considered a dual-
battery power supply, which comprises of two batteries that 
have different rate-capacity characteristics. The authors 
employ the batteries in an interleaved manner in responding 
to the current requirements of the battery-powered electronic 
system. However, none of these techniques can guarantee 
the optimality of the online battery schedule.  

The discharge-rate shaping techniques shape the discharge 
current profile of a single battery source in order to match 
the current draw of the system to the battery characteristics. 
In  [16], the authors proved that minimizing the variance of 
the discharge current profile of a battery leads to the 
maximum battery lifetime. Based on this principle, reference 
 [17] proposed a battery-aware variable-voltage scheduling 
technique for periodic tasks to minimize the peak power 
consumption. Reference  [18], which is based on an 
analytical battery model of  [9], proposed a number of 
battery-aware algorithms for task scheduling and voltage 
assignment, including idle time allocation to exploit the 
capacity recovery effect. The approaches in  [17] [18] require 
a complete a priori knowledge of the energy cost and 
execution time of all tasks that must be executed. A system-
level communication-architecture based system execution 
regulation method, named CBPM, was proposed in  [19]. 
The CBPM limits the instantaneous power consumption to a 
predetermined threshold level by delaying operations that 
have low timing criticality.  

In  [20], the authors made a first attempt to combine the 
two classes of techniques to extend the battery life of a dual 
battery-powered portable system. They proposed an open-
loop policy (switching from one battery to next with a fixed 
frequency), a closed-loop policy (switching from a high 
quality factor system state to a low quality factor system 
state when the output voltage of the battery drops below 
some threshold), and a rather elaborate hybrid switching 
policy (which is in fact a combination of the fixed switching 
frequency and the voltage threshold-based quality factor 
scaling techniques.) Note that all three policies are only 
heuristic solutions. The closed loop policy increases the 
battery lifetime by 8% over the open-loop policy, but forfeits 
about 30% of the (sound) quality in the target audio player 
platform. We will compare our battery-aware power 
management policy with both the open-loop and hybrid 
switching policies of  [20].  

III. PROBLEM STATEMENT  

This paper targets a portable, battery-powered electronic 
system. Fig. 1 depicts two example abstract models of such a 
system. The first model, called 2BAT, corresponds to that of 
a dual-battery, single-provider system. The 2BAT model 

                                                           
1  Smart battery system  [21] uses battery inside circuits to measure 

battery state and inner data, such as state of charge and temperature, and 
provides them to the operating system through SMBus. Using smart battery 
system the operating system, or power manager, can have instant and 
accurate information about battery available capacity. 
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consists of a service requestor (SR) to generate the tasks to 
be serviced, a single service provider (SP) to supply the 
required services, and a service queue (SQ) to store the tasks 
waiting for service. The SP is powered by two batteries 
(BAT) B1 and B2, which may have different current-
capacity and recovery characteristics. The power switch (PS) 
selects either B1 or B2 to provide power for the SP at any 
given time. Note that only one of the batteries is used at any 
given time (the other is resting at that time.) The second 
model, called 2SP, corresponds to that of dual-SP, single-
battery system. The 2SP model is different from the 2BAT 
model, only in that there are two SPs which may work in 
parallel, but only one battery.  

This paper focuses on these two system models because 
they capture the key characteristics of many real systems that 
are in actual use. Multi-battery power supplies are employed 
in many portable systems. For example, laptops normally 
provide users an option to insert an additional battery bay 
instead of a floppy disk.  A multi-processor structure is also 
widely used in portable electronic systems. A typical 
configuration is a high-end mobile device with two CPUs. 
Both models use up to two SP’s or batteries. It is 
straightforward to extend the proposed framework and 
solution technique to handle multiple SP’s or multiple 
batteries. In addition, notice that a common characteristic of 
both system models is that they employ one SR and one SQ. 
This is only for the sake of simplifying the presentation. 
Extension to include multiple SR’s and/or multiple SQ’s is 
straightforward and has been addressed in the published 
literature (e.g., see  [22].) Based on the 2BAT and 2SP 
system models, we will show that an optimal management 
scheme can be obtained by solving a linear programming 
problem.  

 
(a) Dual-battery, single-SP system model (2BAT) 

 
(b) Dual-SP, single-battery system model (2SP) 

Fig. 1. Two abstract models of battery-powered, portable systems. 

IV. SYSTEM MODELING 

In this section, we will first present stochastic models of 
each component, i.e., SR, SQ, SP, PS and BAT, in the target 
electronic system. The models of the SR, SQ and SP are 
similar to those described in [4] and are only reviewed here. 
The models of PS and BAT are new. Finally, based on these 
component models, we build the complete model of the 
target power-managed, battery-powered system. The 
notation used in the model description is somewhat complex 
and cumbersome. To improve readability, we summarize 
this notation in the appendix. 

A. Model of the Components 

1. Model of the Service Requestor 

The SR is modeled as a stationary, continuous-time 
Markovian decision process with a state set 
R={ri, i=0,1,2,…,R} and a generator matrix GSR, where R is 
the number of states of the SR. Each SR state ri is associated 
with a request generation rate λ(ri). The notation ν i,j 
represents the transition rate from state ri to state rj. An 
example of a two-state SR is shown in Fig. 2. 

 
Fig. 2. CTMDP model of a two-state SR. 

2. Model of the Service Provider 

The SP is modeled as a stationary, continuous-time 
Markovian decision process with a state set S={si s.t. 
i=1,2,…,S}, an action set As, and a parameterized generator 
matrix GSP(as), where as∈As. The SP can be described by a 
quadruple (χ, µ(s), pow(s), ene(si, sj)), where χ is the 
transition speed matrix of the SP, µ(s) is the service speed of 
the SP when it is in state s, pow(s) is the power consumption 
of the SP in state s, and ene(si, sj) is the energy required by 
the SP to transit from state si to sj. There are two kinds of 
transitions: autonomous and command-driven. A command-
activated transition may only occur when the SP receives a 
command from the controller when it asks the SP to make 
such a transition, e.g., the transition from state idle1 to state 
busy1 in Fig. 3. An autonomous transition is one that takes 
place without any command from the controller, e.g., the 
transition from state busy1 to state idle1 in Fig. 3 takes place 
autonomously as soon as the SP finishes the current service. 
An example of a six-state SP model is illustrated below.  

