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Abstract 

As technology scales down, timing verification of digital integrated circuits becomes an extremely 

difficult task due to the gate and wire variability. Therefore, statistical timing analysis (denoted by 

σTA) is becoming unavoidable. In this paper, two new approaches for doing statistical gate timing 

analysis for Gaussian and non-Gaussian sources of variation in block-based σTA are presented. To 

start, a variational RC-π load is approximated by using a canonical first-order model. Next, an 

accurate variational gate timing analysis (VGTA) technique, which accounts for variational RC-π 

loads, statistical input transitions, and a variation-aware gate library, is introduced. The proposed 

method relies on a novel static effective capacitance calculation method and its variational form. 

Experimental results demonstrate that VGTA exhibits an average error of only 4% for gate delay and 

output transition time with respect to the Monte Carlo simulation with 104 samples. Next, a more 

efficient variational gate timing analysis (called F-VGTA) based on a single-iteration variational 

effective capacitance calculation is presented. Experimental results show F-VGTA achieves an 

average error of 7% for gate delay and output slew time with respect to the Monte Carlo simulation 

with 104 samples, but with runtimes that are about two times faster than VGTA.  

 

* This paper combines and extends results of our works, which were presented at the 2005 International Conference on 

Computer Design and the 2006 Asia-South Pacific Design Automation Conference. 
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1. Introduction 

Process technology and environment-induced variability of gates and wires in VLSI circuits makes 

timing analysis of such circuits a challenging task [1]. More precisely, advanced analysis tools must 

be developed which are capable of verifying the changes in the circuit timing that stem from various 

sources of variations. These sources are in turn due to the following: imperfect CMOS 

manufacturing processes (e.g., variations in L, TOX, VT or ILD thickness), environmental factors such 

as drops in Vdd (resistive drop and ground bounce), substrate temperature changes (due to migration 

of local hot spots over the chip area), and device fatigue phenomena (e.g., electro-migration, hot 

electron effects, and negative bias temperature instability) [2]. 

σTA approaches can be classified into two major groups: path-based and block-based. . In the 

path-based algorithms, a selected set of paths is submitted to the statistical timer for detailed 

analysis. Path-based statistical timing is accurate and has the ability to realistically capture 

correlations, but suffers from other weaknesses. For instance, it is not clear how to select paths for 

the detailed analysis since one of the paths that is omitted may be critical in some part of the process 

space. In addition, path-based statistical timing often does not provide the diagnostics necessary to 

improve the robustness of the design [2]. Due of shortages of path-based σTA, block-based σTA has 

received a lot of attention. In block-based σTA, every timing quantity of interest (e.g., delay and slew 

time, arrival time and required arrival time) is represented as a function of global sources of variation 

(denoted by Xi) and independent random sources of variation (denoted by Si) in a canonical first-

order (denoted by CFO) form. The advantages of such a formulation are that it can capture many of 

the key correlations and can produce delay sensitivities due to changes in a variety of environmental 

and process-related parameters [2]. Sources of variations have often been assumed to be Gaussian, 

which in turn simplifies the block-based σTA. However, it has been recently reported that certain 

process parameters exhibit non-Gaussian probability distributions [3]. 

Block-based σTA breaks its analysis into two parts: 1) variational interconnect timing analysis, 

and 2) variational gate timing analysis. Variational interconnect timing analysis has been studied by a 



 3  

number of researchers. References [4] and [5] presented reduced order modeling approaches for 

interconnect propagation delay calculation, which accounts for manufacturing variations. These 

approaches are computationally expensive due to the lack of closed form expressions. The authors of 

[6] expressed the canonical first-order model of the interconnect delay in closed form and showed 

how to propagate it through the interconnect. The authors of [7] described a modeling technique for 

gate delay variability considering multiple input switching. In [8], a model for calculating statistical 

gate delay variations caused by intra-chip and inter-chip variabilities was presented. These works, 

however, do not provide an accurate means of analyzing the gate propagation delay and output slew 

time as a function of variational RC-π loads, statistical input transitions, and a variation-aware gate 

library. In this paper, two new techniques are presented for determining the variational gate timing 

behavior.  

The first technique, called VGTA (for Variational Gate Timing Analysis), performs the following 

steps. Given the variational resistive-capacitive load (where all resistances and capacitances are 

represented in the CFO form), an efficient and accurate algorithm will be presented to calculate the 

variational RC-π load. To perform the analysis, we calculate the variation-aware admittance 

moments (cf. section 0), and as a result, the resistance and capacitances in the RC-π load can be 

written in the CFO form. Based on the statistical RC-π load obtained in this way, we calculate the 

variational effective capacitance in the CFO form. To accomplish this goal, first a new approach for 

effective capacitance calculation in static timing analysis (STA) is presented (cf. section 4.1.) This 

effective capacitance calculation method is used to calculate the variational effective capacitance 

considering non-Gaussian process and environmental sources of variation in the CFO form (cf. 

section 4.2.) Given statistical input transition times, variation-aware gate library, and variational 

effective capacitance (ceff) load in the CFO form, we calculate variational gate delay and output 

transition time in the CFO form (cf. sections 2.2.1.)  

The second technique, which is called F-VGTA for Fast Variational Gate Timing Analysis works 

as follows. The first step of F-VGTA is similar to the first step of VGTA algorithm. To determine 

the variational gate delay and output slew time in the CFO form, a “variation-aware effective 
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capacitance” technique is proposed in section 4.3, which is based on the single-iteration Ceff 

calculation approach of section 4.1. 

We point out that although, in this paper, we focus on the random variables in CFO form to 

represent process and environmental sources of variation as well as the performance quantities of 

interest, the work itself is not limited to the first-order approximation of these sources of variation. In 

fact, it is straightforward to extend the approach to more complex (e.g., second-order) forms for both 

Gaussian and non-Gaussian parameter variations. 

The remainder of this paper is organized as follows. In section 2, we review the background of 

parameterized block-based σTA. We also show how to convert a quantity, which itself is a function 

of global and independent sources of variation, into a canonical first-order (CFO) form. The 

variation-aware RC-π calculation is presented in section 0. Section 4 explains two new statistical 

gate timing analysis techniques which handle statistical input rise times, variation-aware gate library, 

and variational RC-π load. Section 5 presents experimental results. Finally, conclusions are discussed 

in section 6. We use the notation shown in Table 1 throughout the paper.  

