ALBORZ: Address Level Bus Power Optimization

Y azdan Aghaghiri
University of Southern California
yazdan@sahand.usc.edu

Abstract

In this paper we introduce a new low power address bus
encoding technique, and the resulting code, named
ALBORZ. The ALBORZ code is constructed based on
transition signaling the limited-weight codes and, with
enhancements to make it adaptive and irredundant, results
in up to 89% reduction in the instruction bus switching
activity at the expense of a small area overhead.

1. Introduction

With the rapid increase in the complexity of chips and the
popularity of hand held and mobile devices, power consumption
has become one of the main design criteria. In a processor, a
considerable amount of power is consumed in the highly
capacitive and wide memory buses. Because the capacitance of
external lines is usually several orders of magnitude higher than
the capacitance of transistors, it is desirable to add some logic to
the integrated circuits to encode the data before sending it over the
bus, and in this way, decrease the switching activities on external
buses. In this paper we use this approach to decrease the switching
activity of an address bus. We introduce a new address bus
encoding technique, and the resulting code, named ALBORZ. Our
method is based on the limited weight encoding and transition
signaling. We show how ALBORZ can be made adaptive to make
the required encoder/decoder hardware smaller and achieve higher
reduction in the switching activities. We aso present an
irredundant ALBORZ code that is very attractive in cases that
adding an extra bit to abusis not possible.

The rest of this paper is organized as follows. In section 2 we will
look at the previous works. Section 3 explains the main idea
behind the ALBORZ code. In section 4, we present the vanilla
ALBORZ code and its fixed and adaptive versions. An
irredundant version of the ALBORZ code is described in section
5, while the experimental results are presented in section 6. The
conclusion is presented in section 7.

2. PreviousWork

In this section we will review similar works in bus encoding and
compare various encoding techniques. The following notation will
be used throughout this paper,

b(t): Address value to be sent on the bus at tine
t (sourceword)

B(t): Encoded value on the bus lines at tine t
(codewor d)

D: Address offset (b(t)-b(t-1))

In [1] Stan and Burleson proposed the Bus-Invert method as
explained next. Consider an N-bit (non-multiplexed) bus. The

Farzan Fallah
Fujitsu Labs of America, Inc.
farzan@fla.fujitsu.com

Massoud Pedram
University of Southern California
pedram@ceng.usc.edu

idea is that if the hamming distance between two consecutive
patternsis larger than N/2, then the second pattern can be inverted
S0 as to reduce the inter-pattern Hamming distance to below N/2.
One redundant hit is needed to distinguish between the origina
and inverted patterns that are transmitted on the bus. The Bus-
Invert method tends to perform well when transmitting random
patterns, which is often the case on data busses. However, this
method is largely ineffective on address buses, which tend to
exhibit some degree of sequentiality.

In [2] Benini et a. proposed TO code, which exploits data
sequentiaity to reduce the switching activity on the address bus.
The observation is that addresses are sequential except when
control flow instructions are encountered or exceptions occur. TO
adds a redundant bus line, called INC. If the addresses are
sequential, the sender freezes the value on the bus and sets the INC
line. Otherwise, INC is de-asserted and the original addressis sent.
On average 60% reduction in address bus switching activity is
achieved by TO coding [2].

Ikeda et a. [3] proposed using codebooks in sender and receiver.
For every address, the code with minimum hamming distance to it
is found in the codebook and then the selected code identifier
along with the hamming distance between the address and the
selected code is sent over the bus. They extended their method by
using adaptive codebook in [4]. Thus the codes in the codebook
can be replaced. As the program executes, only those codes will
remain in the codebook that the program is accessing addresses
around them.

There is another class of encoding techniques that avoids the use
of redundant bits. These techniques exploit the decorrelating
characteristic of the Exclusive-Or function as follows. Since when
using Exclusive-Or, the codewords are transition-signaled over the
bus, in every position where there is a 1 in the codeword, the bus
will toggle and a switching will occur. This will convert the
original problem to that of finding the codewords with the smallest
average number of 1'sin. The most efficient one of these codes is
TO-XOR, which was proposed in [5] by Fornaciari et al. The
encoder works as follows:

B(t) = b(t) O (b(t-1) + S) O B(t-1)

TO-XOR reduces the switching activity of instruction address bus
up to 74% [5]. It can be easily seen that when the addresses are
sequential, no switching activity occurs (similar to the case of TO
code). In the same work, the authors proposed another encoding
technique, which is called Offset-XOR code. The encoder works as
follows:

B(t) = (b(t) - b(t-1)) O B(t-1)

In [7] the authors have proposed a coding framework that is used
for analyzing different bus encoding approaches. Most of the
previous methods are included in their proposed framework.

