
 

 

Resource Allocation and Consolidation in a Multi-Core Server Cluster Using a 
Markov Decision Process Model 

 

 

Yanzhi Wang, Shuang Chen, Hadi Goudarzi, Massoud Pedram 

University of Southern California, Los Angeles, CA USA 

E-mail: {yanzhiwa, shuangc, hgoudarz, pedram}@usc.edu 

 

 

Abstract 
Distributed computing systems have attracted a lot of 

attention due to increasing demand for high performance 

computing and storage. Resource allocation is one of the 

most important challenges in the distributed systems 

especially when the clients have some Service Level 

Agreements (SLAs) and the total profit depends on how the 

system can meet these SLAs. In this paper, an SLA-based 

resource allocation problem in a server cluster is considered. 

The objective is to maximize the total profit, which is the 

total price gained from serving the clients subtracted by the 

operation cost of the server cluster. The total price depends 

on the average request response time for each client as 

defined in their utility functions, while the operating cost is 

related to the total energy consumption. A joint optimization 

framework is proposed, comprised of request dispatching, 

dynamic voltage and frequency scaling (DVFS) for 

individual cores, as well as server-level and core-level 

consolidations. Each core in the cluster is modeled using a 

continuous-time Markov decision process (CTMDP). A 

near-optimal hierarchical solution is proposed, consisting of 

a central manager and distributed local agents. Each local 

agent employs linear programming-based CTMDP solving 

method to solve the DVFS problem for the corresponding 

core. The central manager solves the request dispatching 

problem and finds the optimal number of turned on cores 

and servers for request processing, thereby achieving a 

desirable tradeoff between service request response time and 

power consumption. Experimental results demonstrate that 

the proposed near-optimal resource allocation and 

consolidation algorithm consistently outperforms baseline 

algorithms. 

Keywords 
Cloud computing, service level agreement, resource 

allocation, Markov decision process 

1. Introduction 
Computing is being transformed to a model consisting of 

services that are commoditized and delivered in a manner 

similar to traditional utilities such as water, electricity, gas, 

and telephony [1]. In such a model, users access services 

based on their requirements without regard to where the 

services are hosted or how they are delivered. The recently 

proposed Cloud computing idea [1][2] transforms the 

infrastructure to a “Cloud” from which businesses and users 

are able to access applications from anywhere in the world 

on demand. The computing world is rapidly transforming 

towards developing software for millions to consume as a 

service, rather than to run on their individual computers. 

In cloud computing, the capabilities of business 

applications are exposed as sophisticated services that can 

be accessed over a network. Cloud service providers are 

incentivized by the profits to be made by charging clients for 

accessing these services. Clients are attracted by the 

opportunity for reducing or eliminating costs associated with 

“in-house” provision of these services. It is essential that the 

clients have guarantees from providers on service delivery. 

Typically, these are provided through Service Level 

Agreements (SLAs) brokered between the providers and 

consumers. The SLAs include computing power, storage 

space, network bandwidth, availability and security, etc.  

The underlying infrastructure of cloud computing 

consists of data centers and clusters of servers that are 

monitored and maintained by the cloud service providers. 

Service providers often end up over-provisioning their 

resources in these servers in order to meet the clients’ SLAs 

[3]. Such over-provisioning may increase the cost incurred 

on the servers in terms of both the electrical energy cost and 

the carbon emission. Therefore, optimal provisioning or 

allocation of the resources is imperative in order to reduce 

the cost incurred on the servers as well as the environmental 

impact. The problem of optimal resource allocation in the 

cloud computing framework is therefore crucial and has 

been investigated in [4][5]. The more general problem of 

resource allocation and management in distributed 

computing system has been an active research topic in the 

recent ten years. There is a number of papers discussing the 

resource allocation problem in grid computing systems 

[6][7], in the framework of electronic commerce [8], in 

autonomic computing systems [9][10], and in clusters of 

servers [11]. 

In this paper, we consider the problem of SLA-based 

resource allocation optimization in a cluster of servers. 

