

Resource Allocation and Consolidation in a Multi-Core Server Cluster Using a
Markov Decision Process Model

Yanzhi Wang, Shuang Chen, Hadi Goudarzi, Massoud Pedram

University of Southern California, Los Angeles, CA USA

E-mail: {yanzhiwa, shuangc, hgoudarz, pedram}@usc.edu

Abstract
Distributed computing systems have attracted a lot of

attention due to increasing demand for high performance

computing and storage. Resource allocation is one of the

most important challenges in the distributed systems

especially when the clients have some Service Level

Agreements (SLAs) and the total profit depends on how the

system can meet these SLAs. In this paper, an SLA-based

resource allocation problem in a server cluster is considered.

The objective is to maximize the total profit, which is the

total price gained from serving the clients subtracted by the

operation cost of the server cluster. The total price depends

on the average request response time for each client as

defined in their utility functions, while the operating cost is

related to the total energy consumption. A joint optimization

framework is proposed, comprised of request dispatching,

dynamic voltage and frequency scaling (DVFS) for

individual cores, as well as server-level and core-level

consolidations. Each core in the cluster is modeled using a

continuous-time Markov decision process (CTMDP). A

near-optimal hierarchical solution is proposed, consisting of

a central manager and distributed local agents. Each local

agent employs linear programming-based CTMDP solving

method to solve the DVFS problem for the corresponding

core. The central manager solves the request dispatching

problem and finds the optimal number of turned on cores

and servers for request processing, thereby achieving a

desirable tradeoff between service request response time and

power consumption. Experimental results demonstrate that

the proposed near-optimal resource allocation and

consolidation algorithm consistently outperforms baseline

algorithms.

Keywords
Cloud computing, service level agreement, resource

allocation, Markov decision process

1. Introduction
Computing is being transformed to a model consisting of

services that are commoditized and delivered in a manner

similar to traditional utilities such as water, electricity, gas,

and telephony [1]. In such a model, users access services

based on their requirements without regard to where the

services are hosted or how they are delivered. The recently

proposed Cloud computing idea [1][2] transforms the

infrastructure to a “Cloud” from which businesses and users

are able to access applications from anywhere in the world

on demand. The computing world is rapidly transforming

towards developing software for millions to consume as a

service, rather than to run on their individual computers.

In cloud computing, the capabilities of business

applications are exposed as sophisticated services that can

be accessed over a network. Cloud service providers are

incentivized by the profits to be made by charging clients for

accessing these services. Clients are attracted by the

opportunity for reducing or eliminating costs associated with

“in-house” provision of these services. It is essential that the

clients have guarantees from providers on service delivery.

Typically, these are provided through Service Level

Agreements (SLAs) brokered between the providers and

consumers. The SLAs include computing power, storage

space, network bandwidth, availability and security, etc.

The underlying infrastructure of cloud computing

consists of data centers and clusters of servers that are

monitored and maintained by the cloud service providers.

Service providers often end up over-provisioning their

resources in these servers in order to meet the clients’ SLAs

[3]. Such over-provisioning may increase the cost incurred

on the servers in terms of both the electrical energy cost and

the carbon emission. Therefore, optimal provisioning or

allocation of the resources is imperative in order to reduce

the cost incurred on the servers as well as the environmental

impact. The problem of optimal resource allocation in the

cloud computing framework is therefore crucial and has

been investigated in [4][5]. The more general problem of

resource allocation and management in distributed

computing system has been an active research topic in the

recent ten years. There is a number of papers discussing the

resource allocation problem in grid computing systems

[6][7], in the framework of electronic commerce [8], in

autonomic computing systems [9][10], and in clusters of

servers [11].

In this paper, we consider the problem of SLA-based

resource allocation optimization in a cluster of servers.