3. Approach

ALBORZ code exploits the optimality of limited-weight-codes
when they are used with transition signaling. Consider a
streamlined program code trace (i.e., there is no control transfer
instruction inside the trace). In this case it is possible to calculate
the current address by simply incrementing the previous address.
In practice, however, one out of every seven instructions is a
control transfer instruction [8]. Hence, it is not always possible to

calculate the current address by incrementing the previous one.

Consider Offset-XOR, we compute the offset (i.e. the current
address minus the previous address). We then calculate XOR of
the offset with the previous value on the bus and send the result
over the bus. This reduces the switching activity, because offsets
aretypicaly small numbers.

In ALBORZ code, to further decrease the switching activity on the
address bus, we change the encoding of the offset. For example, if
there is a branch instruction whose offset is ECh, we encodeit to a
vaue with fewer number of 1's, say 04h. Thisresultsin a 5-1=4
unit decrease in the switching activity on the bus.

It is worth noting that offsets are typically small numbers. As seen

Floating point average

30%

20% \\/\Integer point average

10% —

.

—_— —
0 1 2 3 4 5 6 7 8 9 10

Bits of branch displacement

Figure 1- Occurrence frequencies for control transfer
instructions in terms of their offsets

in Figure 1, more than 95% of the offsets can be represented with
less than 10 bits [8]. This suggests that a large reduction in the
switching activity can be achieved by concentrating on small
offsets. In the next sections, we show different forms of realizing
the ideas explained above.

4. ALBORZ Code

The ALBORZ encoder employs a codebook to encode offsets.
Each offset islooked up in this codebook. If the offset is present in
the codebook (i.e., there is a hit), then it is encoded based on the
value stored in the codebook; otherwise, no encoding takes place
(i.e., thereis amiss) and the original address is sent over the bus.
To distinguish between the two cases when the actual addresses or
the encoded offsets are sent over the bus, an extra bit is added to
the bus. We call the extra bit CODEON. It is desirable to maximize
the hit ratio in the codebook. This means that the codebook must
include the small offsets since they tend to occur frequently.

When an offset is found in the codebook, a limited-weight-code
(LWC) associated with that offset is extracted from the codebook.
In other words, the offset is mapped to a LWC. Instead of sending
the offset, the corresponding LWC is XOR’ed with the previous

value on the bus. Additionally, the CODEON bit is set to one. On
the decoder side, if the CODEON is zero, the value on the bus is
used as the address value. Otherwise, XORing the current bus
value with the previous value produces the LWC for the offset.
Next, the LWC is looked up in the decoder codebook and the
corresponding offset is used to calculate the new address. Figures
2 and 3 show the ALBORZ encoder and decoder block diagrams,
respectively.

Every entry of the encoder codebook consists of two fields:.
| D | LvC |

The following terminology and notation are used in the remainder
of this section:

LWC(d): Limted weight code of the entry with D =
d

CODES: set of linmited weight codes in the codebook
OFFSET(lwc): Ofset of the entry with LWC = I we
OFFSETS: set of offsets in the codebook.

ALBORZ encoder isformally described as follows:
if (dO OFFSETS)
B(t) = B(t-1) O LWC(d)

set CODEON
el se
B(t) = b(t)
Reset CODEON
The ALBORZ decoder is described as:
if (CODEON)
Iwe = B(t) O B(t-1)
b(t) = b(t-1) + OFFSET(|wc)
el se
b(t) = B(t)

CODEON Flag

=
+

i
i
|
£f: Codeword _7
sus)2el o LWC’.H
Sourceword L BUS

Sender codebook

Figure 2- ALBORZ Encoder

The offsets that are mapped to LWCs can be either fixed or they
can change at runtime. If the offsets are fixed, then the codebook
is caled a fixed codebook. Otherwise, the codebook entries can be
updated during execution of programs; in this case, the codebook
is called an adaptive codebook. We explain these two cases in
more detail below.