Multiple clients exist in the resource allocation framework, 

each generating requests in a different rate. Clients in this 

system are application software that requires processing, 

data storage, and communication resources. Each client in 

this system has a pre-defined utility function based on its 

response time requirements. The server cluster consists of 

multiple potentially heterogeneous servers, each comprised 

of a number of potentially heterogeneous cores. The total 

profit in this system is the total price gained from serving 

the clients subtracted by the cost of operating the turned on 
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servers in the system, where the operation cost of turned on 

servers is proportional to their energy consumptions.  

Different from the prior work, we propose a joint 

optimization framework considering the optimal request 

dispatching, dynamic voltage and frequency scaling (DVFS) 

in each core of the server cluster, as well as server-level and 

core-level consolidations. Each core in the server cluster is 

modeled using a continuous-time Markov decision process 

(CTMDP) [17][18], in which actions are execution 

frequencies (and supply voltages) for processing the service 

requests. We know that a higher execution frequency will 

result in a shorter response time, but a significant increase in 

power consumption [12][13][14].  

We propose a near-optimal hierarchical solution of the 

resource allocation problem consisting of a central resource 

manager and distributed local agents. Each local agent 

employs linear programming-based Markov decision 

process solving method [18] for solving the DVFS problem 

for each core, judiciously selecting the most appropriate 

execution frequency based on the number of waiting 

requests. The local agents are used to parallelize the solution 

and decrease the decision time, thereby helping with the 

scalability. The central manager utilizes optimization 

methods for solving the request dispatching problem based 

on the optimization results of the distributed agents. It also 

finds the optimal number of turned on cores and servers for 

request processing (i.e., performing core-level and server-

level consolidations) in order to achieve a desirable balance 

between the static and dynamic power components in the 

servers [15][16]. Experimental results demonstrate that the 

proposed near-optimal resource allocation and consolidation 

algorithm consistently outperforms baseline algorithms. 

The rest of this paper is organized as follows. The system 

model and problem formulation are presented in Section 2. 

The optimization problem formulation and solution are 

provided in Section 3 and 4, respectively. Experimental 

results are presented in Section 5 and the conclusion is in the 

last section. 

2. System Model and Problem Formulation 

2.1. Overall System Modeling 
Figure 1 shows the structure of the target resource 

allocation system with a set of   clients, a server cluster of 

  potentially heterogeneous servers, as well as a central 

resource management node. The central manager has 

information about the server cluster as well as the clients. 

Each client in the system is identified by a unique ID, 

represented by index i. Each server in the cluster is similarly 

identified by a unique ID, captured by index j. The j-th 

server in the cluster consists of    potentially heterogeneous 

cores, indexed by k. Service requests generated by a single 

client can be assigned to multiple cores in more than one 

servers. The request dispatcher assigns a request from the i-

th client to the k-th core in the j-th server with probability 

    . These probability values are the optimization variables 

in the resource allocation optimization framework.  

 

Core 1

Core k

Core Kj

Server j

Core 1

Core K1

Server 1

Core 1

Core KM

Server M

ijkp

1ijp

jijKp

11ip

11i Kp

1iMp

MiMKp

Client 1: λ1

Client N: λN

Client i: λi

Central Management

 
Figure 1: Architecture of the resource allocation problem in 

the cloud computing system. 

In order to find the analytical form of the response time, 

requests generated from each i-th client are assumed to 

follow a Poisson process with a mean generating rate of    

(predicted based on the behavior of the client.) According to 

the properties of the Poisson distribution, service requests 

that are generated from the i-th client and dispatched to the 

k-th core in the j-th server follow a Poisson process with a 

mean rate of         [19]. The average service request 

arrival rate of that core is given by ∑        
 
   . 

2.2. Service Queue Modeling Using CTMDP 
We model the service queue (SQ) in each core using 

CTMDP. CTMDP is a more detailed and accurate model 

than the Generalized Processor Sharing (GPS) model [20]. 

A CTMDP is a controllable continuous-time Markov 

process satisfying the Markovian property [18]. It is 

comprised of a set of states   and a finite set of actions  . 

The state transition rates are controlled by actions    . 