Multiple clients exist in the resource allocation framework,

each generating requests in a different rate. Clients in this

system are application software that requires processing,

data storage, and communication resources. Each client in

this system has a pre-defined utility function based on its

response time requirements. The server cluster consists of

multiple potentially heterogeneous servers, each comprised

of a number of potentially heterogeneous cores. The total

profit in this system is the total price gained from serving

the clients subtracted by the cost of operating the turned on
*This research is sponsored in part by a grant from the National

Science Foundation.

servers in the system, where the operation cost of turned on

servers is proportional to their energy consumptions.

Different from the prior work, we propose a joint

optimization framework considering the optimal request

dispatching, dynamic voltage and frequency scaling (DVFS)

in each core of the server cluster, as well as server-level and

core-level consolidations. Each core in the server cluster is

modeled using a continuous-time Markov decision process

(CTMDP) [17][18], in which actions are execution

frequencies (and supply voltages) for processing the service

requests. We know that a higher execution frequency will

result in a shorter response time, but a significant increase in

power consumption [12][13][14].

We propose a near-optimal hierarchical solution of the

resource allocation problem consisting of a central resource

manager and distributed local agents. Each local agent

employs linear programming-based Markov decision

process solving method [18] for solving the DVFS problem

for each core, judiciously selecting the most appropriate

execution frequency based on the number of waiting

requests. The local agents are used to parallelize the solution

and decrease the decision time, thereby helping with the

scalability. The central manager utilizes optimization

methods for solving the request dispatching problem based

on the optimization results of the distributed agents. It also

finds the optimal number of turned on cores and servers for

request processing (i.e., performing core-level and server-

level consolidations) in order to achieve a desirable balance

between the static and dynamic power components in the

servers [15][16]. Experimental results demonstrate that the

proposed near-optimal resource allocation and consolidation

algorithm consistently outperforms baseline algorithms.

The rest of this paper is organized as follows. The system

model and problem formulation are presented in Section 2.

The optimization problem formulation and solution are

provided in Section 3 and 4, respectively. Experimental

results are presented in Section 5 and the conclusion is in the

last section.

2. System Model and Problem Formulation

2.1. Overall System Modeling
Figure 1 shows the structure of the target resource

allocation system with a set of clients, a server cluster of

 potentially heterogeneous servers, as well as a central

resource management node. The central manager has

information about the server cluster as well as the clients.

Each client in the system is identified by a unique ID,

represented by index i. Each server in the cluster is similarly

identified by a unique ID, captured by index j. The j-th

server in the cluster consists of potentially heterogeneous

cores, indexed by k. Service requests generated by a single

client can be assigned to multiple cores in more than one

servers. The request dispatcher assigns a request from the i-

th client to the k-th core in the j-th server with probability

 . These probability values are the optimization variables

in the resource allocation optimization framework.

Core 1

Core k

Core Kj

Server j

Core 1

Core K1

Server 1

Core 1

Core KM

Server M

ijkp

1ijp

jijKp

11ip

11i Kp

1iMp

MiMKp

Client 1: λ1

Client N: λN

Client i: λi

Central Management

Figure 1: Architecture of the resource allocation problem in

the cloud computing system.

In order to find the analytical form of the response time,

requests generated from each i-th client are assumed to

follow a Poisson process with a mean generating rate of

(predicted based on the behavior of the client.) According to

the properties of the Poisson distribution, service requests

that are generated from the i-th client and dispatched to the

k-th core in the j-th server follow a Poisson process with a

mean rate of [19]. The average service request

arrival rate of that core is given by ∑

 .

2.2. Service Queue Modeling Using CTMDP
We model the service queue (SQ) in each core using

CTMDP. CTMDP is a more detailed and accurate model

than the Generalized Processor Sharing (GPS) model [20].

A CTMDP is a controllable continuous-time Markov

process satisfying the Markovian property [18]. It is

comprised of a set of states and a finite set of actions .

The state transition rates are controlled by actions .