Fixed Codebook

In this case the mapping between offsets and limited-weight-codes
does not change, and the codebook can be implemented using a
ROM or using some combinational logic. Consider a 32-bit
address bus. To avoid any transitions when two consecutive
addresses are sequential (i.e., assuming that the difference between

two sequential addresses is one), the first entry of the codebook
has to be as follows:

+1 | 00000000h

For a 32-bit bus, there exist 32 1-limited-weight-codes. An N-
limited-weight-code or N-LWC is a code with exactly N 1'sin it.
Thus, LWCs of the next 32 entries of the codebook have exactly
one 1. The offsets of these entries have to be the most frequently
encountered offsets in any program. Therefore, these entries have
to be used for small negative and positive offsets. The following
table shows the mapping for offsets +2 to +17 and —1 to —16.

+2 00000001h
+17 00008000h
-1 00010000h
-16 80000000h

The number of 2-limited-weight-codes is 496 and the same
method as that described above is used to map offsets +18 to +265
and -17 to —264.

It is possible to add more entries to the codebook, but this will
substantialy increase the area pendty; it may aso increase the
power consumption. The maximum size of the codebook that we
can use depends on the number of required transistors, the ratio of
switched capacitance inside the codebook to the switched
capacitance on the bus, and the ratio of internal (codebook logic)

CODEON Flag

Codeword Offset %

,,,,,,,,,,,, »(x0R wel b @ ¥ Sourceword
BUS '
HD_T ==

Figure 3- ALBORZ Decoder

Receiver codebook

to external (bus driver) power supply voltages. With the trend to
scale down the transistor feature sizes and power supply voltage
levels, the maximum size of codebook can be increased.
Therefore, higher reduction in the switched capacitance of the
overal bus subsystem (including the encoder/decoder logic
overheads) can be achieved.

It is possible to design a fixed codebook in a way that the offsets
are used to index the codebook entries. Consider the previous
table, which included positive offsets from +1 to +17. If +16 and
+17 are eliminated from the table, the four LSB bits of the positive
offsets can be used to index the codebook while the MSB bits are
zero. Thiswill significantly reduce the codebook’ s hardware cost.

Adaptive Codebook

In the adaptive codebook, the offset column is implemented using
a read/write memory. When an offset lookup takes place, if it is
present in the codebook, the corresponding limited-weight-code is
read. If a miss occurs, the actual address is sent over the bus and
its offset replaces one of the offsets in the codebook. This
guarantees that the next time the offset is looked up it will be

present in the codebook (assuming that it is not replaced by
subsequently-generated offsets).

In this way offsets that are most commonly encountered in a
program are gradually loaded into the codebook; this will increase
the hit rate and will result in a higher reduction in the bus
switching activity. Notice that the same policy has to be used to
update codebooks of the encoder and the decoder to ensure the
coherence. Every time the CODEON bit is reset, the decoder
redlizes that a replacement has occurred in the encoder’s
codebook. Thus the decoder updates its codebook. Since the
decoder and the encoder follow the same eviction policy, the same
entries will be replaced in both codebooks with the new offset.
This guarantees that the same offsets exist in both codebooks.

By using an adaptive codebook instead of a fixed codebook, the
number of entries in the codebook can be significantly reduced
while maintaining the same level of switching activity savings on
the bus. However to determine if an offset is present in the
codebook, it has to be compared to all offsets in the codebook.
This kind of fully associative comparison is usualy costly from
hardware and power consumption viewpoints. To simplify the
codebook hardware, the replacement (or eviction) policy can be
changed to use direct or set associative mappings. With these
policies each offset can be placed in certain entries of the
codebook; therefore, to identify a hit, only a small number of the
entries have to be searched.

5. Irredundant ALBORZ Code

Fixed and adaptive ALBORZ are both redundant codes. In other
words, they need an extra bit to signal that the encoding has been
performed on the current bus value. Adding one extralineto a bus
requires modifications in pin-outs of both memories and
processors. It will aso require changes in the printed circuit
boards. In practice, these modifications are not allowed in many
systems.