We are charged by a cost rate function  (   )  when the 

system is at state     and we choose action    . A 

policy   {(   )        } is a set of state-action pairs 

for all states of the CTMDP. We use notation  ( )    to 

specify the action that is chosen in state   according to the 

policy  . We consider the class of stationary policies. An 

optimal policy is the one that minimizes the total expected 

cost. The CTMDP optimization problem targets at finding 

the optimal policy. 

Given a CTMDP with   states, its parameterized 

generator matrix  ( ) is defined as an     matrix. Each 

entry      ( ) in  ( ) is called the average transition rate 

from state   to another state    when the action   is applied, 

which is calculated by 

     ( )  
     ( )

     ( )
              (1) 

where      ( ) is the average transition time from state   to 

state    when action   is applied.      ( )    if    is one of 

the destination states of the action  , and      ( )    

otherwise. Interested readers may refer to [18] for more 

details of the CTMDP. 

As illustrated in Figure 2, the SQ in each k-th core in the 

j-th server (             ) is modeled as a 



 

 

stationary CTDMP with a state set   {         }, where 

  is the maximum length of the queue. The action set 

  {           }  corresponds to a set of possible core 

frequencies while an action     corresponds to a specific 

execution frequency. When a service request (from any 

client) is dispatched to this core, the state of the SQ is 

autonomously incremented by one unless the SQ is full. The 

average transition rate from state   to state     is given by 

∑        
 
   , and is independent of the action (i.e., the 

execution frequency) chosen by the core. When a service 

request has been serviced by the core, the index of the state 

of the SQ is autonomously decremented by one. The average 

transition rate    ( ) in Figure 2 from state   to state     

is a function of the action (execution frequency)   chosen by 

the core. A higher execution frequency will result in a 

shorter average request service time, and thereby, a larger 

average transition rate    ( ), and vice versa. The average 

response time of a service request in the k-th core in the j-th 

server, denoted by  ̅  , is the sum of the average waiting 

time in the SQ and the average request processing time.  ̅   

depends on the policy     chosen in the core and the 

probability vector     (                ) , denoted by 

 ̅  (       ). 
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Figure 2: CTMDP model of the SQ in each core. 

Power consumption in each core consists of a dynamic 

power consumption part when the core is active (i.e., when it 

is processing service requests) and a static power 

consumption part as long as the core is ON (i.e., no matter 

whether the core is active or idle.) The dynamic power 

consumption      
  is a superlinear function of the core 

frequency  , denoted by      
 ( )  [12][13][14]. In other 

words, a higher execution frequency will result in a 

significant increase in its dynamic power consumption. The 

average dynamic power consumption  ̅    
  of the k-th core 

in the j-th server depends on     and    , denoted by 

 ̅    
 (       ) . On the other hand, the static power 

consumption      
  is a constant as long as the k-th core in the 

j-th server is turned on by the central manager for processing 

requests. We may also use  ̅    
  to denote the static power 

consumption since it can be viewed as an average value. We 

capture the effect of power consumption in the cost rate 

function since the power consumption is directly related to 

the energy cost. We will provide the details of the cost rate 

function in each core in Section 4.  

The objective of the resource management problem is to 

maximize the total profit of the server cluster from serving 

the clients. In this system, decision making intervals can be 

defined based on the behavior of the dynamic parameters in 

the system. This is because the solution found by the 

presented algorithm is acceptable only when the parameters 

used to find the solution are approximately valid. Although 

some small changes in the parameters can be effectively 

tracked and responded to by proper reactions of the central 

resource manager in the server cluster, large changes cannot 

be handled in this way. In the remainder of this paper, the 

resource allocation problem at each decision epoch is 

presented and a solution is provided, but we do not discuss 

the estimation, prediction, and dynamic changes in the 

system because these issues are out of scope of this paper. 

3. Optimization Problem Formulation 
Let   ( ) denote the non-increasing utility function of 

the i-th client with the average response time equal to  . Let 

   denote the pseudo-Boolean integer to represent if the j-th 

server is ON (    ) or OFF (    ). As long as the j-th 

server is turned on, it incurs an (average) static power 

consumption of  ̅   
 . Let     denote the pseudo-Boolean 

integer to represent if the k-th core in the j-th server is ON 

(     ) or OFF (     ). If     , we have       for 

all       . In the optimization problem,     ’s,    ’s, 

  ’s, and    ’s are optimization variables. Other parameters 

are either constants or functions of these variables. 