Table 1: Useful notation and terminology 

Notation Description 

A  
A deterministic variable (which does not take into account any statistical 

variation) 

℘
A  

An arbitrary (non-CFO) random variable, which is a function of m global and p 

independent random sources of variation 

A  

A CFO random variable, which is a function of m global and p independent 

random sources of variation i.e., 
0

1 1

pm

i i m j j
i k

A A A X A S+
= =

= + ∆ + ∆∑ ∑
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2. Background 

In σTA, it is required to evaluate the distribution of the delay and slew time of the critical paths. 

Until now, this goal has typically been achieved by calculating the mean and variance of the 

distributions of the delay and slew time. However, as mentioned earlier, sources of variation may 

have an arbitrary (i.e., non-Gaussian) distribution. Therefore, in general, in addition to calculating 

the mean and variance of the electrical and timing parameters, one must calculate at least the 

skewness of their distributions, i.e. one must at the minimum calculate the first three moments of the 

circuit parameter variations.  

Definition 1: The degree of asymmetry of a probability distribution function is called its skewness 

(denoted by κ.) A distribution, or data set, is symmetric if it looks the same to the left and right of the 

center point. The skewness of a normal distribution is zero. Negative values for the skewness 

indicate distributions which are skewed to the left whereas positive values for the skewness indicate 

distributions which are skewed to the right. By left (right) skew, we mean that the left (right) tail is 

heavier than the right (left) tail. The skewness of a distribution is defined to be 
3
3

µκ
σ

=
 where µ3 is 

the 3rd central moment and σ2 is the variance (second central moment.) 

Definition 2: We say X is equal to Y in the first three moments (
3d

X Y= ) if the mean, variance, and 

skewness of X and Y are equal. (i.e., they have the same first three central moments.)  

Lemma 1:  Suppose ∆S1,…,∆Sn are n independent random variables with distribution ∆Si ~ Disti 

(µ=0, σ2=1, κi). Then, 

 3

3

2 2 1
3

1 1
2

1

where ~ 0, 1,

n

i in nd
i

i i i eq eq
ni i

i
i

a
a S a S S Dist

a

κ
µ σ κ =

= =

=

⎛ ⎞
⎜ ⎟⋅⎜ ⎟

∆ = ⋅ ∆ ∆ = = =⎜ ⎟
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑ ∑

∑
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Proof: Using expectation value properties, we have 

( ) ( )

( )

1 1 1 1

2 2

1 1

0 0

and

n n n n

i i i i i i i
i i i i

n n

i eq i eq
i i

E a S E a S a E S a

E a S a E S

= = = =

= =

⎛ ⎞∆ = ∆ = ∆ = ⋅ =⎜ ⎟
⎝ ⎠

⎛ ⎞
⋅ ∆ = ⋅ ∆⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑

 

From Definition 2, because the mean value of the two side of the equality should be equal  

 
( ) ( )2

1

0 0
n

i eq eq
i

a E S E S
=

∆ = ⇒ ∆ =∑
 

For the variance of ∆Seq, we have 

( ) ( )

( ) ( )

( )

2
2

1 1 1 1

2 22 2

1 1 1

2
22 2

1 1

2

Since 's are independent, we have

0

and

n n n n

i i i i i i j j
i i i j i

n n n

i i i i i
i i i

n n

i eq i eq
i i

E a S E a S E a S a S

Si

E a S a E S a

E a S a E S

= = = = ≠

= = =

= =

⎛ ⎞∆ = ∆ + ∆ ⋅ ∆⎜ ⎟
⎝ ⎠

∆

= ∆ + = ∆ =

⎛ ⎞
⋅ ∆ = ⋅ ∆⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 

From Definition 2 and since the mean value of ∆Seq is 0, then 

 

( ) ( )

( )

2 22 2

1 1

2

0

Since 0  1
eq

n n

i eq i eq
i i

eq S

a E S a E S

E S σ

= =

∆

∆ = ⇒ ∆ =

∆ = ⇒ =

∑ ∑
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In addition, for the skewness of ∆Seq distribution, we have 

( ) ( )( )

( ) ( )

( )

3
3 2

1 1 1 1

3 33 3

1 1 1

3 3
32 2

1 1

3

Since 's are independent, we have

0

and

n n n n

i i i i i i j j
i i i j i

n n n

i i i i i i
i i i

n n

i eq i eq
i i

E a S E a S E a S a S

S
i

E a S a E S a

E a S a E S

κ

= = = = ≠

= = =

= =

⎛ ⎞∆ = ∆ + ∆ ⋅ ∆⎜ ⎟
⎝ ⎠

∆

= ∆ + = ∆ =

⎛ ⎞ ⎛ ⎞
⋅ ∆ = ⋅ ∆⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 

From Definitions 1 and 2 
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n
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i
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i

a
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a

a
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a

κ
κ

κ
σ κ

=

= =

=

=
∆ ∆

=

⎛ ⎞
∆ = ⇒ ∆ =⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠

∆ = = ⇒ =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ ∑

∑

∑

∑
 

■ 

2.1 Canonical First-Order (CFO) Representation for Timing and Electrical Parameter 

Modeling 

In block-based statistical timing analysis tool, a first-order variational model is employed for all 

timing quantities such as the gate and wire delays, arrival times, required arrival times, slacks and 

slew times, i.e., any timing quantity, a,  is expressed in the CFO form as:   
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0 1
1

m

i i m a
i

a a a X a S+
=

= + ∆ + ∆∑
 

where a0 is the nominal value of the timing quantity of interest; ∆Xi‘s represent the variation of m 

global sources of variation, Xi, from their nominal values, ai’s are the sensitivities to each of the 

global sources of variation, ∆Sa is the variation of independent random variable Sa, and am+1 is the 

sensitivity of the timing quantity to Sa. By scaling the sensitivity coefficients, we can assume that ∆Xi 

and ∆Sa have distributions with µ=0 and σ2=1 and skewness= κ denoted by Dist(µ=0,σ2=1,κ). 

Moreover, we define ai/a0 as the normalized sensitivity coefficient (denoted by NSC.) 