We are charged by a cost rate function () when the

system is at state and we choose action . A

policy {() } is a set of state-action pairs

for all states of the CTMDP. We use notation () to

specify the action that is chosen in state according to the

policy . We consider the class of stationary policies. An

optimal policy is the one that minimizes the total expected

cost. The CTMDP optimization problem targets at finding

the optimal policy.

Given a CTMDP with states, its parameterized

generator matrix () is defined as an matrix. Each

entry () in () is called the average transition rate

from state to another state when the action is applied,

which is calculated by

 ()
 ()

 ()
 (1)

where () is the average transition time from state to

state when action is applied. () if is one of

the destination states of the action , and ()

otherwise. Interested readers may refer to [18] for more

details of the CTMDP.

As illustrated in Figure 2, the SQ in each k-th core in the

j-th server () is modeled as a

stationary CTDMP with a state set { }, where

 is the maximum length of the queue. The action set

 { } corresponds to a set of possible core

frequencies while an action corresponds to a specific

execution frequency. When a service request (from any

client) is dispatched to this core, the state of the SQ is

autonomously incremented by one unless the SQ is full. The

average transition rate from state to state is given by

∑

 , and is independent of the action (i.e., the

execution frequency) chosen by the core. When a service

request has been serviced by the core, the index of the state

of the SQ is autonomously decremented by one. The average

transition rate () in Figure 2 from state to state

is a function of the action (execution frequency) chosen by

the core. A higher execution frequency will result in a

shorter average request service time, and thereby, a larger

average transition rate (), and vice versa. The average

response time of a service request in the k-th core in the j-th

server, denoted by ̅ , is the sum of the average waiting

time in the SQ and the average request processing time. ̅

depends on the policy chosen in the core and the

probability vector () , denoted by

 ̅ ().

0 1 2

1

N

ijk ii
p

1

N

ijk ii
p

1

N

ijk ii
p

() jk a () jk a () jk a

Q-1 Q

1

N

ijk ii
p

() jk a

1

N

ijk ii
p

() jk a

v v

Figure 2: CTMDP model of the SQ in each core.

Power consumption in each core consists of a dynamic

power consumption part when the core is active (i.e., when it

is processing service requests) and a static power

consumption part as long as the core is ON (i.e., no matter

whether the core is active or idle.) The dynamic power

consumption
 is a superlinear function of the core

frequency , denoted by
 () [12][13][14]. In other

words, a higher execution frequency will result in a

significant increase in its dynamic power consumption. The

average dynamic power consumption ̅
 of the k-th core

in the j-th server depends on and , denoted by

 ̅
 () . On the other hand, the static power

consumption
 is a constant as long as the k-th core in the

j-th server is turned on by the central manager for processing

requests. We may also use ̅
 to denote the static power

consumption since it can be viewed as an average value. We

capture the effect of power consumption in the cost rate

function since the power consumption is directly related to

the energy cost. We will provide the details of the cost rate

function in each core in Section 4.

The objective of the resource management problem is to

maximize the total profit of the server cluster from serving

the clients. In this system, decision making intervals can be

defined based on the behavior of the dynamic parameters in

the system. This is because the solution found by the

presented algorithm is acceptable only when the parameters

used to find the solution are approximately valid. Although

some small changes in the parameters can be effectively

tracked and responded to by proper reactions of the central

resource manager in the server cluster, large changes cannot

be handled in this way. In the remainder of this paper, the

resource allocation problem at each decision epoch is

presented and a solution is provided, but we do not discuss

the estimation, prediction, and dynamic changes in the

system because these issues are out of scope of this paper.

3. Optimization Problem Formulation
Let () denote the non-increasing utility function of

the i-th client with the average response time equal to . Let

 denote the pseudo-Boolean integer to represent if the j-th

server is ON () or OFF (). As long as the j-th

server is turned on, it incurs an (average) static power

consumption of ̅
 . Let denote the pseudo-Boolean

integer to represent if the k-th core in the j-th server is ON

() or OFF (). If , we have for

all . In the optimization problem, ’s, ’s,

 ’s, and ’s are optimization variables. Other parameters

are either constants or functions of these variables.