 
Fig. 3. CTMDP model of the SP. 

The expected power consumption (cost rate) of the SP 
when it is in state s and action as is chosen is calculated as: 

,
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where ,
sa

s sσ ′  represents the transition rate of the SP from 

state s to state s’  when as is chosen. 

3. Model of the Service Queue 

The SQ is modeled as a stationary, continuous-time 
Markovian decision process with a state set 
Q={qi, i=0,1,2,…,Q} and a generator matrix GSQ(r,s), where 
Q is the maximum length of the queue, s denotes a state of 
the SP, and r denotes a state of the SR. When a service 
request is generated, the state of the SQ is autonomously 
incremented by one unless the SQ is full. When the SP 
services a service request, the index of the state of the SQ is 
autonomously decremented by one. 

)(rλ

)(sµ

iq 1+iq Q-1q Qq0q 1q

)(rλ

)(sµ

)(rλ

)(sµ

 
Fig. 4. CTMDP model of the SQ. 

4. Model of the Power Switch 

The Power Switch (PS) is modeled as a stationary, 
continuous-time Markovian process, with a state set W={wi 
s.t. i=1,2,…,W}, an action set Aw={aw(i) s.t. i=1,2,…,W}, 
and a generator matrix GPS. Here aw(i) means that the ith 
battery source should be used next to power the system. 

 
Fig. 5. CTMDP model of the PS. 

5. Model of the Battery 

The battery (BAT) is modeled as a stationary, continuous-
time Markovian decision process with a state set B={bi, rsi} 
s.t. i=0,1,2,…,N, a parameterized generator matrix 
GB(s, w, b), and a function ene(bi, bj):N×N→R. 

The subscript i of state bi in the state set B, denotes that in 
this state the remaining energy capacity of the BAT is 
i/N×100% of the full energy capacity. Therefore, b0 implies 
that the battery has been completely discharged whereas bN 
means that the battery is fully charged. State rsi is the 
corresponding “stop recovery state” for state bi. Function 
ene(bi,bj) represents the battery energy-capacity difference 
between state bi and bj. Fig. 6 illustrates the CTMDP model 
of the BAT. 

 

ib 1+ib0b Nb

i
rs recovery

stop
1+i

1( , , , )s is a w bυ +

( , , , )s is a w bω

rs

( , , )ss a wρ
( , , , )s is a w bυ

( , , )ss a wη

charge
state of

  

Fig. 6. CTMDP model of the BAT. 

In this model, state bi represents an “active” state, in 
which the battery may be discharged when it is used or can 
recover capacity when it is resting. State rsi represents a 

“stable” state, in which neither the battery discharges; nor 
does it do any capacity recovery. 

The transition from state bi+1 to bi represents the discharge 
process of the battery. ρ(s,as,w) denotes the corresponding 
transition rate. Notice that if the PS selects a battery and SP 
consumes power when it is in state s and action as is chosen, 
the value of ρ(s,as,w) is calculated by equation (4-2) (cf. 
Table 1); otherwise, ρ(s,as,w) is equal to 0.  

The transition from state bi to bi+1 represents the recovery 
process of the battery. ω(s,as,w,bi) denotes the transition 
rate, which is a function of the SP state s and the battery 
state bi. If the SP does not consume power when it is in state 
s and action as is chosen, or if the PS does not select the 
battery in question, then the value of ω(s,as,w,bi) is 
determined by the battery state bi (cf. Table 1); otherwise 
ω(s,as,w,bi) is equal to 0. The transition from state bi to rsi 
can only occur when the battery is resting. υ (s,as,w,bi) 
denotes the transition rate. If the SP does not consume 
power when it stays in state s and action as is chosen, or if 
the PS does not select this battery, then the value of 
υ(s,as,w,bi) is determined by the battery state bi (cf. Table 
1); otherwise υ (s,as,w,bi) is equal to 0. The transition from 
state rsi to bi may only occur when the battery is used again. 
Here η(s,as,w) means that if the SP consumes power when it 
stays in state s and action as is chosen, and if the PS selects 
this battery, the battery goes from rsi to bi immediately. 

The values of ρ(s,as,w), ω(s,as,w,bi), υ(s,as,w,bi) and 
η(s,as,w) are summarized in the following table. In the first 
row of Table 1, if the SP consumes power when it stays in 
state s and action as is chosen, (s,as) is set  to 1; otherwise 
(s,as) is set to 0. If the PS selects this battery, w is set to 1; 
otherwise w is set to 0. 

TABLE 1  
PARAMETERS OF THE BAT 

(s,as), w  0, 0 0, 1 1, 1 1, 0 

ρ (s,as, w)  0 0 ρ’(s, as) * 0 

ω (s, as,w, bi)  ω’(bi) ** ω’(bi) 0 ω’(bi) 
υ (s,as, w,bi)  υ’(bi) ** υ’(bi) 0 υ’(bi) 
η (s,as, w) 0 0 ∞  0 
* ρ’(s, as) denotes the transition rate corresponding to the battery 

discharge process. It will be precisely defined in section 4.B.5.a. 
** ω’(bi) and υ’(bi) are functions defined by corresponding look-up 

tables indexed by bi. The actual value of each entry in these tables is 
obtained from simulation results. The method is described in more detail 
in section 4.B.5.b. 

The transition from state b0 to bN, denoted by the long 
wrap-around dashed arrow line, represents that an exhausted 
(fully discharged) battery is replaced with a fresh (fully 
charged) battery of the same type. This transition is added 
because without it, state b0 becomes a trap. If transition from 
b0 to bN is not included in the model, then the battery will 
eventually arrive in state b0 and cannot subsequently leave 
this state. Consequently, no feasible solution would be found 
when using the linear programming technique to solve the 
optimal policy problem. 