Variation in the physical dimensions of the wire causes change in its resistance and capacitance, 

thereby, making the gate delay and slew time as well as interconnect propagation delay and slew time 

to vary accordingly [9]. Therefore, we need to capture the effect of geometric variations on the 

electrical parameters of the interconnect. For instance, resistance and capacitance in the CFO form 

are calculated as follows:  

0 1 0 1
1 1

m m

i i m r i i m c
i i

r r r X r S c c c X c S+ +
= =

= + ∆ + ∆ = + ∆ + ∆∑ ∑
 

where r0 and c0 represent nominal resistance and capacitance values, computed when the wire 

dimensions are at their nominal (or typical) values. ∆Xi‘s are the global sources of variation and ∆Sr 

and ∆Sc represent the independent random sources of variation for the resistance and capacitance, 

respectively ri and ci are the sensitivity coefficients of resistance and capacitance with respect to the 

sources of variations, respectively. Again we have the assumption for the distribution of ∆Xi, ∆Sr, 

and ∆Sc.  

Observation: Invariant Functional Form Property: This property states that: ( ) ( )y f x Y f X
℘ ℘

= ⇔ = , 

which simply underlies the fact that the form of function f operating on some input variable x to 
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produce output variable y is independent of its input/output type (i.e., whether x and y are 

deterministic or variational.)  

2.2 Converting a Variational Function into a CFO Form 

As mentioned before, it is important to represent timing and electrical quantities in the CFO form. 

This in turn enables one to propagate first order sensitivities to different sources of variation through 

a timing graph [2][9]. Additionally, it makes variational computations efficient and practical and 

provides timing diagnostics at a very small cost in terms of the cpu time. The remaining question is 

how to convert a quantity of interest (which itself is a function of different CFO variables) into the 

CFO form.  

The following subsection presents a technique to answer the above question. We use an 

important example to illustrate the various steps of the proposed procedure. The problem we address 

is how to convert the gate output transition time into the CFO form. However, this method can be 

easily applied to any other quantity of interest.  

2.2.1 Example: Gate timing analysis for lumped capacitive load in block-based σTA 

Problem Statement I: Given is a variational CMOS driver where its input rise time, tin, is in the 

CFO form and drives an output capacitive load, also, in the CFO form. Note that the distribution 

characteristics of all global and independent sources of variation (µ=0, σ2=1, κ) are given. The 

objective is to calculate the output transition time, tr, in the CFO form:  

,0 , , 1
1

r

m

r r r i i r m t
i

t t t X t S+
=

= + ∆ + ∆∑
 

i.e., calculate the nominal value (tr,0) and the sensitivity coefficients (tr,i  and tr,m+1) as well as the 

skewness of distribution of ∆Str. 

The gate output transition time is a function of the input transition time, the logic gate 

characteristics (e.g., the W/L ratio, threshold voltage of transistors, Vdd, and temperature), and the 
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output load. In commercial ASIC cell libraries, it is possible to characterize various output transition 

times (e.g. 10%, 50%, and 90%) as a function of above variables; i.e.;  

( ) { }, , , , ...where, , T ddr in l

W
V V Temp

L
zt TF t c z ==

 
(1) 

where tr is the output transition time and TF is the corresponding output transition time function. z 

captures the gate characteristics and environmental factors, tin is the input transition time, and cl is 

the output capacitive load. Based on the Invariant Functional Form Property, the form of function TF 

is independent of its input type (deterministic or variational.)  Hence, we extend the above equation 

to the variational case. In block-based σTA, tin, cl, and every parameter z is given in the CFO form as 

a function of m global and exactly one independent random sources of variations. Therefore, tr itself 

is a non-CFO random variable. Hence, to represent the non-CFO tr in the CFO form, we replace tin, 

cl, and z with their corresponding CFO models and collect terms. Now, by differentiating with 

respect to the global and independent random sources of variation, tr as a function of m global 

sources of variation and p independent random sources of variation can be approximated as: 

( )1 1

0
00 01 1
0 0

... , ...

1...
where  

1...
l

lk l

k k

r m p

pm

Xr i j
XS Xi ji j
S S

t TF X X S S

l mTF TF
t TF X S

k pX S

℘

℘
∆ =

∆ =∆ = ∆ == =
∆ = ∆ =

= ∆ ∆ ∆ ∆ ⇒

=⎧∂ ∂≅ + ⋅ ∆ + ⋅ ∆ ⎨ =∂∆ ∂∆ ⎩
∑ ∑

 

(2) 

Considering that ∆Sj’s are Distj(µ=0, σ2=1, κj), Eqn.(2) can be re-written as: 

2

0
00 01 1
0 0

l
r

lk l

k k

pm

Xr i t
XS Xi ji j
S S

TF TF
t TF X S

X S
∆ =

∆ =∆ = ∆ == =
∆ = ∆ =

⎛ ⎞
⎜ ⎟∂ ∂= + ⋅ ∆ + ⋅ ∆⎜ ⎟∂∆ ∂∆⎜ ⎟
⎝ ⎠

∑ ∑
 

From Lemma 1, 
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3

01
02

3
2

01
0

.

~ 0, 1,
l

k

r

l

k

p

j
Xj j
S

t

p

Xj j
S

TF

S

S Dist

TF

S

κ

µ σ κ
∆ ==
∆ =

∆ ==
∆ =

⎛ ⎞
⎜ ⎟⎛ ⎞⎜ ⎟∂⎜ ⎟
⎜ ⎟⎜ ⎟∂∆⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟∆ = = =⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟∂⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂∆⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑

∑

 

In Lemma 2, we present the key results, which enable us to do addition, multiplication, and 

division of two CFO forms and putting the result in a new CFO form. (Notice that this lemma allows 

us to evaluate the above equation.) 