The overall resource allocation and consolidation

problem for the server cluster is formulated as a profit

maximization problem as below:

Find the optimal ’s, ’s, ’s, and ’s.

Maximize:

∑ (∑∑

 ̅ ())

 ∑(̅
 ∑ (̅

 ̅
 ())

)

(2)

Subject to:

 { } { } (3)

 { } { } { } (4)

 (5)

∑∑

 { } (6)

∑

 () (7)

∑

 ()
 (8)

∑

 { } (9)

where is the unit energy price at this decision epoch.

Also the constraints in the CTMDP problem formulation for

each core should also be satisfied.

In the objective function (2), the first term is the total

price gained from serving the service requests, and the

second term is the total energy cost for operating the server

cluster. Constraints (3) – (5) specify the domains of

variables. Constraint (6) ensures that all requests generated

by a client are served. Constraint (7) shows the upper limit

on the average service request arrival rate to a core, i.e., it

should be smaller than the maximum average service

processing rate of that core when it is running at the

maximum execution frequency. Constraints (8) and (9)

determine the turned on cores and servers, respectively,

based on the allocated resources.

The overall resource allocation and consolidation

problem is integrated with a set of CTMDP optimization

problems (i.e., finding the optimal policy in the CTMDP for

each core.) This problem is a mixed integer nonlinear

programming problem. The problem cannot be solved using

the conventional convex optimization methods since the

objective function is neither convex nor concave even if the

optimal values of Boolean variables ’s and ’s are given

in prior, i.e., the servers and cores that are turned on for

service request processing are given in prior.

4. Optimization Methods
The resource allocation and consolidation optimization

problem presented in the previous section is a hard problem

due to the non-convexity, the existence of Boolean

variables, and the integration of a set of CTMDP

optimization problems. The simple problem solvers cannot

solve this problem except in the case of very small input size

by running exhaustive search or by using stochastic

optimization methods such as the Simulated Annealing or

Genetic Algorithm. In this section, a near-optimal solution is

presented for this problem.

We use a linear-form decreasing utility function in the

optimization problem, i.e., () . The

objective function (2) becomes:

∑ (∑∑

 ̅ ())

 ∑(̅
 ∑ (̅

 ̅
 ())

)

(10)

The proposed near-optimal solution is based on

distributed decision making instead of only centralized

management. This is because of the relatively high

complexity of the solution when only the centralized

management method is employed. On the other hand,

distributed decision making can handle the problem in

parallel and reduce the time required to reach a good

solution by a large factor with limited amount of

communication effort. The following observation is the

basis of distributed decision making.

Observation I: When ’s, ’s, and ’s are given,

maximizing (10) in a centralized way is equivalent to

minimizing the following objective at each k-th core in the j-

th server with and :

∑ ̅ () ̅
 ()

 (11)

In this way, we separate the solution into a centralized

resource management algorithm and a set of distributed

local agents. Each local agent solves the CTMDP

optimization problem (i.e., the DVFS problem) for the

corresponding core, finding the optimal policy . The

optimal achieves a desirable tradeoff between the

average response time and power consumption. The central

management algorithm solves the request dispatching

problem and finds the optimal values, which determines

the most appropriate server(s) and core(s) for request

dispatching. The central management algorithm also

performs server-level and core-level consolidations, i.e.,

finding the optimal ’s and ’s, in order to achieve a

desirable balance between the static and dynamic power

components in the servers. We elaborate the details in the

following three subsections.

4.1. The Local Agents
We consider the local agent of the k-th core in the j-th

server (and) when the values are given.

We denote this local agent the ()-agent. The local agent

finds the optimal policy in order to minimize the

objective function (11). We properly set the cost rate

function in the CTMDP such that the objective function (11)

is minimized when we solve the CTMDP problem. We have

the following observation based on the Little’s theorem [23].