It is possible to alter the ALBORZ code to suppress the redundant
bit. Recall that the CODEON bit is required because the encoder
has to inform the decoder if the actual address or its encoded
version is sent. We modify our coding scheme so the actual
addressis never sent over the bus; instead the offset or its encoded
version is XOR'ed with the previous value of the bus. When there
is a hit in the codebook, we XOR the output of the codebook.
When there is no hit, we XOR the offset itself. Ambiguity occurs
when the offset itself is a LWC. Changing our replacement policy
to prevent the LWCs from entering the codebook can solve this
problem. After this modification in the replacement policy if the
decoder receives a LWC, it knows that there should be a hit in the
table. This guarantees that the offsets that are equa to one of the
LWCs present in the codebook will always miss. However we still
need to find away to transmit these offsets without any ambiguity.
Our solution is to map these LWCs to the offsets that are present
in the first column of the codebook. The elimination of the

Sourceword

SUB
'jjoffset

Sender codebook

Figure 4 - Irredundant ALBORZ Encoder

CODEON hit comes at the expense of a marginaly more complex
encoding logic. Figure 4 illustrates the block diagram of the
irredundant ALBORZ encoder.

The codebook for irredundant ALBORZ is dlightly different from
that of the redundant code as explained next. As before each entry
of the codebook consists of an offset associated with a LWC. The
main difference is that there is no offset equal to any of the LWCs
in the codebook. In other words, there is no number in common
between the OFFSETS column and CODES column. When an
offset is looked up in the codebook, it is compared with both the
OFFSETS and the CODES; if there is a match in the OFFSETS
column, the corresponding LWC will be output. Otherwise, if
there is a match in the CODES column, the offset corresponding
to the LWC is used as the codebook output. The output is then
XOR’ed with the previous vaue on the bus. If the offset is not
equal to any of the OFFSETS or CODES, then a miss occurs and
the offset itself is XOR’ ed with the previous value on the bus.

As an example, consider a single-entry codebook with the
following values,

I +18 I

00000040h |

If the offset is +18, then 00000040h or +64 is XOR’'ed with
the previous value of the bus. If the offset is +64 then +18 is
XOR’ed with the bus. If the offset is neither +64 nor +18, say it
is+11, the offset, i.e,, +11, is XOR'ed with the previous value on
the bus.

The codebook effectively implements a one-to-one mapping
between the address offsets and the LWCs. This can result in a
reduction in switching activity as long as the probability of having
amatch in the offset column is higher than that of having a match
in the limited-wei ght-code column.

The Irredundant ALBORZ encoder is formally described as
follows:

if (DO OFFSETS)
B(t) = B(t-1) O LWC(D)
else if (DO CODES)
B(t) = B(t-1) O OFFSET(D)
el se
B(t) = B(t-1) O D
Note that (OFFSETS n CODES =), otherwise it may not be
possible to correctly decode the address in the decoder.
The Irredundant ALBORZ decoder is described as follows:

D= B(t) O B(t-1)
if (DO CODES)

b(t) = b(t-1) + OFFSET(D)
else if (DO OFFSETS)

b(t) = b(t-1) + LW D)
el se

b(t) = b(t-1) + D
As before, if a miss occurs and the codebook is adaptive, one of
the codebook entries may be replaced with the new offset. To
further improve the performance of the Irredundant ALBORZ we
can do a simple optimization on the displacements. In Irredundant
ALBORZ if a miss happens the offset itself is transition-signaled
over the bus. In many cases this offset can be a small negative

number. Small negative numbers tend to have many 1's in their
binary representation. Thus, they cause many bits to switch each
time they miss the codebook. By means of the following simple
function we map small negative numbers to large negative
numbers and vise versa and avoid the above problem. We invert
al bits of negative numbers except their MSBs, and positive
numbers unchanged. We call this function LSB-Inv. Following
table shows LSB-Inv(x) for afew sample numbers.

Oigi nal of fset Modi fi ed of fset
FFFFFFFF, (-1) 80000000
FFFFFFFE, (-2) 80000001
FFFFFFF5, (-10) 80000009
80000000 FEFFFFFF

6. Experimental Results

We have used the simplescalar architectural simulator [9] to
evaluate our methods. We have generated instruction address
traces for six of the SPEC 2000 benchmark programs. Each trace
consists of 15,000,000 instructions and al the simulations have
been done using the SPEC 2000 test input parameters. The used
benchmark programs are vortex, parser, equake, gcc, vpr and
art.