The overall resource allocation and consolidation 

problem for the server cluster is formulated as a profit 

maximization problem as below: 

Find the optimal     ’s,    ’s,   ’s, and    ’s. 

Maximize: 

∑     (∑∑    

  

   

 

 

   

 ̅  (       ))

 

   

  

     ∑(   ̅   
  ∑   ( ̅    

   ̅    
 (       ))

  

   

)

 

   

 

(2) 

Subject to: 
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where       is the unit energy price at this decision epoch. 

Also the constraints in the CTMDP problem formulation for 

each core should also be satisfied. 

In the objective function (2), the first term is the total 

price gained from serving the service requests, and the 



 

 

second term is the total energy cost for operating the server 

cluster. Constraints (3) – (5) specify the domains of 

variables. Constraint (6) ensures that all requests generated 

by a client are served. Constraint (7) shows the upper limit 

on the average service request arrival rate to a core, i.e., it 

should be smaller than the maximum average service 

processing rate of that core when it is running at the 

maximum execution frequency. Constraints (8) and (9) 

determine the turned on cores and servers, respectively, 

based on the allocated resources. 

The overall resource allocation and consolidation 

problem is integrated with a set of CTMDP optimization 

problems (i.e., finding the optimal policy in the CTMDP for 

each core.) This problem is a mixed integer nonlinear 

programming problem. The problem cannot be solved using 

the conventional convex optimization methods since the 

objective function is neither convex nor concave even if the 

optimal values of Boolean variables   ’s and    ’s are given 

in prior, i.e., the servers and cores that are turned on for 

service request processing are given in prior. 

4. Optimization Methods 
The resource allocation and consolidation optimization 

problem presented in the previous section is a hard problem 

due to the non-convexity, the existence of Boolean 

variables, and the integration of a set of CTMDP 

optimization problems. The simple problem solvers cannot 

solve this problem except in the case of very small input size 

by running exhaustive search or by using stochastic 

optimization methods such as the Simulated Annealing or 

Genetic Algorithm. In this section, a near-optimal solution is 

presented for this problem. 

We use a linear-form decreasing utility function in the 

optimization problem, i.e.,   ( )         . The 

objective function (2) becomes: 
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(10) 

The proposed near-optimal solution is based on 

distributed decision making instead of only centralized 

management. This is because of the relatively high 

complexity of the solution when only the centralized 

management method is employed. On the other hand, 

distributed decision making can handle the problem in 

parallel and reduce the time required to reach a good 

solution by a large factor with limited amount of 

communication effort. The following observation is the 

basis of distributed decision making. 

Observation I: When     ’s,   ’s, and    ’s are given, 

maximizing (10) in a centralized way is equivalent to 

minimizing the following objective at each k-th core in the j-

th server with      and      :  

∑         ̅  (       )         ̅    
 (       )

 

   

  (11) 

In this way, we separate the solution into a centralized 

resource management algorithm and a set of distributed 

local agents. Each local agent solves the CTMDP 

optimization problem (i.e., the DVFS problem) for the 

corresponding core, finding the optimal policy    . The 

optimal     achieves a desirable tradeoff between the 

average response time and power consumption. The central 

management algorithm solves the request dispatching 

problem and finds the optimal      values, which determines 

the most appropriate server(s) and core(s) for request 

dispatching. The central management algorithm also 

performs server-level and core-level consolidations, i.e., 

finding the optimal   ’s and    ’s, in order to achieve a 

desirable balance between the static and dynamic power 

components in the servers. We elaborate the details in the 

following three subsections. 

4.1. The Local Agents 
We consider the local agent of the k-th core in the j-th 

server (     and      ) when the      values are given. 

We denote this local agent the (   )-agent. The local agent 

finds the optimal policy     in order to minimize the 

objective function (11). We properly set the cost rate 

function in the CTMDP such that the objective function (11) 

is minimized when we solve the CTMDP problem. We have 

the following observation based on the Little’s theorem [23]. 