Observation II: Suppose that the cost rate function in the

CTMDP is ()
 () when the

system is at state and we choose action (frequency)

 , where is the number of requests waiting or being

processed in the SQ, and , are relative weights greater

than or equal to zero. We minimize (∑

)

 ̅ () ̅
 () when we solve the

CTMDP optimization problem.

Based on Observation II, we set the cost rate function to

be:

 ()
∑

∑

 () (12)

This cost rate function will result in an optimal tradeoff

between the average response time and power consumption.

The CTMDP optimization problem is formulated as a

linear programming problem as follows:

{ ()}

(∑∑ ()

 ()) (13)

where () denotes the frequency that state is entered in

and action is chosen in that state. () is the expected

cost when the system is in state and action is chosen.

 () is calculated as:

 () () () (14)

where () ∑ () is the expected duration of

time that the system will stay in state when action is

chosen, and () is the average transition rate from state

 to state when action is chosen, as defined in (1).

The linear programming problem is solved for variables

 () while satisfying the constraints given below:

∑ ()

 ∑ ∑ (
) (

)

 (15)

∑∑ () ()

 (16)

 () (17)

where () denotes the probability that the system will

next come to state if it is currently in state and action

is chosen. Constraints (15) – (17) capture the properties of a

CTMDP.

We utilize standard linear programming solver such as

the MOSEK [24] to solve the CTMDP optimization

problem. We find the optimal policy subsequently, as

described in [18].

In order to facilitate the further optimizations, we define

an equivalent M/M/1 queue for the CTMDP of the k-th core

in the j-th server with policy . The average request

processing rate of the equivalent M/M/1 queue is given by

 ∑

 ̅ ()
 (18)

which implies that the equivalent M/M/1 queue has the same

average service request response time ̅ () as the

CTMDP when the average request arrival time is ∑

 . Similarly, we assume that the dynamic power

consumption of the core is
 when processing

requests. We derive the
 values through intrapolation.

4.2. Optimal Request Dispatching
In the optimal request dispatching problem solved by the

central resource manager, we are given the ’s, ’s as

well as the optimal policy ’s. The objective is to find the

optimal values in order to maximize the objective

function (10). The main difficulty in this problem is that

 ̅ () and ̅
 () are implicit functions of

 ’s. Hence, in the first step we approximate ̅ ()

and ̅
 () using explicit functions of ’s.

We use the equivalent M/M/1 queue defined in Section

4.1 to approximate the CTMDP for each core. The

approximate average request response time is

 (∑

)⁄ for each core. The approximate

average percentage of time that core is active (i.e., having

one or more requests waiting or being processed) is

∑

 [23]. Therefore, the approximate

average dynamic power consumption is

∑

 (19)

Then the optimal request dispatch problem becomes:

Minimize:

∑∑
∑

 ∑

 ∑∑(
∑

)

(20)

Subject to the constraints:

 (21)

∑∑

 { } (22)

∑

 (23)

 (24)

The optimal request dispatching problem maximizes the

sum of a set of linear fractional functions of the variables

 ’s. Effective algorithms exist in the literature [25] for

finding a near-optimal solution of this kind of problem

effectively. We exploit the FP algorithm [25] for solving this

problem.

We integrate the request dispatching optimization

performed by the central resource manager with the local

agents, and thereby, we derive an iterative distributed near-

optimal solution of the resource allocation problem with

given turned-on servers and cores (i.e., with the given ’s

and ’s.) Algorithm 1 shows the pseudo-code of the

proposed distributed near-optimal solution.

Algorithm 1: Distributed Near-Optimal Solution of the

Resource Allocation Problem with Given Turned-on Servers

and Cores.

Given ’s and ’s.

Initialize the values.

Do the following procedure iteratively:

The central resource manager sends commands to all the local

agents with and .

For each () -agent with and (all the local

agents do the following procedure in parallel):

Perform CTMDP optimization and find the optimal policy

 based on the values.