Lemma 2: Suppose a and b are two given CFO random variables as follows: 

0 1
1

m

i i m a
i

a a a X a S+
=

= + ∆ + ∆∑
        

0 1
1

m

i i m b
i

b b b X b S+
=

= + ∆ + ∆∑
 

The following describes the result of various operations performed on a and b. 

a) Addition and subtraction: 

( ) ( ) 2 2
0 0 1 1

1

m

i i i m m c
i

c a b a b a b X a b S+ +
=

= ± = ± + ± ∆ + + ∆∑
 

b) Multiplication: 

( ) ( ) ( )2 2

0 0 0 0 0 1 1 0
1

m

i i i m m c
i

c a b a b a b a b X a b a b S+ +
=

≅ × = + + ∆ + + ∆∑
 

c) Division: 

2 2

0 0 0 1 0 1
2 2

10 0 0 0

m
i i m m

i c
i

a a b a b a a ba
c X S

b b b bb

+ +

=

⎛ ⎞ ⎛ ⎞−≅ = + ∆ + + ∆⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
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Proof: Based on the aforesaid operations, we have 

2

2

0 1 1
0

0 0

0 0

0 0
1 10 00 0

0 0

l

k
l l

k k

l l

l l
k k

k k

m

i c
X

i ji j
S

X X

S S

m m

iX X
i ii iX XS S

S S

a b a b
c a b X S

X S

a b
a b X

X X

∆ = = =
∆ =

∆ = ∆ =
∆ = ∆ =

∆ = ∆ =
= =∆ = ∆ =∆ = ∆ =

∆ = ∆ =

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟∂ ± ∂ ±⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠= ± + ⋅ ∆ + ⋅ ∆⎜ ⎟⎜ ⎟ ∂∆ ∂∆⎝ ⎠ ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠
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∂∆ ∂∆

∑ ∑

∑ ∑
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which proves part (a). For part (b), we have 
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Part (c) can be proved similarly. Therefore, we can write 
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■ 

3. RC-π Load Calculation in the CFO Form  

In VDSM technologies, one cannot neglect the effect of interconnect resistance of the load on the 

gate delay and output transition time. In STA, an adequate approximation of an nth order load seen by 

the gate (i.e., a load with n distributed capacitances to ground) is obtained by replacing the load by a 

second order RC-π model [10]. Equating the first, second, and third moments of the admittance of 

the real load with the first, second, and third moments of the RC-π load, we can compute cn, rπ, and 

cf   as follows [11]: 

2 2 2
2, 3, 2,

1, 3
3, 3,2,

in in in
n in f

in inin

Y Y Y
c Y r c

Y YY
π= − = − =

 

(3) 

where Yk,in denotes the kth moment of the admittance of the real load. In σTA, it is necessary to 

consider the effect of variability of the load on the gate timing analysis. 

Problem Statement II: Given is an RC network representation of the load of a logic gate in a design 

as exemplified in Figure 1(a), where each r and c is in the CFO form. Note that the distribution 

characteristics of all global and independent sources of variation (µ=0, σ2=1, κ) are given. The 
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objective is to calculate an equivalent variational RC-π load (where cn, rπ, and cf are in the CFO 

form), while its admittance matches the admittance of the real load in the frequency range of interest. 

1r 2r

3r 4r

3c 4c

2c1c

3Y
4Y

1inY Y= 2Y
 

nc

rπ

fc
 

(a) (b) 

Figure 1: (a) a variational RC network representation of a net in a design. (b) the 

equivalent variational RC-π model. 

 cn, rπ, and cf are functions of the admittance moments as seen from Eqn. (3). Hence, by 

calculating the variational admittance moments, we can calculate the CFO parameters of the RC-π 

load (by using the equations given in section 2.2.) This can be done by differentiating expressions in 

Eqn. (3) with respect to the sources of variation (c.f. section 2.2.) However, as it will be shown next, 

a recursive operation is utilized to calculate the variational admittance moments. In each recursion 

step returns a non-CFO random variable which will feed in the next recursion step and this may 

increase the complexity of the calculations.  

Therefore, instead, we represent the admittance moments in the CFO form throughout the 

recursion. This helps us by controlling the complexity of representing the moments as the recursive 

function proceeds. The following shows how to calculate the input admittance moments of a real 

load in the CFO form. 

Consider the RCY segment shown in Figure 2. Assume that the admittances at nodes j and i are 

represented by infinite series using the admittance moments: 
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2
1, 2, ,( ) ... ...k

j j j k jY s sY s Y s Y= + + + +
 

2
1, 2, ,( ) ... ...k

i i i k iY s sY s Y s Y= + + + +
 

where Yk,j denotes the kth moment of the admittance of the node j. In STA, the admittance at node i is 

recursively computed in terms of the admittance at node j as follows [11]:   

1, 1,

1

, , , , 1,
1

2

i j i

k

k i k j i l i k l j i i k i
l

Y Y c

Y Y r Y Y rc Y for k
−

− −
=

= +

= − − ≥∑
 

(4) 

 

Figure 2: an RCY segment model for recursive admittance moment calculation. 

Using the Invariant Functional Form Property, we extend the above equation to the variational 

case. Assume the admittance moments of node j are written in the CFO form. Thus, by 

differentiating Yk,i with respect to the sources of variations, the Yk,i moments can be also represented 

in the CFO form (c.f. section 2.2.)  

As an example, consider the circuit shown in Figure 1. To calculate the admittance moments of 

Yin=Y1 in the CFO form, we need to start from the far end nodes of the RC tree (Y2 and Y4) and 

recursively apply Eqn. (4). Therefore, we calculate the first three moments of Y4 in the CFO form as 

follows:  
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1,4 4

2

2,4 4 4 1,4 4 4

2,4

3,4 4 4 2,4

3,4

1) ;

2) ;

3) Calculate ;

4) ;

5) Calculate ;

Y c

Y r c Y r c

Y

Y r c Y

Y

℘

℘

=

= − = −

= −

 

Based on the problem statement assumption, c4 is in the CFO form, thereby, Y1,4 is also in the 

CFO form. However, since Y2,4 and Y3,4 are nonlinear functions of the CFO variables and as a result 

they are complex random variables, we ought to use the techniques described in section 2.2 to 

transform Y2,4 and Y3,4 to the CFO form. Similarly, the first three admittance moments of Y3 as a 

function of the moments of Y4 are obtained as: 

1,3 1,4 3 4 3

2,3 2,4 3 1,3 1,4 3 3 1,3

2,3

3,3 3,4 3 1,3 2,4 2,3 1,4 3 3 2,3

3,3

1) ;

2) ;

3) Calculate ;

4) ;

5) Calculate ;

Y Y c c c

Y Y r Y Y r c Y

Y

Y Y r Y Y Y Y r c Y

Y

℘

℘

= + = +

= − −

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 

By using the above recursive operations, we easily compute the moments of Yin=Y1 in the CFO 

form, and hence, calculate the values of cn, rπ, and cf  in the CFO form using Eqn. (3). 