The battery model is constructed based on the following 
three assumptions: 
(a) During the discharge process of the battery, if the 

battery is in state bi+1, only the transition from state bi+1 
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to bi is allowed, where i=0, 1, …, N-1,, which means 
that the battery discharges gradually.  

(b) When the battery is resting (i.e. it is not being used), if 
it is in state bi, then it may regain some of its capacity 
due to the recovery process or it may transit to state rsi. 
When the battery is in state rsi, it cannot recover 
capacity and will continue to remain in this state until it 
is used again to power up the system. As soon as this 
happens, the battery moves from state rsi to bi and then 
possibly to bi-1, etc.  

(c) During the recovery process of the battery, only a 
transition from state bi-1 to bi, i=2,…,N, is allowed, 
which means that the battery recovers capacity 
gradually. State b0 means that the battery capacity has 
been exhausted and the battery must be replaced.  

Assumptions (a) and (c) are valid because of the 
continuous nature of the electrochemical processes. 
Assumption (b) is accurate because the energy recovery 
speed of a battery diminishes when the resting time 
increases. The simulation results depicted in Fig. 8 (in 
Section 4.B.5.a) empirically confirms this important 
observation. The data pointed by the markers are obtained 
by simulating an industrial Li-ion battery with a low-level 
battery simulator, DUALFOIL  [7].  

a. Determining ρ’(s,as)  

As stated previously, ρ’(s ,as) represents the transition 
rate of the battery from state bi to bi-1, i=1,…,N, when the 
SP stays in state s and action as is chosen. It can be 
calculated as 

( , )
( , )

(1 ( , ))
act s

s
s

pow s a
s a

s a C N
ρ

β
′ =

− ⋅
 

where C is the nominal full energy capacity of the battery 
and β (s ,as) captures the rate-capacity characteristic of the 
battery, 0<β (s ,as)<1. The SP state s, and the selected 
action as, determine the electrical current drawn from the 
battery, i.e., determine the value of β (s ,as). As seen in Fig. 
7, due to the rate-capacity effect, the deliverable capacity of 
a battery can be quite different under different discharge 
currents. In the figure, this is more pronounced for battery 
B1, therefore, β (s ,as) may assume very dissimilar values for 
different batteries.  

 

Fig. 7. Current-capacity relations of two different batteries. 

b. Determining ω’(bi ) and υ’(bi)  

Transition rates ω’(bi) and υ’(bi) can be obtained from 
battery simulation results. Founded on assumption (b), let 
ri(t), i=1,…,N , denote the expected recovered capacity 

during the time period from 0 to t , where 0 denotes the time 
instance when the battery begins its resting period, (during 
the period, the recovery process is not interrupted by the 
discharge requests, i.e., the battery is not selected by the PS 
to power the SP.) Furthermore, suppose the battery starts in 
state bi at time instance 0. We define an N×1 vector 
r(t)=[r1(t) r2(t) … rN(t)]T, which satisfies the following 
equation: 

( ) ( )t t= +r Αr d&  

where A is an N×N matrix with entries 
( ( ) ( ))

( ) 1, 1

0 .

i i

ij i

b b i j N

a b j i i N

otherwise

ω υ
ω

⎧ ′ ′− + = ≠⎪⎪⎪⎪ ′= = + ≤ −⎨⎪⎪⎪⎪⎩

 

d is an N×1 vector with entries 
( ) 1

0 .
i

i

b C N i N
d

i N

ω′ ⋅ ≤ −⎧
= ⎨ =⎩

 

Note that dot operator denotes differentiation with respect to 
t and C denotes the nominal full energy capacity of the 
battery (cf. equation (4-2).) 
The boundary condition is: 

0)0( =r  

ω’(bi) and υ’(bi) can be determined in a top-down manner 
as described next. 
Since bN represents a state of full-charge capacity, rN(t) ≡ 0. 
Thus rN-1(t)  satisfies:  

1 1 1 1 1( ) ( ( ) ( )) ( ) ( )N N N N N

C
r t b b r t b

N
ω υ ω− − − − −′ ′ ′= − + +&  

After applying the boundary condition, we obtain the 
following solution: 

1
1

1 1

1 1( ( ) ( ))( )
( ) (1 e )

( ) ( )
N

N
N N

N Nb b tbC
r t

N b b
ω υω

ω υ
−

−
− −

− −− +′ ′′
= −

′ ′+
 

We perform battery simulation as follows: we discharge 
the battery to (N-1)/N of its original capacity, let it rest for a 
time period t, then fully discharge the battery. Next, we 
change the value of t and repeat the above procedure. 
Proceeding in this way, we obtain the curve for the 
recovered capacity vs. the resting time when the battery 
starts in state bN-1. We then choose ω’(bN-1) and υ’(bN-1) 
that force the curve determined by equation (4-6) to match 
the simulation curve. Since rN-1(t)  is known, we can solve 
for rN-2(t)  and determine ω’(bN-2) and υ’(bN-2) by using the 
same technique as in the case of ω’(bN-1) and υ’(bN-1). We 
repeat this procedure until r1(t) is obtained and ω’(b1) and 
υ’(b1) are determined.  

The result of using our model to fit a DUALFOIL battery 
which simulates the commercial Bellcore technique is 
presented in Fig. 8. The markers represent the simulation 
results of battery capacities delivered at different discharge 
rates and with different resting time ratio. The solid colored 
curves reflect the fitting results by using our approach. This 
figure demonstrates that our model describing the recovered 
capacity of the battery as a function of the resting time t is 
very accurate when compared with detailed battery 
simulation results.  

(4-2) 

(4-5) 

(4-3) 

(4-4) 
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Fig. 8. Relationship between the capacity recovery effect and ratio of 

the resting time to the discharge time for a Li-ion battery.  