Send response to the central resource manager.

End

The central resource manager performs request dispatching

optimization and finds the optimal values based on the

obtained optimal 's from local agents.

Until the solution converges.

4.3. Core-Level and Server-Level Consolidations
In this section, we consider the core-level and server-

level consolidations performed by the central resource

manager. The general idea is that we determine the optimal

set of turned on servers and cores in an outer loop while we

perform optimal request dispatching and DVFS (i.e.,

Algorithm 1) in the inner loop. We first turn on all the

servers and cores and then turn off a subset of cores or a

server in one execution of the outer loop. We terminate

execution as long as the calculated total profit of the server

cluster from Algorithm 1 stops increasing when we further

turn off servers or cores. In this way, we achieve a near-

optimal trade-off between the dynamic and static power

consumptions in the server cluster through effective

consolidation methods. Algorithm 2 provides the pseudo-

code of the proposed consolidation procedure with the

combination of optimal request dispatching and DVFS.

More advanced algorithms for core-level and server-level

consolidations can be developed. However, they are out of

the scope of the present paper.

Algorithm 2: Distributed Near-Optimal Solution of the Whole

Resource Allocation and Consolidation Problem.

Initialization: Turn on all servers and cores.

Do the following procedure:

Run Algorithm 1 on the set of turned on servers and cores and

calculate the total profit.

Turn off a subset of cores or a server with the minimum

average service request arrival rate(s), and set the

corresponding and values to zero.

Until the total profit of the server cluster stops increasing.

5. Experimental Results

In this section, we implement the resource allocation

framework and compare the proposed near-optimal resource

allocation and consolidation algorithm with baseline

resource allocation algorithms.

We consider a server cluster of 3 heterogeneous servers

consisting of 6 cores, 6 cores, and 8 cores, respectively. We

consider 4 clients in the system. We use normalized amounts

of most of the parameters in the system instead of their real

values. The average service request generating rate of each

client is a uniformly distributed random variable between

2.5 and 4.5 (we will change these parameters later in the

experiments.) The minimal average service request

processing rate in each core (i.e., when it is running at its

minimal execution frequency) is a uniformly distributed

parameter between 1.0 and 1.5. Each core can perform at

five different execution frequencies (i.e., different actions in

the CTMDP-based DVFS setup), which are , ,

 , , and of its minimal execution frequency,

respectively. Since the average service request processing

rate is proportional to the core’s execution frequency, the

different average service request processing rates in each

core are , , , , and of its minimum

average service request processing rate, respectively. The

(instantaneous) dynamic power consumption of each core is

assumed to be proportional to the square of its execution

frequency (or equivalently, proportional to the square of its

average service request processing rate.) The (average) static

power consumption of each core is assumed to be half as the

dynamic power consumption when that core is running at its

minimum execution frequency level. The maximum queue

length is equal to 10. For the utility functions, each

value is assumed to be a uniformly distributed random

variable between 1 and 1.5, and the values are assumed to

be equal to 7. We change the unit energy price in the

experiments and derive different results on the total profit in

the server cluster.

Since there is no previous work addressing the

combination of optimal request dispatching, optimal DVFS

control for individual cores, and server-level and core-level

consolidations, we consider three baseline systems without

the CTMDP-based optimization ability for individual cores.

In Baseline 1, each core runs at its maximum execution

frequency in order to minimize the average service request

response time. In Baseline 2, each core runs at its minimum

possible execution frequency in order to minimize its

dynamic power consumption (of course the average service

request processing rate should be higher than the average

service request arrival rate.) In Baseline 3, each core runs at

its medium execution frequency (i.e., its minimum

frequency) in order to achieve a balance between response

time and power consumption. All the three baseline systems

distribute the service requests from each client with equal

probability to all the cores in the server cluster.