The Fixed codebook was implemented using ROMs or
combinational logic. Based on the codebook size, a certain number
of LSB hits of the offset is used to index into the codebook.
Number of entries that can be used can vary based on the amount
of extra hardware that can be tolerated which itself depends on to
the technology, system specifications, etc. In Figure 5 we have
compared the performance of this scheme for different number of

4 8 16 32 64 128 256 512 1024 2048 4096

Oextra @lwe W miss

Figure 5- Total activity of the bus compared to the
base case for Fixed-redundant-ALBORZ

128 256 512 1024 2048 4096

4 8 16 32 64

DO miss Bhit

Figure 6- Ratio of codebook misses and hits

codebook entries. Vertical axis shows the average ratio of total
activity of the bus to the origina activity for the considered traces
and horizontal axis shows the number of entries of the table.
Switching activity has been partitioned into three segments. Extra
denotes the activity of the redundant or extra bus line. LWC
denotes the activity (of al lines except extra line) when there is a
hit in the codebook and an LWC is transition signaled over the
bus. Miss denotes the activity (of al lines except extraline) when
there is amiss and the new addressitself is put on the bus.

Figure 6 shows percentage of hits and miss. Codebooks in this
example are implemented so that half of the entries are filled with
positive offsets and the other haf by negative ones. The
improvement of the technique for over 256 entriesis margina. To
reduce the hardware overhead and reduce the size of the codebook
significantly, the following technique is used in hardware design.
First LSB-Inv(offset) is calculated. After this mapping, al bits
except MSB are used to lookup into the codebook. Thus, for
example, 2 and -3 will hit in the same row of the codebook cause
they only differ in MSB. After the code is looked up, then if the

Doffset-hit BLWC-hit B miss

Figure 7- Total activity compared to the base case for
Adaptive-Redundant

12

0.8

0.6

0.4

0.2

DO miss Bhit

Figure 8- Ratio of codebook misses and hits

MSB is equal to one, the code is flipped. Suppose 00000100 is
extracted for both 2 and —3. This code is used when the original
number is 2 but for —3 the code will be flipped to generate a new
code or 00100000. By this easy technique half of the codebook
entries can be eliminated which will reduce the hardware overhead
significantly.

For the Redundant Adaptive ALBORZ similar figures (Figure 7
and figure 8) have been drawn. The numbers of entries are much
less, since the entries are read/write memory and thus they tend to
consume more energy. In our implementation, the offsets are

replaced using direct mapping scheme. An offset equal to one, i.e.
sequentia instructions should be mapped to al zeros as ther
output code, causing no transition. This specia entry is designed
in afashion so that it cannot be replaced. A saturating counter can
be added to each entry, this can be used to prevent entries with
substantial hits get evicted. In our implementation we used a
single-bit saturating counter. If one entry has more than one hit,
this bit is set. On the other hand when a new offset tries to replace
an entry, this bit is checked and if it is equal to one, is reset.
Otherwise, the entry is replaced.

Irredundant Adaptive ALBORZ was evaluated for different
number of entries (figure 9 and figure 10). Again the number of
entries should be much less than the fixed version. Switching
activity can have three different sources, the first one is when
there is a hit in the offset column (Offset-hit) and an LWC is
transition signaled over the bus, we cdl it LWC-transition.
Second one is when there is a hit in the LWC Column (L WC-hit)
and the output is a branch offset. We call this Offset-transition.
And the last one is when there is no hit in either of the columns
(Miss) and the offset itself is transition signaled over the bus, we
cal this Misstransition. As it was mentioned earlier, in this
scheme, the LWCs are fixed and the branch offsets can be
replaced. Since each generated offset is compared with both
columns the way the LWCs are put in the second column has a
great effect on the overall performance. Because we map LWCs to
offsets, every time there is a hit in LWC column, many bits may
switch. In a program, the number of small branches is typically
large. This suggests eliminating small LWCs from the table will
increase the overal performance. By a simple anaysis of our
traces we decided to arrange the second column as follows.
Among the 1-LWCs the first four are omitted, i.e Ox1, 0x2, 0x4
and 0x8 and the remaining 28 1-LWCs fill the first 28 entries.

0.16

0.14

0.12

0.1
0.08
0.06
0.04
0.02

4 8 16 24 32 48 64 96 128

aLwc B miss Doffset

Figure 9- Total activity compared to the base case for
Adaptive-Irredundant

12

0.8
0.6
0.4
0.2

8 16 24 32 48 64 80 96 128

> o

Doffset-hit BLWC-hit B miss

Figure 10— Ratio of codebook misses and hits

The rest of the entries are filled with 2-LWCs sorted in decreasing
order. There are many large numbers among the total 496 2-
LWCs, which are very unlikely to be offsets. With this
arrangement of the codebook, offsets rarely cause any hit in the
LWC column as one can seeiin figure 10.