Observation II: Suppose that the cost rate function in the 

CTMDP is  (   )                 
 ( )  when the 

system is at state     and we choose action (frequency) 

   , where     is the number of requests waiting or being 

processed in the SQ, and   ,    are relative weights greater 

than or equal to zero. We minimize    (∑        
 
   )  

 ̅  (       )      ̅    
 (       )  when we solve the 

CTMDP optimization problem.  

Based on Observation II, we set the cost rate function to 

be: 

 (   )  
∑           

 
   

∑        
 
   

                
 ( )  (12) 

This cost rate function will result in an optimal tradeoff 

between the average response time and power consumption. 

The CTMDP optimization problem is formulated as a 

linear programming problem as follows: 

   
{  ( )}

(∑∑  ( )  

  

  ( ))  (13) 

where   ( ) denotes the frequency that state   is entered in 

and action   is chosen in that state.   ( ) is the expected 

cost when the system is in state   and action   is chosen. 

  ( ) is calculated as: 

  ( )    ( )   (   )  (14) 

where   ( )    ∑      ( )     is the expected duration of 

time that the system will stay in state   when action   is 

chosen, and      ( ) is the average transition rate from state 

  to state    when action   is chosen, as defined in (1).  

The linear programming problem is solved for variables 

  ( ) while satisfying the constraints given below: 
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  ( )              (17) 

where      ( ) denotes the probability that the system will 

next come to state    if it is currently in state   and action   

is chosen. Constraints (15) – (17) capture the properties of a 

CTMDP. 

We utilize standard linear programming solver such as 

the MOSEK [24] to solve the CTMDP optimization 

problem. We find the optimal policy     subsequently, as 

described in [18]. 

In order to facilitate the further optimizations, we define 

an equivalent M/M/1 queue for the CTMDP of the k-th core 

in the j-th server with policy    . The average request 

processing rate of the equivalent M/M/1 queue is given by 

       ∑       

 

   

 
 

 ̅  (       )
  (18) 

which implies that the equivalent M/M/1 queue has the same 

average service request response time  ̅  (       ) as the 

CTMDP when the average request arrival time is ∑       
   

  . Similarly, we assume that the dynamic power 

consumption of the core is         
  when processing 

requests. We derive the         
  values through intrapolation. 

4.2. Optimal Request Dispatching 
In the optimal request dispatching problem solved by the 

central resource manager, we are given the   ’s,    ’s as 

well as the optimal policy    ’s. The objective is to find the 

optimal      values in order to maximize the objective 

function (10). The main difficulty in this problem is that 

 ̅  (       )  and  ̅    
 (       )  are implicit functions of 

    ’s. Hence, in the first step we approximate  ̅  (       ) 

and  ̅    
 (       ) using explicit functions of     ’s. 

We use the equivalent M/M/1 queue defined in Section 

4.1 to approximate the CTMDP for each core. The 

approximate average request response time is 

 (       ∑        
 
   )⁄  for each core. The approximate 

average percentage of time that core is active (i.e., having 

one or more requests waiting or being processed) is 

∑        
 
           [23]. Therefore, the approximate 

average dynamic power consumption is  

∑        
 
   

      

         
   (19) 

Then the optimal request dispatch problem becomes: 

Minimize: 

∑∑
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Subject to the constraints: 

                        (21) 

∑∑    

  

   

 

   

             {       }  (22) 

∑       

 

   

                     (23) 

                  (24) 

The optimal request dispatching problem maximizes the 

sum of a set of linear fractional functions of the variables 

    ’s. Effective algorithms exist in the literature [25] for 

finding a near-optimal solution of this kind of problem 

effectively. We exploit the FP algorithm [25] for solving this 

problem.  

We integrate the request dispatching optimization 

performed by the central resource manager with the local 

agents, and thereby, we derive an iterative distributed near-

optimal solution of the resource allocation problem with 

given turned-on servers and cores (i.e., with the given   ’s 

and    ’s.) Algorithm 1 shows the pseudo-code of the 

proposed distributed near-optimal solution. 