A function ene(bi, bj) is associated with each pair (bi, bj). 
This function is defined as follows. ene(bi, bj)=±C/N, where 
j= i±1. When j= i−1, ene(bi, bj)>0, represents the energy 
which is consumed when the battery transits from state bi to 
bj. When j= i+1, ene(bi, bj)<0, represents energy which is 
recovered in the battery due to the battery relaxation 
process. 

Notice that for a two-battery system, the generator matrix 
of the two-battery model is calculated by  GB=GB1⊗GB2, 
where ⊗ is the tensor product of the two generator matrixes 
of batteries B1 and B2  [25]. 

B. Model of the Battery-Powered System 

In this section, we show in detail how to construct a 
stochastic model of the 2BAT system. The stochastic model 
of the 2SP system can be developed similarly and is omitted 
here to avoid duplication of details. 

We use five components: SR, SQ, SP, PS, and BAT 
models. The state set is given by 
X=R×Q×S×W×B−{invalid states}. The invalid states 
include the states where the SP is busy and the SQ is empty. 
Thus the state of the complete battery-powered system 
(SYS) can be represented as a quintuple x=(r ,q ,s ,w ,b ), 
where b={b (1),b (1)}∈B, b (1) ∈B1, and b (2)∈B2 represent the 
state of battery B1 and B2 , respectively. 

The system action set Asys is the union of the action set As 
for the SP and the action set Aps for the PS. We use GSYS(a) 
to represent the generator matrix of the system, where 
a∈Asys. Since the service requester is assumed to be 
independent of the other components, the generator matrix 
GSYS(a) can be calculated as: 

)()()( aGaGaG BATPSSPSQSRSYS −−−⊗=  

Similarly, independence of the SP and the PS results in: 
)()()( aGaGaG PSSPPSSP ⊗=−  

where the SQ-SP-PS-BAT denotes the joint CTMDP model 
of the SQ, SP, PS, and BAT, and the SP-PS denotes the joint 
CTMDP model of the SP and PS. Unfortunately, the 
Markovian processes of the SQ and the SP-PS, and the 
Markovian processes of the BAT and the SP-PS are both 
correlated. The SP-PS and the Battery are correlated in the 
sense that when the state of the SP-PS changes, the 
discharge rate of the Battery also changes. We therefore 
specify how to calculate each entry of the GSQ-SP-PS-BAT(a) 
below.  

Let σx,x’ denote the transition rate of the system for going 
from state x=(q ,s ,w ,b ) to x’=(q’,s’,w’,b’), where 
b={b (1),b (1)} and b’={b (1)’,b (1)’}. 
1). if b’=b , then σx,x’ is equal to σ (q,s,w), (q’,s’,w’), which is the 

joint state transition rate of the SQ-SP-SW. 

2). if s’=s  and q’=q , then 

A). if w=w1 and b (1) =b i  and b (1)’= b i − 1  and b (2)’=b (2), 
then σx,x’ is equal to ρB1(s ,a), which is the discharge 
transition rate of battery B1 from state b i  to state 
b i − 1 . 

B). if w=w2 and b (2) =b i  and b (2)’= b i − 1  and b (1)’=b (1), 
then σx,x’ is equal to ρB2(s ,a), which is the discharge 
transition rate of battery B2 from state b i  to state 
b i − 1 . 

C). if w=w2 or the SP is in the sleep state, then 
a). if b (1)=b i  and b (1)’= b i + 1  and b (2)’=b (2), then 

σx,x’ is equal to ωB1(s ,a), which is the recovery 
transition rate of battery B1 from state b i  to 
state b i + 1 . 

b). if b (1)=b i  and b (1)’= rs i  and b (2)’=b (2), then 
σx,x’ is equal to υB1(s ,w), which is the 
transition rate of battery B1 from state b i  to 
state rsi . 

D). if w=w1 or the SP is in the sleep state,  then 
a). if b (2)=b i  and b (2)’= b i + 1  and b (1)’= b (1), then 

σx,x’ is equal to ωB2(s ,a), which is the recovery 
transition rate of battery B2 from state b i  to 
state b i + 1 . 

b). if b (2)=b i  and b (2)’= rs i  and b (1)’=b (1), then 
σx,x’ is equal to υB2(s ,w), which is the 
transition rate of battery B2 from state b i  to 
state rsi . 

3). For any other transition, σx,x’ is equal to 0. 

V. A MATHEMATICAL PROGRAMMING SOLUTION  

The expected cost xa
xγ , which represents the expected 

energy delivered from the battery when the system is in state 
x and action  ax is chosen, is calculated as: 

, ' ( , )x xa a
x x x

x

P ene b bγ
′

′= ⋅∑  

Let xa
xf  denote the frequency that the system will be in 

state x and action ax is chosen. Notice that x xa a
x xf γ  is the 

expected power that the system expends in state x as a result 

of action ax.  Let xa
xτ  denote the expected time that the 

system will stay in state x when action ax is chosen. Then, 
x xa a

x xf τ , called state-action probability, is the probability 

that the system is in state x and action ax is taken in a 
random observation. Let xa

xlq  denote the waiting cost in the 

queue. This cost can be calculated as .xx a
xx

a
x qlq τ⋅=  

The goal is to find an optimal policy for minimizing the 
energy delivered from the batteries under constraints on the 
average number of waiting requests in the queue and the 
request loss rate. Notice that a request issued by the SR is 
lost (dropped) in the SQ if the queue is full when the request 
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comes in. We formulate this problem as a linear program 
(LP) as follows:  

x x
ax

x
x

a a
x x

x a
f

Minimize f γ∑∑  

subject to  

0≥xa
xf  

∑∑ =
x a

a
x

a
x

x

xxf 1τ  

, 0x x x

x x

a a a
x x x x

a x x a

f f P′ ′

′

′ ′
′≠

− =∑ ∑∑ , Xx ∈∀  

x x

x

a a
x x

x a

f lq D≤∑∑  

_( , )x x x

x

a a a
x x x req block

x a

f q Q Pτ δ ≤∑∑  

where 
⎩
⎨
⎧ =

=
.,0

;,1
),(

otherwise

yxif
yxδ  

An optimal policy is an assignment of the values of the 
variables xa

xf such that the objective function is minimized 

and the constraints (5-3) to (5-7) are satisfied. These 
constraints can be explained as follows. The inequality (5-3) 
is implicit in the definition of the variable xa