Figure 3 illustrates the normalized total profit versus the

unit energy price of the proposed near-optimal algorithm

and three baseline algorithms. We can observe from Figure

3 that the proposed near-optimal algorithm consistently

outperforms the three baseline algorithms. When the unit

energy price is 1.0, the total profit obtained by the proposed

algorithm is 50.2%, 83.7%, and 25.3% higher than Baseline

1, Baseline 2, and Baseline 3, respectively. When the unit

energy price is 1.8 or more, the total profits in the three

baseline systems are even less than zero, and are thereby not

even comparable with the proposed near-optimal algorithm.

We can also observe from Figure 3 that Baseline 1 performs

well when the unit energy price is low. This is because the

energy cost is much lower than the cost penalty for large

average service request response time in this case, and

Baseline 1 minimizes the latter cost penalty by running

every core at its maximum execution frequency. On the

other hand, Baseline 2 performs relatively better when the

unit energy price is high since the total energy cost is the

dominating factor in this case.

Figure 3: The normalized total profit versus the unit energy

price of the proposed near-optimal algorithm and three

baseline algorithms.

Figure 4 illustrates the normalized total profit versus the

average service request generating rate of the clients on the

proposed near-optimal algorithm and three baseline

algorithms. In this experiment, we set the unit energy price

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Price of Unit Energy

N
o

rm
a
li
z
e
d

 P
ro

fi
t

Baseline 1

Baseline 2

Baseline 3

Proposed

 to be a constant value (equal to 1.0) but change the

average service request generating rate of clients. These

results show the effectiveness of performing server-level

and core-level consolidations. When the average service

request generating rate is 0.6, the total profit obtained by the

proposed algorithm is 95.6%, 47.6%, and 51.9% higher than

Baseline 1, Baseline 2, and Baseline 3, respectively. On the

other hand, when the average service request generating rate

is 1.0, the total profit obtained by the proposed algorithm is

40.7%, 100.8%, and 19.6% higher than Baseline 1, Baseline

2, and Baseline 3, respectively. When the average service

request generating rate becomes higher than 1.2, the profits

in some baseline systems become negative.

In fact, the optimal number of turned on cores increases

with the increasing in the average service request generating

rate. The optimal number of turned on cores is 7 when the

average request generating rate is 0.2, and is 20 when the

average generating rate is 2.0. The reason is that fewer cores

are required for request processing when the average service

request generating rate is lower and the static power

consumption in the server cluster is reduced in this case.

Figure 4: The normalized total profit versus the average

service request generating rate of the proposed near-optimal

algorithm and three baseline algorithms.

6. Conclusion
In this paper, we consider the problem of SLA-based

resource allocation optimization in a server cluster in the

cloud computing framework. The objective is to maximize

the total profit, which is total price gained from serving the

clients, which depends on the average request response time

for each client as defined in their utility functions, subtracted

by the energy cost of the server cluster. We propose a joint

optimization framework comprised of requests dispatching,

DVFS for individual cores in the server cluster, as well as

core-level and server-level consolidations. Each core in the

server cluster is modeled using a CTMDP. We propose a

near-optimal hierarchical solution consisting of a central

manager and distributed local agents. Each local agent

employs linear programming-based CTMDP solving method

to solve the DVFS problem for the corresponding core. The

central manager solves the request dispatching problem and

finds the optimal number of turned on cores and servers for

request processing, thereby achieving a desirable tradeoff

between service request response time and system power

consumption. Experimental results demonstrate that the

proposed near-optimal resource allocation and consolidation

algorithm consistently outperforms baseline algorithms.

7. References
[1] R. Buyya, “Market-oriented cloud computing: vision,

hype, and reality of delivering computing as the 5
th

utility,” in 9
th

 IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid), 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia, “A view of cloud

computing”, Commun. of the ACM, 2010.

[3] L. A. Barroso and U. Holzle, “The case for energy-

proportional computing,” IEEE Computer, 2007.