 

Algorithm 1: Distributed Near-Optimal Solution of the 

Resource Allocation Problem with Given Turned-on Servers 

and Cores. 

Given   ’s and    ’s. 

Initialize the      values. 

Do the following procedure iteratively: 

The central resource manager sends commands to all the local 

agents with      and      . 

For each (   ) -agent with      and       (all the local 

agents do the following procedure in parallel): 

Perform CTMDP optimization and find the optimal policy 

    based on the      values. 

Send response to the central resource manager. 

End 

The central resource manager performs request dispatching 

optimization and finds the optimal      values based on the 

obtained optimal    's from local agents.   

Until the solution converges. 

 

4.3. Core-Level and Server-Level Consolidations 
In this section, we consider the core-level and server-

level consolidations performed by the central resource 

manager. The general idea is that we determine the optimal 

set of turned on servers and cores in an outer loop while we 

perform optimal request dispatching and DVFS (i.e., 

Algorithm 1) in the inner loop. We first turn on all the 

servers and cores and then turn off a subset of cores or a 

server in one execution of the outer loop. We terminate 

execution as long as the calculated total profit of the server 

cluster from Algorithm 1 stops increasing when we further 

turn off servers or cores. In this way, we achieve a near-

optimal trade-off between the dynamic and static power 



 

 

consumptions in the server cluster through effective 

consolidation methods. Algorithm 2 provides the pseudo-

code of the proposed consolidation procedure with the 

combination of optimal request dispatching and DVFS. 

More advanced algorithms for core-level and server-level 

consolidations can be developed. However, they are out of 

the scope of the present paper. 

 

Algorithm 2: Distributed Near-Optimal Solution of the Whole 

Resource Allocation and Consolidation Problem. 

Initialization: Turn on all servers and cores. 

Do the following procedure: 

Run Algorithm 1 on the set of turned on servers and cores and 

calculate the total profit. 

Turn off a subset of   cores or a server with the minimum 

average service request arrival rate(s), and set the 

corresponding    and     values to zero. 

Until the total profit of the server cluster stops increasing. 

 

5. Experimental Results 

In this section, we implement the resource allocation 

framework and compare the proposed near-optimal resource 

allocation and consolidation algorithm with baseline 

resource allocation algorithms.  

We consider a server cluster of 3 heterogeneous servers 

consisting of 6 cores, 6 cores, and 8 cores, respectively. We 

consider 4 clients in the system. We use normalized amounts 

of most of the parameters in the system instead of their real 

values. The average service request generating rate of each 

client is a uniformly distributed random variable between 

2.5 and 4.5 (we will change these parameters later in the 

experiments.) The minimal average service request 

processing rate in each core (i.e., when it is running at its 

minimal execution frequency) is a uniformly distributed 

parameter between 1.0 and 1.5. Each core can perform at 

five different execution frequencies (i.e., different actions in 

the CTMDP-based DVFS setup), which are   ,      , 

    ,      , and    of its minimal execution frequency, 

respectively. Since the average service request processing 

rate is proportional to the core’s execution frequency, the 

different average service request processing rates in each 

core are   ,      ,     ,      , and    of its minimum 

average service request processing rate, respectively. The 

(instantaneous) dynamic power consumption of each core is 

assumed to be proportional to the square of its execution 

frequency (or equivalently, proportional to the square of its 

average service request processing rate.) The (average) static 

power consumption of each core is assumed to be half as the 

dynamic power consumption when that core is running at its 

minimum execution frequency level. The maximum queue 

length   is equal to 10. For the utility functions, each    

value is assumed to be a uniformly distributed random 

variable between 1 and 1.5, and the    values are assumed to 

be equal to 7. We change the unit energy price       in the 

experiments and derive different results on the total profit in 

the server cluster. 

Since there is no previous work addressing the 

combination of optimal request dispatching, optimal DVFS 

control for individual cores, and server-level and core-level 

consolidations, we consider three baseline systems without 

the CTMDP-based optimization ability for individual cores. 