xf . This is 

because xa
xf  is a frequency, which takes a nonnegative 

value. Equation (5-4) is a normalizing constraint which sets 
the summation of all state-action probabilities equal to one. 
It is known that if a Markovian process is stationary, then the 
input rate of each state will be equal to the output rate of that 
state (cf. equation (5-5).) The summation on the left-hand 
side of inequality (5-6) gives the expected number of the 
service requests waiting in the SQ. From Little’s law  [24], 
for a stationary process, this number is equal to the product 
of the average incoming rate of the requests and the 
expected delay experienced by a request. Inequality (5-6) 
limits the expected service delay seen by an incoming 
service request to D. Inequality (5-7) ensures that the 
probability that the queue becomes full is less than a preset 
threshold. This is our way of controlling the request loss rate 
in the system. For an interactive application, this probability 
may be viewed as a retransmission rate where a service 
request will be re-delivered (rather than dropped) if it arrives 
when the SQ is full. Constraints (5-6) and (5-7) capture QoS 
requirements for real-time applications. For a specific 
application, they can be enforced simultaneously or 
individually according to the user’s requirement. Note that 
one may even choose other QoS criteria, such as variation in 
the service delay of incoming requests.  

According to the proposed modeling technique, from any 
state, the system can only transit to a small number of other 
states. This feature makes the constraint matrix constructed 
from equations (5-5) a sparse matrix. The formulated LP 
problem is thus efficiently solved by LP solvers that make 
use of the sparse matrix calculus supporting operations such 
as sparse Cholesky factorization and multiple minimum-
degree ordering. In particular, we use a Matlab-based 
software package, LIPSOL, which is a primal-dual interior-
point method based on the predictor-corrector algorithm 

proposed by Mehrotra  [26]. LIPSOL has a worst-case timing 
complexity of O(n3.5), where n is the number of inequalities 
in the linear program. A typical system with a battery may 
have about 10 buffer slots for storing the incoming 
requests, 3 to 6 power states, and 5 to 20 battery states 
depending on the battery features. Thus totally a system may 
have around 800 states and 1600 actions. In practice, 
LIPSOL’s performance is often much better than this worst-
case analysis, especially for sparse linear programs. 
Experimental results related to the computational complexity 
are presented in section 6.D. 

We propose a runtime approach for implementing the 
BAPM algorithm as follows. Its implementation requires 
support from both the system software and hardware. More 
precisely, the following hardware support is needed: 1) the 
system supports multiple working modes (i.e., power states); 
2) A “smart” battery source is employed, which is capable of 
providing the required battery data (discharge rate, state-of-
the-charge, etc.) online. The power manager is implemented 
as part of the system software. The block diagram of the 
BAPM in the Linux operating system is shown in Fig. 9. 
BAPM obtains information about the task generation rate 
from the scheduler and the battery data (voltage level, 
current, internal impedance) from the battery data interface. 
This info is then used by the battery state analyze to 
calculate the battery’s state of charge info. The policy 
manager looks up a pre-designed and cached policy table to 
determine the optimal power management policy, and 
thereby, set the states of the system components and battery 
switch through appropriate device drivers. Notice that the 
BAPM policies are themselves computed off-line, yet the 
appropriate policy is chosen and applied based on runtime 
information.   

 
Fig. 9. Block diagram of the BAPM power manager implementation in 

Linux. 

VI. SIMULATION RESULTS  

In this section, we present experimental results for the 
2BAT and 2SP systems described in section 3. Experiments 
focus on demonstrating the effectiveness of the proposed 
approach in scheduling batteries for optimum energy 
discharge and in shaping the discharge rate of each battery, 
respectively. Note that this does not mean that the battery 
management and discharge-rate shaping are dealt with 
separately in our proposed approach. Indeed, in either case, 
the optimal power management policy, which is obtained by 
solving a mathematical program, determines the activities of 
the SPs. This in turn affects the discharge current profile as 

(5-2) 

(5-3) 

(5-4) 

(5-5) 

(5-6) 

(5-7) 
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well as the scheduling of the batteries, and thus, takes 
advantage of both techniques. In the third part, we show the 
results obtained by applying this technique to a real system. 

In the experiments, we use an input trace file to 
realistically represent the statistical behavior of the SR. In 
particular, the distribution of the input requests is a 
combination of the exponential and Pareto distributions as 
observed in  [5]. An augmented version of the low-level 
simulator called DUALFOIL  [7] is used to simulate the 
batteries. The original DUALFOIL software only supports 
simulation in the batch mode, where the complete battery 
discharge profile is known before the simulation starts. We 
have modified the source code of this software program to 
enable interactive battery simulation. As a result, the 
modified DUALFOIL accepts the discharge requirement in 
every step and returns the battery state of charge data as 
output. 

A. Simulations for the 2BAT System 

It has been demonstrated that DPM techniques based on 
Markovian decision processes outperform heuristic policies 
(see  [22].) We seek to evaluate and assess the effectiveness 
of the stochastic power management techniques on the 
system lifetime when the battery characteristics are taken 
into account. More precisely, to compare the effects of 
different power management policies on the battery service 
lifetime, in this experimental setup, we use the CTMDP-
based optimal policy derived in [4] to determine the 
behavior of the SP under a number of heuristic methods, 
denoted by M1-M4 (see below.) Notice that none of these 
heuristic methods account for the battery effects as part of 
solving an integrated battery-aware power management 
problem.  