4. Gate Timing Analysis for the RC-π Load in Block-Based σTA 

Problem statement III: Given is a variational CMOS driver, whose input rise time, tin, is in the 

CFO form and drives a variational RC-π load. The resistance and two capacitances of this load are 

also in the CFO forms. Note that the distribution characteristics of all global and independent sources 
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of variation (µ=0, σ2=1, κ) are given. The objective is to calculate the output transition time, tr, in the 

CFO form: 

,0 , , 1
1

r

m

r r r i i r m t
i

t t t X t S+
=

= + ∆ + ∆∑
 

 

i.e., calculate the nominal value (tr,0) and the sensitivity coefficients (tr,i  and tr,m+1) as well as the 

skewness of distribution of ∆Str. 

Section 2.2.1 solves the same problem where the gate drives a variational purely-capacitive load 

in the CFO form. (cf. Eqn. (1)) Therefore, if we substitute the RC-π load with its equivalent 

variational effective capacitance, ceff, in the CFO form, then the solution to problem statement I is an 

acceptable solution to problem statement III. Based on this reasoning, the following subsections 

propose a solution for calculating the effective capacitance in the CFO form. Section 4.1 presents a 

new effective capacitance calculation method in static timing analysis. This method is used in section 

4.2 where a technique for statistical effective capacitance calculation is presented. Section 4.3 

utilizes a heuristic combined with the technique presented in section 4.1 to present the second 

technique for faster variational gate timing analysis in section 4.3.  

4.1 A New Effective Capacitance Calculation Method in STA 

The effective capacitance is a pure capacitance that replaces an RC-π load and has the property that it 

gives the most accurate result from a timing model that is characterized with lumped capacitance. 

Typically, the effective capacitance stores the same amount of charge as the RC-π load until a certain 

point of the output voltage transition [11][12][13] (e.g., the 50% trip point of the output transition.) 

Figure 3(a) depicts a typical CMOS driver with its input waveform and RC-π load. The output 

voltage waveform may be modeled as a weighted linear sum of ramp and exponential waveforms as 

shown in Figure 3(b). We therefore assume that the actual ceff can be obtained as a weighted average 

of that obtained for the ramp output waveform and that obtained for the exponential output 

waveform. 
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In the following, we calculate ceff for ramp and exponential waveforms of the gate output voltage. 

Suppose that output voltage of a gate is approximated with an exponential waveform: 

( ) ( )-

1 -
ln

1-
1- wherept

N dd
r

V t V e p
t

α
β

⎛ ⎞
⎜ ⎟
⎝ ⎠= =

 

where VN(t) is the gate output voltage waveform in time domain and tr is the output rise time from 

α% trip point to β% trip point of this waveform. 
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(a)  (b) 

Figure 3: (a) A gate, which drives an RC- π calculated load.     (b) Gate output 

waveform is neither ramp nor exponential. 

tr  is a function of the input transition time (tin) and the output load.  Thus, the iterative effective 

capacitance equation for matching any θ% trip point of the gate output transition time may be written 

as:  

( ) ( ) ( )

( ) ( )

( )( )

ln(1 )

, , , where

1 e 1 and

1
ln

1 ,

Exp
eff r n f n Exp f

y
Exp

f

Exp
r in eff

c G t c r c c k c

y
k

r c
y

t t c

π

θ

π

θ θ

θ
θ

α
β θ

−

= = +

⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎛ ⎞−= ⋅⎜ ⎟−⎝ ⎠
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Similarly, for the ramp output voltage waveform, we have:  

( ) ( ) ( )

( ) ( )

( )
( )( )

, , , where

1 1 e and

,

Ramp
eff r n f n Ramp f

x
Ramp

f

Ramp
r in eff

c H t c r c c k c

x
k

r c
x

t t c

π

θ

π

θ θ

θ
θ

β α
θ

−

= = + ⋅

⎡ ⎤= − ⋅ −⎢ ⎥⎣ ⎦

= − ⋅

 

Now, based on the assumption made above, an iterative equation for actual ceff calculation for 

any θ% trip point of the output transition may be written as:  

( ) ( )( )( )
( ) ( )( )( )

( ) ( )( )( ) ( )

, , . ,

, , . ,

, , . , 1

Exp Exp
eff r in eff n f

Ramp Ramp
eff r in eff n f

eff r in eff n f

c G t t c c r c

c H t t c c r c

c F t t c c r c G H

π

π

π

θ θ

θ θ

θ θ ζ ζ

⎫= ⎪⇒⎬
= ⎪⎭

= = ⋅ + − ⋅

 (5) 

where 0≤ζ≤1 is the weighting factor for the linear combination of exponential and ramp waveforms. 

In practice, we have observed that when θ%=50%, then ζ=0.5 results in the minimum error between 

the iterative ceff  equation in Eqn. (5) and the actual sign-off ceff value. 

4.2 Variational Gate Timing Analysis (VGTA) 

Suppose tin, cn, rπ , and cf are given in the CFO form as: 

,0 , , 1
1

in

m

in in in i i in m t
i

t t t X t S+
=

= + ∆ + ∆∑
 

(6) 

,0 , , 1
1

n

m

n n n i i n m c
i

c c c X c S+
=

= + ∆ + ∆∑
 

(7) 
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,0 , , 1
1

m

i i m r
i

r r r X r S
ππ π π π +

=
= + ∆ + ∆∑

 

(8) 

,0 , , 1
1

f

m

f f f i i f m c
i

c c c X c S+
=

= + ∆ + ∆∑
 

(9) 

( ) ( )
( ) ( )

2 2

2 2

~ 0, 1, ~ 0, 1,

~ 0, 1, ~ 0, 1,

in in n

f

n

f

t t c

r r c

c

c

Dist Dist

Dist Dist

S S

S S
ππ

µ σ κ µ σ κ

µ σ κ µ σ κ

= = = =

= = = =

∆ ∆

∆ ∆
 

(10) 

The effective capacitance for this problem generally becomes an arbitrary (non-CFO) random 

variable, i.e. effc
℘

. Thus, we approximate it with its CFO form and the objective becomes to calculate 

the coefficients of ceff in the CFO form as well as the skewness of ∆Sceff as: 

,0 , , 1
1

eff

m

i ceff eff eff i eff m
i

c c c X c S+
=

= + ∆ + ∆∑
 

(11) 

2

such that is minimized., , , ,  r in neff eff fE c F t t c c r cπ

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦
−

 

 

Function F is given in Eqn. (5) and E(.) denotes the expectation value. 