Next, we anadyzed the power dissipation overhead of the
encoder/decoder logic. Each of the above Encoders/Decoders was
designed and the netlist of the encoder/decoder circuit was written
in Berkeley Logic Interchange Format (BLIF). The netlists were
optimized using the SIS script.rugged and mapped to a 1.5-volt,
0.18-micron CMOS library using the SIS technology mapper.
Instruction addresses of the benchmark programs were then fed
into a gate-level logic simulation program named sim-power to
estimate the power consumption of the encoders. The power
calculation was done in 100 MHz. The results are summarized in
table 1. Figure 11 shows the power saving which can be achieved
by using ALBORZ in comparison to TO-Xor method when the |O
supply voltage is 3.3v for different values of external capacitance

0.85

C. As one can see for large values of C our method outperforms
TO-XOR method.

7. Conclusion

In this paper we presented several bus encoding techniques to
decrease switching activity on an instruction address bus of a
processor. Our techniques use limited weight encoding with
transition signaling to reduce switching activity. Experimental
results of running SPEC2000 programs show that our techniques
can achieve up to 89% reduction in switching activity. Our
experiments show that our encoders need about 800 gates and
consume around 2mw.

Using some techniques like shutting down parts of the circuit or
using transmission gates to implement multiplexors can reduce
power dissipation of the encoders. This will make our method
more attractive even when the bus capacitance is low.

Figure 11- Percentage power saving
0.83 X
0.81)/)(/(/*/
0.79 —
077 /(/ —
0.75
%‘ L L L L
0.73 o——8— h
0.71 //:/
0.69 /
0.67 ' 10 Capacitance
0.65 l/ |
15 20 25 30 35 40 45 50 55
—&— T0-XOR —— Fixed — — Adaptive-redundant —>— Adaptive-irredundant
TO- XOR Fi xed ALBORZ | Adaptive ALBORZ | Adaptive ALBORZ
512-Entry 32-Entry 32-Entry
Redundant Redundant I rredundant
Number of literals 440 1750 1615 2146
Area of Encoder 334. 82 766. 67 817. 64 797.53
Number of gates 306 818 870 827
Power di ssi pated by 0.13 2.32 1.65 2.18
encoder (MmN

Table 1- Comparison of different encoders

8. References

1 M. R. Stan, W. P. Burleson, “Bus-Invert Coding for low-Power
1/0,” IEEE Transactions on Very Large Scale Integration Systems,
Voal.3, No. 1, pp. 49-58, Mar. 1995.

2. L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
“ Asymptotic Zero-Transition Activity Encoding for Address Busesin
Low-Power Microprocessor-Based Systems,” GLS-VLSI-97: IEEE 7
th Great Lakes Symposium on VLSI, Urbana, IL, pp. 77-82, Mar.
1997.

3. M. Ikeda, K. Asada, “Bus Data Coding with Zero Suppression
for Low Power Chip Interfaces’, International Workshop on Logic
and Architecture Synthesis, pp.267-274, Dec. 1996.

4. Komatsu, M. lkeda, K. Asada, “ Low Power Chip Interface
based on Bus Data Encoding with Adaptive Code-book Method”,
Ninth Great Lakes Symposium, pp368-371, 1999.

5. W. Fornaciari, M. Polentarutti, D.Sciuto, and C. Silvano, “Power
Optimization of System-Level Address Buses Based on Software
Profiling,” CODES 2000, San Diego,CA, pp. 29-33, 2000.

6. M. R. Stan, W. P. Burleson, “Low power encodings for global
communication in CMOS VLSI,” |EEE Transactions on Very Large
Scale Integration Systems, VVol.5, No. 4, pp. 444-455, Dec. 1997.

7. S. Ramprasad, N. Shanbhag, I. N. Hajj, “ A Coding Framework
for Low-Power Address and Data Busses’, |EEE transactions on
Very Large Scale Integration Systems, Vol 7, No. 2, June 1999

8. Computer Architecture, A Quantitative Approach, Henessey and
Patterson, 1996.

9. www.simplescalar.org