As shown in Figure 1(a), the experimental system consists 
of an SR, an SP with its own SQ, and two batteries. The SP 
has six power states: {busy1, busy2, idle1, idle2, wait, 
sleep}. The busy1 and busy2 states are functional states 
where the SP services the requests waiting in the queue. In 
the wait or sleep states, the SP does not service any requests. 
The key differences between these two states are: 1) in the 
wait state, the SP consumes higher power than in the sleep 
state; 2) in the wait state, the SP can return to a working 
state much faster than in the sleep state. There is one idle 
state for each busy state. In fact, idle states are abstract states 
where new policy decisions are issued to the SP. Transition 
from the busy to idle state is autonomous and instantaneous.  
Since the DUALFOIL accepts current density as an input, in 
this experiment, we express ),(),(, ji ssenespowχ  in terms 

of the current. 

[ ] ):(03.06.19.06.19.0 Aunitpow = , 
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The two batteries have different rate-capacity 
characteristics and recovery abilities. From Fig. 7, we can 
see that in the low current functional state, busy1, battery B1 

can deliver more energy than B2, while in high current 
functional state, busy2, battery B2 can deliver more energy 
than B1.  Fig. 10 shows that battery B1 exhibits a much 
stronger capacity recovery ability compared to battery B2.  

 

Fig. 10. Recovery abilities of battery B1 and battery B2.                                  

We consider and compare four heuristic methods of 
battery management with our CTMDP-based policy (called 
BAPM, which stands for Battery-aware Power 
Management): 
M1: As in  [15], we account for the rate-capacity 

characteristics of the battery, but do not consider the 
recovery effect. In addition, we assign a pre-assigned 
battery when the SP is in a particular state, e.g., we use 
battery B1 when the SP is in state busy1, while we use 
battery B2 when the SP is in state busy2. 

M2: As in  [20], we account for the recovery effect in 
battery, but do not consider the rate-capacity 
characteristics of batteries. In addition, we switch 
between the two batteries (B1-B2) with a fixed frequency 
(0.1 Hz, as suggested in  [20].) This is identical to the 
open-loop policy of  [20]. 

M3: As in  [20], we set a voltage threshold Vth. When the 
battery output voltage is larger than Vth, SP always works 
in busy2 state. After the voltage drops below, SP use 
busy1 state instead. In addition, we switch between the 
two batteries (B1-B2) with a fixed frequency (0.1 Hz). 
This policy is the hybrid switching policy of  [20]. 

M4.1: We use two batteries of type B1, switching between 
them with a fixed frequency (0.1 Hz).  

M4.2: We use two batteries of type B2, switching between 
them with a fixed frequency (0.1 Hz). 

Furthermore, we consider two battery replacement 
policies: 
P1: As soon as a battery is completely consumed, it is 

immediately replaced with a new battery of the same 
type. 

P2:  Both batteries are replaced together and only after both 
of them have been completely used up. If only one 
battery is used up, the other battery will be used 
continuously until it is also exhausted. 

A two-state SR models are used in the simulation. In the 
first simulation, the SR parameters are: λ (r1)=0.25, λ(r2)=0, 
ν1,2=1/200, ν2,1=1/20. Actually the transition time from state 
r1 to r2 complies with Pareto distribution with shape 
parameter a=1.11 and scale parameter b=2. SR waiting 
number constraint D is set to 1.5. To meet this timing 
constraint, M3 policy has to set V th=3.0, which means M3 is 
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identical to M2 in this case. As demonstrated in Fig. 16, 
BAPM provides as much as 16.9% improvement over the 
heuristic methods. In the second simulation, λ (r1) is changed 
to 0.2. The V th equals to 3.1 for the M3 policy. Other 
parameters are the same. The simulation results are also 
shown in Fig. 16. 

B. Simulations for the 2SP System 

In this experimental setup, the system contains an SR, an 
SQ, two SPs, and a battery, as shown in Figure 1(b). The 
two SPs are identical and work in parallel and independently. 
Each SP can provide service for the incoming SRs. After an 
SR is serviced by any of the two SPs, it will leave the system. 
At any time instant, the total discharge-rate of the battery is 
the sum of the currents drawn by the SPs. 

An SP has four states {busy, idle, wait, sleep}. The 
definitions of the states are the same as those in section 
4.A.2. The parameters of the SPs are listed below, which are 
obtained from  [22], and correspond to a Fujitsu hard disk:  

[ ]0.43 0.19 0.07 0.026 ( : )pow unit A= , 
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BAPM is compared with the following three power 
management policies: 
M5: This policy is a combination of the power-regulation 

method of  [19] and the time-out policy. More precisely, 
we adopt a time-out policy for the power management of 
each SP and set a hard threshold Pth to limit the total 
discharge current. 

M6: This policy is a modified version of M5 except that 
instead of restricting the discharge current to be less than 
the threshold Pth at all times, an instantaneous current 
exceeding the threshold is allowed. Prth denotes the 
acceptance probability. 

M7: The policy is the optimal one derived from the CTMDP 
model of the 2SP system without considering the battery 
characteristics. 

A battery of type B1 is used as the power source in this 
experiment. Experimental results are reported in Fig. 17. The 
task loss (request block) rate Pblock_req is set to be less then 
0.1%. This threshold value is chosen because it is in fact 
mentioned in many network service level agreements. M7 
and BAPM both satisfy the target loss rate bound of 0.1%. 
However, in the case of the M5 and M6 policies which do 
not consider timing constraints, the actual task loss rates 
vary significantly. For example, when the average task 
generation interval is 0.2 s, it ranges from 0.01% (M5, Pth 
=1.0A) to 0.36% (M5, Pth =0.8A).  

This figure shows that BAPM achieves an improvement 
of battery lifetime over the reference methods by 17% 
averaged over the 8 experiments. Furthermore, from, we can 
see that as compared to the heuristic methods, BAPM are 
more flexible to satisfy user’s multi-dimensional design 
requirements and achieve desired performance. 