Theorem: For a variational circuit, where tin, cn, rπ, and cf in the CFO form are written as in Eqns. 

(6)-(10), the coefficients of ceff in the CFO form (Eqn. (11)), can be calculated as: 

( )( ),0 ,0 ,0 ,0 ,0 ,0, , , ,eff r in eff n fc F t t c c r cπ=
 

(12) 
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Proof: Based on the proposed effective capacitance equations in section 4.1, the ceff iterative 

equation can be rewritten as:  
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Next, we need to compute effc  such that: 

2

, , , ,  is minimizedeff r in eff n fE c F t t c c r cπ
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Using the partial derivations technique, we can expand the non-linear function F around the 

global and independent sources of variation as: 
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Therefore, to satisfy Eqn. (16), we need to have: 
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Expanding Eqn. (17) will give us the following: 
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Therefore, ceff,i value can be calculated as Eqn. (13). Using the same method, we can derive 

ceff,m+1
tin. 
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where , 1
int

eff mc +  will be calculated after collecting terms. Similarly , 1
nc

eff mc + , , 1
r
eff mc π

+ and , 1
fc

eff mc + are 

calculated and Eqn. (14) is proved. Finally Lemma 1 proves Eqn.(15).■ 

Eqn. (12) is the iterative ceff calculation under the nominal conditions of the circuit. Hence, ceff,0 

can be evaluated by using the effective capacitance calculation presented in section 4.1 or any 

conventional effective capacitance calculation[12][13].  

tin,i , cn,i , rπ,i , cf,i , are given (cf. Eqns. (6)-(9).) To evaluate Eqns. (13) and (14), we must calculate 

the derivatives of function F (function F is given in Eqn. (5)) with respect to tr, cn, rπ, cf, and evaluate 

these derivatives for the nominal values of the circuit parameters (when all sources of variation are 

set to zero i.e., (∂F/∂tr)
nom, (∂F/∂cn)

nom, (∂F/∂rπ)
nom, and (∂F/∂cf)

nom
.) These terms are easy to 

evaluate. For the remaining terms, we need to calculate the derivatives of the output transition time 

(tr) with respect to tin and ceff and evaluate them under the nominal condition of the circuit (i.e., 

(∂tr/∂tin)
nom and (∂tr/∂ceff)

nom.)  To do this, we propose two different solutions. 

1) Updating the gate library look-up table and utilizing the additional data during σTA: The 

revised tables now provide not only the timing quantity for each combination of tin and cl, but also 

the derivatives of the timing quantity (tr) with respect to tin and cl for each combination of tin and 

cl. 
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2) Using the existing gate library look-up table, but performing additional calculations during 

σTA: To approximately calculate (∂tr/∂tin)
nom

, we read tr (from the gate library) for <tin,0 ; cl,0 > 

and < tin,0+δ; cl,0 >. Next, we calculate ∆tr/δ as the approximation. (∂tr/∂ceff)
nom can be similarly 

calculated. 

Using any of the above solutions, Eqns. (13) and (14) become closed form expressions, which 

can be evaluated in constant time. Note that we calculate (∂F/∂tr)
nom, (∂F/∂cn)

nom, (∂F/∂rπ)
nom, and 

(∂F/∂cf)
nom only once in constant time. The complexity of our method is thus dominated by the 

iterative effective capacitance calculation under the nominal conditions. It is therefore important to 

try and improve the efficiency of the statistical ceff calculation as is done in the next sections 

4.3 Fast Variational Gate Timing Analysis (F-VGTA) 

As mentioned earlier, to perform accurate gate delay and output slew time calculation, an iterative 

calculation of ceff is inevitable [12][13]. However, as the number of sources of variations increases, 

the number of required ceff runs rises exponentially (it is proportional to the number of corner points 

in static timing analysis), which becomes very CPU-intensive very quickly. In the previous section, 

we presented a statistical ceff calculation technique. Here, we present another, more efficient, 

technique to find ceff in the CFO form.  

Suppose the actual ceff in the CFO from can be represented as: 
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(18) 

Since ceff calculation is iterative, we define 
k
effc

as an approximate representation of actual effc
, 

which is obtained from the first k iterations of the statistical iterative ceff algorithm as follows: 
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ceff
0 means representing ceff using the total capacitance (i.e. cn+cf), ceff

1 means the value of the 

effective capacitance obtained by using a single iteration, and so on. We define ceff
k
,i/ceff

k
,0 and 

ceff,i/ceff,0 as iterative and actual normalized sensitivity coefficients (denoted by NSC’s), respectively. 

The NSC’s capture the effect of the load variation on the ceff value. It can be shown that in each 

iteration, the iterative NSC’s change slightly (for k≥1), and they converge to their actual NSC values; 

i.e.; 

, ,

,0 ,0

1 ,

1

k
eff i eff i

k
eff eff

i m
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c c
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≤ ≤
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≅

 

 
(20) 
  

Using the above observation, problem statement III can be solved by the following steps:  
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3) Using Eqn. (20) and the results of steps 1 and 2 , determine

4) Having found  and , for , calculate . Using the

k
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     method presented in section 2.2, determine the gate delay and output 

     slew in the CFO form and the skewness of .tS
α

∆

 

Figure 4: (a) A gate, which drives an RC- π calculated load. (b) Gate output waveform is neither 

ramp nor exponential 

Step 2 is performed by using STA-based (non-variational) Ceff algorithm presented in section 4.1 

or any other conventional effective capacitance calculation [12][13]. Step 3 is a simple algebraic 

equation while step 4 is performed as per section 2.3. For step 1, the following sections show how to 

calculate the 
0
effc

and 
1
effc

.  
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4.3.1 Finding effc from 
0
effc   

As we mentioned before, ceff
0 approximates ceff with the sum of the total capacitance (i.e., cn+cf). 

Thus, the 
0
effc

is equal to the sum of nc and fc
, i.e. if  

,0 , , 1 ,0 , , 1

1 1
n f

m m

n n n i i n m c f f f i i f m c

i i

c c c X c S c c c X c S+ +
= =

= + ∆ + ∆ = + ∆ + ∆∑ ∑
 

(21) 

Therefore,   
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We must calculate ceff for the nominal condition of the circuit (i.e., any quantity in the circuit is at 

its nominal value) to get ceff,0. Therefore, by using Eqns. (18), (20), and (22) the variational effective 

capacitance can be written as: 
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Now, we can use effc
in Eqn. (23) and the method presented in section 2.2 to generate the gate 

propagation delay and output slew time in the CFO form.  However, this approach may not capture 

the effect of the variations of the resistance in the RC-π load on the gate timing analysis. Therefore, 

the next approach, finds NSC’s based on a reasonably accurate single-iteration ceff calculation. 