In Baseline 1, each core runs at its maximum execution 

frequency in order to minimize the average service request 

response time. In Baseline 2, each core runs at its minimum 

possible execution frequency in order to minimize its 

dynamic power consumption (of course the average service 

request processing rate should be higher than the average 

service request arrival rate.) In Baseline 3, each core runs at 

its medium execution frequency (i.e.,      its minimum 

frequency) in order to achieve a balance between response 

time and power consumption. All the three baseline systems 

distribute the service requests from each client with equal 

probability to all the cores in the server cluster. 

Figure 3 illustrates the normalized total profit versus the 

unit energy price of the proposed near-optimal algorithm 

and three baseline algorithms. We can observe from Figure 

3 that the proposed near-optimal algorithm consistently 

outperforms the three baseline algorithms. When the unit 

energy price is 1.0, the total profit obtained by the proposed 

algorithm is 50.2%, 83.7%, and 25.3% higher than Baseline 

1, Baseline 2, and Baseline 3, respectively. When the unit 

energy price is 1.8 or more, the total profits in the three 

baseline systems are even less than zero, and are thereby not 

even comparable with the proposed near-optimal algorithm. 

We can also observe from Figure 3 that Baseline 1 performs 

well when the unit energy price is low. This is because the 

energy cost is much lower than the cost penalty for large 

average service request response time in this case, and 

Baseline 1 minimizes the latter cost penalty by running 

every core at its maximum execution frequency. On the 

other hand, Baseline 2 performs relatively better when the 

unit energy price is high since the total energy cost is the 

dominating factor in this case. 

 
Figure 3: The normalized total profit versus the unit energy 

price of the proposed near-optimal algorithm and three 

baseline algorithms. 

Figure 4 illustrates the normalized total profit versus the 

average service request generating rate of the clients on the 

proposed near-optimal algorithm and three baseline 

algorithms. In this experiment, we set the unit energy price 
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      to be a constant value (equal to 1.0) but change the 

average service request generating rate of clients. These 

results show the effectiveness of performing server-level 

and core-level consolidations. When the average service 

request generating rate is 0.6, the total profit obtained by the 

proposed algorithm is 95.6%, 47.6%, and 51.9% higher than 

Baseline 1, Baseline 2, and Baseline 3, respectively. On the 

other hand, when the average service request generating rate 

is 1.0, the total profit obtained by the proposed algorithm is 

40.7%, 100.8%, and 19.6% higher than Baseline 1, Baseline 

2, and Baseline 3, respectively. When the average service 

request generating rate becomes higher than 1.2, the profits 

in some baseline systems become negative. 

In fact, the optimal number of turned on cores increases 

with the increasing in the average service request generating 

rate. The optimal number of turned on cores is 7 when the 

average request generating rate is 0.2, and is 20 when the 

average generating rate is 2.0. The reason is that fewer cores 

are required for request processing when the average service 

request generating rate is lower and the static power 

consumption in the server cluster is reduced in this case.  

 

Figure 4: The normalized total profit versus the average 

service request generating rate of the proposed near-optimal 

algorithm and three baseline algorithms. 

6. Conclusion 
In this paper, we consider the problem of SLA-based 

resource allocation optimization in a server cluster in the 

cloud computing framework. The objective is to maximize 

the total profit, which is total price gained from serving the 

clients, which depends on the average request response time 

for each client as defined in their utility functions, subtracted 

by the energy cost of the server cluster. We propose a joint 

optimization framework comprised of requests dispatching, 

DVFS for individual cores in the server cluster, as well as 

core-level and server-level consolidations. Each core in the 

server cluster is modeled using a CTMDP. We propose a 

near-optimal hierarchical solution consisting of a central 

manager and distributed local agents. Each local agent 

employs linear programming-based CTMDP solving method 

to solve the DVFS problem for the corresponding core. The 

central manager solves the request dispatching problem and 

finds the optimal number of turned on cores and servers for 

request processing, thereby achieving a desirable tradeoff 

between service request response time and system power 

consumption. Experimental results demonstrate that the 

proposed near-optimal resource allocation and consolidation 

algorithm consistently outperforms baseline algorithms. 
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