An example of the battery discharge rate distributions 
under different policies, for the case where the average task 
delay is 0.4s in Fig. 17(a), is shown in Fig. 11. From a 

comparison of Fig. 11(a) and (b), we conclude that, compared 
to M7, BAPM reduces the variance of the discharge current 
by reducing the duration of time that the battery is providing 
very high discharge current. This can be seen by noting that 
the M7 policy results in a battery discharge current of 
greater than 1.3A about 1% of the time and greater than 
0.6A about 44% of the time whereas the BAPM policy 
results in no discharge current greater than 0.9A and about 
33% of the time with a discharge current greater than 0.6A.   
From Fig. 11(c), it can be seen that M5 (or M6) can indeed 
limit the maximum discharge current, but they are incapable 
of shaping the current profile while meeting the given 
threshold Pth. These figures and the table illustrate that by 
scheduling activities of the two SPs and shaping the total 
current draw to match the battery characteristics, BAPM is 
capable of simultaneously minimizing the average discharge 
rate and the variance of current profile. This is a major 
advantage of BAPM over the reference methods. The 
discharge profiles of the battery in a 2SP system under M5-
M7 and BAPM policies are shown in Fig. 12. The battery 
cut-off voltage was set to 3.0V [7]. 

 
Fig. 11. Discharge current distributions with different policies. 

 

Fig. 12. Discharge profiles of the 2SP system model under different 
policies. 
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C. Simulations based on the BitsyX System 

In this simulation, we consider an application scenario 
where a mobile computer collects and stores batches of 
sampled raw data for subsequent processing. A desktop 
workstation continuously sends requests to the mobile 
computer to process the raw data and return the result. A 
BitsyX system  [27] with a Socket low-power Compact-Flash 
WLAN card  [28] was used as the mobile computer. The 
BitsyX system supports a low power sleep mode and has 
multiple working modes corresponding to different CPU 
voltage/frequency settings. For this experiment, the BitsyX 
system was configured to allow the WLAN card to be 
powered up during the sleep mode. More precisely, during 
the sleep mode, if a valid data packet is received from the 
wireless link, the BitsyX system will be awakened by an 
interrupt signal, which is generated by the WLAN card. A 
software program that performs pattern recognition was used 
as the data processing algorithm. The hardware-measured 
average power dissipation and average data processing times 
of the BitsyX in different working modes are given in Table 
2. The averaging is done over different input data as well as 
over time for a given input data. More precisely, we 
calculate the mean value of power dissipation of the 
application running in state y of Bitsy X and average this 
over 100 different data values to generate the corresponding 
entry in the table. In addition, this table provides the average 
transition times between the various working modes. We 
next set up a simulation experiment in which the mobile 
computer is powered by a simulated battery based on the 
commercial Bellcore battery technology  [28]. The simulated 
battery has a c-rate of 0.962A. We assumed that the Smart-
Battery technology is available so that the battery state can 
be probed online. The workstation runs the BAPM policy 
and determines the operation mode of the mobile computer 
based on the battery state of charge that is reported by a 
concurrently running battery simulator.  

TABLE 2.  
MEASURED POWER AND TRANSITION TIMES OF THE BITSYX 

Operation 
mode 

CPU/Bus frequency 
setting 

Average 
power 
(mW) 

Average 
program 

running time (S) 
Busy1 100MHz/100MHz 1060 0.89 
Busy2 200MHz/100MHz 1390 0.64 

Busy3 400MHz/100MHz 2190 0.38 

Idle 100MHz/100MHz 801 -- 
Sleep -- 96 -- 
The frequency adjusting time 

(between Busy1, Busy2 and Busy3) 
0.5 ms 

The wake-up time 
(between Sleep to Idle) 

2.0 s 

The go-sleep time 
(between Idle to Sleep) 

0.3 s 

In this simulation, the service queue has 20 slots to hold 
the waiting tasks. The battery has 18 states of charge. In the 
following figures, the BAPM policy is compared with three 
time-out policies and a CTMDP policy which does not 
consider the battery characteristics (M7). Each time-out 
policy is named Timeout-Busyx for x=1,2,3. This in turn 
means that the operation mode Busy1, Busy2, or Busy3 is 
used when processing the raw data. The timeout threshold 
value is adjusted to meet different service delay 
requirements. The simulation results are presented in Fig. 

18.  In this figure, each time-out policy is presented by three 
points. The leftmost point corresponds to an infinite time-out 
threshold value whereas the rightmost point corresponds to a 
zero threshold value. 

From Fig. 18, it is observed that BAPM always results in 
the longest battery lifetime for a given task delay constraint. 
Time-out policies do not work well when the required delay 
for processing a task is rather large, because these policies 
are incapable of using the rates of task generation and the 
delay constraints, and therefore, tend to waste a significant 
amount of energy by waking up the system and then shutting 
it off. M7 is an optimal policy in terms of the total energy 
consumption, but it does not consider the battery 
characteristics. For example, in the case where the average 
task generation interval is 1.2s and the average delay is 9.6s, 
the M7 policy prefers the Busy3 mode to the other two busy 
states, because the Busy3 mode consumes the least amount 
of energy to perform the task. However, the Busy3 mode 
also requires the largest current to be drawn from the battery 
source which subsequently reduces the deliverable capacity 
of the battery. The recovery effect which allows the battery 
to regain capacity during the sleep mode also affects the 
operation mode selection when calculating the BAPM policy. 
It makes a trade-off between the sleep time and the discharge 
current of the working modes. For example, for the same 
that was mentioned above, if the number of waiting tasks is 
larger than 11 and the battery state of charge is 50% of the 
total capacity, then the BAPM policy will select Busy2 as 
the working mode instead of Busy1. However, if the 
recovery effect is not considered, the Busy2 mode will never 
be used. An example of the energy dissipation rate 
distributions under different policies is depicted in Fig. 13, 
where the average task generation interval is 1.2s and delay 
is 9.6s. Notice that for the timeout police, a threshold value 
that maximizes the battery lifetime is applied.  

 
Fig. 13. Energy dissipation rate distributions with different policies. 