 28  

4.3.2 Finding effc from 
1
effc  

In this section we find the nominal value of the effective capacitance by performing iterative ceff 

calculation for the nominal conditions of the circuit. Next we find NSC’s by applying a single-

iteration effective capacitance method. ceff
1 means using single-iteration of Eqn. (5) as the gate load. 

Thus, 
1
effc

 may be obtained by differentiating Eqn. (5) with respect to the sources of variations (c.f. 

section 2.2). 

Subsequently, using the same approach as in section 4.1, we can find the effc
 while the NSC’s 

are calculated using the above single-iteration ceff technique. Experimental results confirm that 

evaluating variational ceff using the above approach shows an average error of 7% in the final delay 

and output slew time calculation with respect to Monte Carlo simulation.  

5. Experimental Results  

Our experiments use 90nm CMOS process parameters to model gates and interconnect parasitics. 

We assumed two different configurations for the experimental setup. The first one consists of two 

inverters connected in series whereas the second one is a CMOS inverter followed by a 2-input 

NAND gate. For both configurations, we apply a ramp input to the first inverter while its nominal 

value is chosen from the set (tin)
nom={10ps,80ps,150ps,220ps,300ps}. For the first configuration, size 

of the first inverter is fixed at Wp/Wn =30/15µm whereas size of the second inverter is chosen to be 

one of Wp/Wn={20/10, 50/25, 70/35, 100/50}µm. For the second configuration, size of the first 

inverter is again fixed at Wp/Wn =30/15µm whereas this time the size of the succeeding 2-input 

NAND gate is chosen to be one of Wp/Wn={40/40, 50/50, 100/100}µm.  

To characterize the timing behavior of the gate, a look-up table based library is employed which 

represents the gate delay and output transition time as a function of input rise time, output capacitive 

load, Vdd, and temperature. We apply different loading scenarios for the second-stage gate as 

explained in the following subsections, i.e., pure capacitive load and general RC load. We have also 
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considered four different global sources of variation (Vdd, temperature, Metal layer 1 width, and ILD) 

and one independent random sources of variation for each electrical parameter (i.e., r and c) and 

timing parameter (for instance tin) in the circuit. The sensitivity of each given data to the sources of 

variation is chosen randomly, while the total σ variation for each data is chosen to be 10% and 15% 

of their nominal value. We also assumed that the sources of variation are skewed with different 

skewness values as explained in each subsection. Mean, variance, and skewness of effective 

capacitance, the gate 50% propagation delay, and 10%-90% output transition time (slew time) are 

calculated using the approaches presented in this paper.  

To compare the results, we ran Monte Carlo simulation with 104 samples on each test scenario 

and derived mean, variance, and skewness of effective capacitance, the gate 50% propagation delay, 

and 10%-90% output transition time. The average percentage errors for the mean, variance, and 

skewness of effective capacitance, the gate 50% propagation delay, and 10%-90% output transition 

time between the obtained results from the HSPICE and the calculated results based on using both 

VGTA and F-VGTA algorithm are reported.  

A. Pure Capacitive Load 

The load in this section is considered to be purely capacitive. Its nominal value is chosen to be 

(C)nom= {400, 500, 800, 1400}fF. The scaled distribution of the sources of variation is considered to 

have a skewness of 0.4, 0.6, and 0.8. We performed our experiments on both circuit configurations 

explained above. The results for the first configuration (where the second gate is an inverter) are 

presented in Table 2 (the skewness of the given data is 0.4) and Table 3 (for the skewness of 0.8). 

The results for the second configuration are provided in Table 4 (for the skewness of 0.6). 

Experimental results indicate an average error of about 3% for two different σ values, i.e. 10% and 

15%. As we increase the σ value (i.e. the total σ variation for each data; e.g. σ variation of tin, and cl) 

from 10% to 15%, the error in calculated mean, variance, and skewness of the delay and slew time 

increase, but slightly. The sources of error can be mainly classified into two groups: 1) the 

inaccuracy of the gate library table lookup and 2) the linear first order approximation of the timing 



 30  

and electrical parameters with respect to the sources of variation. Note that, the runtime of the 

proposed algorithm in average is 129 times faster than the Monte Carlo based approach. 

Table 2: Average error for the inverter driving pure capacitive load (Skewness=0.4) 

 σ=10% σ=15% 

Average error Delay 
Slew 

time 
Delay 

Slew 

time 

Mean 1.5% 1.7% 2.2% 2.3% 

Variance 1.2% 1.3% 1.8% 1.9% 

Skewness 1.0% 1.1% 1.4% 1.3% 

Table 3: Average error for the inverter driving pure capacitive load (Skewness=0.8) 

 σ=10% σ=15% 

Average error Delay 
Slew 

time 
Delay 

Slew 

time 

Mean 1.9 % 2.3% 2.5% 2.9% 

Variance 1.6% 1.7% 1.9% 2.1% 

Skewness 1.4% 1.5% 1.5% 1.9% 

Table 4: Average error for the 2-input NAND gate driving pure capacitive load (Skewness=0.6) 

 σ=10% σ=15% 

Average error Delay 
Slew 

time 
Delay 

Slew 

time 

Mean 3.0 % 3.1% 3.2% 3.1% 

Variance 2.5% 2.7% 2.8% 2.9% 

Skewness 2.2% 2.3% 2.5% 2.6% 
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B. General RC Load:  

For this section, the load is considered to be an RC tree of varying topology. The nominal value of 

the total resistance of the load is chosen to be from the set (R)nom= {150, 260, 300, 710, 1000}Ω and 

the nominal value of the total capacitance of the load is chosen to be from the set (C)nom ={400, 500, 

800, 1400}fF. The scaled distribution of the sources of variation is considered to have a skewness of 

0.5, 0.75, and 1. 