[4] H. Goudarzi and M. Pedram, “Multi-dimensional

SLA-based resource allocation for multi-tier cloud

computing systems,” Proc. of IEEE International

Conference on Cloud Computing (CLOUD), 2011.

[5] Y. Wang, S. Chen, and M. Pedram, “Service level

agreement-based joint application environment

assignment and resource allocation in cloud computing

systems,” to appear in Proc. of IEEE Green

Technologies Conference (GreenTech), 2013.

[6] R. Buyya and M. Murshed, "GridSim: A toolkit for the

modeling and simulation of distributed resource

management and scheduling for grid computing,"

Concurrency and Computation Practice & Experience,

2002.

[7] K. Krauter, R. Buyya, and M. Maheswaran, “A

taxonomy and survey of grid resource management

systems for distributed computing,” Software Practice

and Experience, 2002.

 [8] Z. Liu, M. S. Squillante, and J. L. Wolf, “On

maximizing service-level-agreement profits,” in 3
rd

ACM Conference on Electronic Commerce, 2001.

[9] L. Zhang and D. Ardagna, “SLA based profit

optimization in autonomic computing systems,” in 2
nd

Int. Conf. on Service Oriented Computing, 2004.

[10] D. Ardagna, M. Trubian, and L. Zhang, “SLA based

resource allocation policies in autonomic

environments,” Journal of Parallel and Distributed

Computing, 2007.

[11] A. Chandra, W. Gongt, and P. Shenoy, “Dynamic

resource allocation for shared clusters using online

measurements,” International Conference on

Measurement and Modeling of Computer Systems

(SIGMETRICS), 2003.

[12] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, "A

dynamic voltage-scaled microprocessor system," IEEE

International Solid-State Circuits Conference Digest of

Technical Papers, 2000.

[13] http://www.intel.com/technology/architecture-silicon/

next-gen/

[14] http://support.amd.com/us/Processor_TechDocs/40036

.pdf

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Average Request Generating Rate

N
o

rm
a
li
z
e
d

 P
ro

fi
t

Baseline 1

Baseline 2

Baseline 3

Proposed

[15] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware

consolidation for cloud computing,” in Workshop on

Power Aware Computing and Systems (HotPower’08),

2008.

[16] I. Hwang, T. Kam, and M. Pedram, “A study of the

effectiveness of CPU consolidation in a virtualized

multi-core server system,” in Proc. of International

Symposium on Low Power Electronics and Design

(ISLPED), 2012.

[17] H. Jung and M. Pedram, “Stochastic dynamic thermal

management: a Markovian decision-based approach,”

in International Conference on Computer Design

(ICCD), 2006.

[18] M. L. Puterman, Markov Decision Processes: Discrete

Stochastic Dynamic Programming, Wiley Publisher,

New York, 1994.

[19] A. Papoulis, Probability, Random Variables, and

Stochastic Processes, McGraw-Hill, 3rd edition, 1991.

[20] Z. Zhang, D. Towsley, and J. Kurose, “Statistical

analysis of generalized processor sharing scheduling

discipline,” ACM SIGCOMM’94 Conf. on

Communications Architectures, Protocols and

Applications.

[21] R. E. Bellman, Dynamic Programming, Princeton

University Press, Princeton, 1957.

[22] S. Boyd and L. Vandenberghe, Convex Optimization,

Cambridge University Press, 2004.

[23] L. Kleinrock, Queueing Systems, Volume I: Theory,

New York: Wiley, 1975.

[24] E. D. Andersen and K. D. Andersen, “The MOSEK

interior point optimizer for linear programming: an

implementation of the homogeneous algorithm,” in

High Performance Optimization, pp. 197 – 232.

Kluwer Academic, 2000.

[25] D. Z. Chen, O. Daescu, Y. Dai, N. Katoh, X. Wu, and

J. Xu, “Efficient algorithms and implementations for

optimizing the sum of linear fractional functions, with

applications,” Journal of Combinatorial Optimization,

2005.