D. Effect of the State Count of the Battery  

The number of charging states of the battery impacts the 
lifetime that can be achieved by the BAPM policy. The 
increase in the state count of the battery tends to produce a 
more accurate description of the battery’s characteristics and 
a more fine-grained control policy. However, this benefit is 
acquired at the cost of the increased policy computation time 
and a larger memory space for storing the policy table. In 
this section, we present experimental results to evaluate the 
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influence of the number of battery states on the quality of 
solutions that are obtained by BAPM. 

The simulation in section 6.C is repeated by changing the 
state count of the battery model. Here, the size of the service 
queue is 20, the average task generation interval is set to 
1.2s, and the average task latency (delay) is set to 9.6s. The 
simulation results are shown in Fig. 14. When the number of 
the states of the battery is small, the lifetime that is achieved 
by BAPM is rather low mainly because of our inability to 
properly capture the battery characteristics with only two 
states. This can be achieved by using a larger number of 
battery states, say a number between 3 and 10. Increasing 
the number of the battery states above 10 only results in a 
marginal improvement in the battery lifetime.  

The policy computation time is measured by using a PIII 
800-MHz PC machine. For example, as shown in the figure, 
when the battery model has 10 states, the computation time 
is about 37 seconds. Notice that for this example, the whole 
system model has 1200 states and 2534 actions.  

 
Fig. 14. Effect of the number of battery states on the BAPM policies for 

a system powered with a single battery. 

To assess the effect of the state count of the battery on a 
system which is powered by two different batteries, we 
repeat the BAPM simulation with battery replacement policy 
P2 as presented in section 6.A, where the simulation 
parameters as in Fig. 16 are used. In addition, λ (r1)=0.25. 
Since the recovery effect of battery B2 is almost negligible, 
we can model it by using a two-state battery model. 
However, B1 exhibits a strong recovery effect, and therefore, 
it is advisable to use a battery model with a large number of 
states of charge. To avoid excessive computation burden that 
is associated with the large number of battery states of 
charge, we use a battery model with non-uniformly 
distributed battery states. Generally speaking, fine-grained 
control is more helpful when a battery gets closer to its zero 
remaining charge state. Thus, for the battery model of B1, 
from 0 to 100 percentage point for the remaining battery 
capacity, each state interval represents twice the range of the 
previous one. For example, with 9 states, we use 0, 1, 2, 
4, …, 32, 64, 100 percentile points. The parameters of this 
model can be obtained by using an approach similar to the 
one presented in section 4.B.5. As demonstrated in the Fig. 
15, when the battery model has more than 14 states, the 
BAPM policy achieves desirable battery lifetime 
improvement.  

 

Fig. 15. Effect of the number of battery states of charge on the quality of 
solutions generated by BAPM for a two-battery system. 

The simulation in section 6.B uses battery B1. However, 
there is no other battery to help provide the required energy 
for the system. This condition in turn limits the recovery 
effect for B1. In the case where the average task delay is set 
to 0.4s, an 8-state model of battery B1 generates almost 
optimal results. 

VII. CONCLUSIONS 

In this paper, a novel battery-aware power management 
(BAPM) technique is proposed, which is based on a 
Continuous-Time Markovian Decision Process (CTMDP) 
model that integrates the models of the electronic system and 
its power source. The BAPM technique presented in this 
paper attempts to maximize the battery service lifetime while 
meeting the given service timing constraints. It operates by 
determining the operating mode of an electronic system and 
concurrently choosing the battery that is used as the power 
source of the system when multiple batteries are available. 
This goal is achieved based on the characteristics of the 
incoming tasks, operation modes of the electronic system, 
and electrochemical properties and state of charge 
information about the batteries that are powering the system.  

To develop the integrated battery-microelectronics system 
model, a properly constructed and characterized CTMDP 
model of the battery source is introduced. This model 
correctly captures the two important battery characteristics, 
i.e., the recovery effect and current-capacity curve. Based on 
this integrated model, the BAPM policy optimization 
problem is formulated and solved by using a Linear 
Programming formulation. Experimental results demonstrate 
the effectiveness of BAPM.  

APPENDIX 

Notations used in this paper are summarized below: 
r, q, s, w, b, and x: respectively represent the state of the SR, 

SQ, SP, PS, BAT and SYS. 
as, aw, ax: respectively denote the action of the SP, PS and 

SYS. When such a notation is used as a superscript, it 
describes the condition “when the action is chosen”. 
sa

sτ ( xa
xτ ): denotes the average time that the SP (SYS) 

stays in state s (x) when the action as (ax) is chosen. 
λ(ri): denotes the service request generation rate when the 

SR is in state ri. 
νi,j: denotes the transition rate of the SR from state ri to rj. 
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µ (s): denotes the service speed of the SP when it is in state 
s, i.e. the service request departure rate from the SQ. 

, '
sa

s sP : denotes the probability that the next state of the SP is 

s’ when its present state is s and action as is chosen. 

,
sa

s sσ ′ : denotes the transition rate of the SP from state s to 

state s’ when as is chosen. 
ene(bi,bj): denotes the energy-capacity difference of the 

battery between state bi and bj. 
ρ, ρ′: denotes the battery transition rate regarding to the 

discharge process. 
ω, ω′: denotes the battery transition rate regarding to the 

recovery process. 
υ, υ′: denotes the battery transition rate regarding to the 

recovery stop phenomenon. 
xa

xγ : represents the expected energy delivered from the 
battery when the system is in state x and action ax is 
chosen 

xa
xf : denotes the frequency that the system will be in state x 

and action ax is chosen. 
lq: denotes the waiting cost in the queue. 
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Fig. 16. Simulation results of BAPM for the 2BAT system model. 
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(a) The average task generation interval is 0.2 s. 

 
(b) The average task generation interval is 0.4 s. 

Fig. 17. Simulation results of BAPM for the 2SP system model. 

 

(a) The average task generation interval is 2.4 s. 

 

(b) The average task generation interval is 2.4 s. 

 

(c)  The average task generation interval is 4.8 s. 

Fig. 18. Simulation results for the BitsyX system. 

 