Again, we performed the experiment on both circuit configurations as explained before. The 

results for the first configuration (where the second gate is an inverter) are presented in Table 5 (the 

skewness of the given data is 0.5) and Table 6 (the skewness of the given data is 0.75).  The results 

for the second configuration are also provided in Table 7 (the skewness of the given data is 1). 

Experimental results indicate an average error of about 6% for different σ values.  As we increase the 

σ value (i.e. the total σ variation for each data; e.g. σ variation of tin, cn, rπ, and cf) from 10% to 15%, 

the error in calculated mean, variance, and skewness of ceff, the gate delay, and output transition time 

increase, but slightly. Similarly, as skewness increases (e.g. skewness of tin,  cn, rπ, and cf) from 0.5 

to 0.75, the error in calculated mean, variance, and skewness of the ceff, as well as the error in delay 

and slew time increases, but slightly. The sources of error can be mainly classified into four groups: 

1) the inaccuracy of the gate library table lookup, 2) the linear first order approximation of the timing 

and electrical parameters with respect to the sources of variation, 3) the error in calculating the 

variational RC-π load and 4) the error in the effective capacitance iterative equation proposed in 

section 4.1. Note that, the runtime of the proposed algorithm is, in average, 95 times faster than the 

Monte Carlo based approach.   

Table 5: Average error for the inverter driving general RC load (Skewness=0.5) 

 σ=10% σ=15% 
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Average error Ceff Delay 
Slew 

time 
Ceff Delay 

Slew 

time 

Mean 3.2% 3.5% 4.9% 3.5% 5.4% 5.8% 

Variance 2.4% 3.3% 4.5% 2.6% 5.9% 5.2% 

Skewness 2.5% 3.3% 4.9% 2.0% 5.5% 5.5% 

Table 6: Average error for the inverter driving general RC load (Skewness=0.75) 

 σ=10% σ=15% 

Average error Ceff Delay 
Slew 

time 
Ceff Delay 

Slew 

time 

Mean 3.5% 5.1 % 5.3% 3.8% 5.9% 6.1% 

Variance 2.9% 4.3% 5.5% 3.6% 6.2% 6.2% 

Skewness 2.8% 4.1% 4.9% 3.1% 5.9% 5.9% 

Table 7: Average error for the 2-input NAND gate driving general RC load (Skewness=1) 

 σ=10% σ=15% 

Average error Ceff Delay 
Slew 

time 
Ceff Delay 

Slew 

time 

Mean 4.1% 5.2 % 5.1% 4.2% 6.1% 6.7% 

Variance 3.9% 5.4% 5.2% 4.3% 6.1% 6.1% 

Skewness 4.0% 6.1% 5.6% 4.2% 6.5% 6.3% 

 

For F-VGTA algorithm, again, we performed the experiment on both circuit configurations as 

explained before. The results for the first configuration (where the second gate is an inverter) are 

presented in Table 8 (when the Ctotal is used for calculating the NSC) and Table 9 (when the single 

iteration Ceff is used for calculating the NSC).  The results for the second configuration are also 
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provided in Table 10 (when the Ctotal is used for calculating the NSC) and Table 11 (when the Ctotal is 

used for calculating the NSC). Experimental results indicate an average error of about 19% for 

different σ values when the ctotal is used for calculating the NSC. It also shows an average error of 

about 7% for different σ values when the single iteration Ceff is used for calculating the NSC.  As we 

increase the σ value (i.e. the total σ variation for each data; e.g. σ variation of tin, cn, rπ, and cf) from 

10% to 15%, the error in calculated mean and variance of Ceff, the gate delay, and output transition 

time increase, but slightly. The sources of error can be mainly classified into five groups: 1) the 

inaccuracy of the gate library table lookup, 2) the linear first order approximation of the timing and 

electrical parameters with respect to the sources of variation, 3) the error in calculating the 

variational RC-π load and 4) the error in the effective capacitance iterative equation. 5) the error in 

NSC approximation (Eqn. (20)). Note that, the runtime of the proposed algorithm is, in average, 185 

times faster than the Monte Carlo based approach.   

Table 8: Average error for the inverter driving general RC load when Ctotal is used for calculating NSC 
 σ=10% σ=15% 

Average error Delay 
Slew 
time 

Delay 
Slew 
time 

Mean 14.6% 15.8% 18.1% 18.3% 
Variance 15.4% 16.3% 16.9% 17.9% 
Skewness 15.9% 17.5% 17.3% 18.5% 

Table 9: Average error for the inverter driving general RC load when single iteration Ceff is used for 
calculating NSC 

 σ=10% σ=15% 

Average error Ceff Delay 
Slew 
time 

Ceff Delay 
Slew 
time 

Mean 4.1% 6.5 % 6.7% 4.2% 6.4% 6.4% 
Variance 3.9% 5.6% 6.0% 4.3% 6.5% 6.3% 
Skewness 3.7% 5.1% 5.5% 4.4% 6.9% 6.4% 

Table 10: Average error for the 2-input NAND gate driving general RC load when Ctotal is used for 
calculating NSC 

 σ=10% σ=15% 

Average error Delay 
Slew 
time 

Delay 
Slew 
time 

Mean 16.6% 16.8% 19.1% 18.2% 
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Variance 16.4% 17.3% 17.9% 18.8% 
Skewness 16.1% 17.7% 17.5% 19.0% 

Table 11: Average error for the 2-input NAND gate driving general RC load when single iteration Ceff 
is used for calculating NSC 

 σ=10% σ=15% 
Average 

error 
Ceff 

Dela
y 

Slew 
time 

Ceff Delay 
Slew 
time 

Mean 3.7% 5.6% 5.8% 4.6% 6.1% 6.2% 
Variance 4.1% 5.4% 5.3% 4.5% 5.9% 5.8% 
Skewness 4.5% 5.3% 5.2% 4.3% 5.6% 5.3% 

6. Conclusion 

In this paper we presented two frameworks to handle the variation-aware gate timing analysis in 

block-based σTA considering non-Gaussian sources of variation. To perform any of these 

frameworks, first, we proposed an approach to calculate variational RC-π load, which can be utilized 

instead of the actual variational RC load for the gate timing analysis purposes. Next, we presented a 

new approach for calculating effective capacitance in STA. We used this technique to calculate the 

statistical ceff in canonical first-order (CFO) form, and thereby, calculated the gate delay and output 

slew time in the CFO form. Experimental results show an average error of 4% with respect to 

HSPICE Monte Carlo simulation. 
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