
 1

System-Level Power Management: An Overview

Ali Iranli and Massoud Pedram

University of Southern California

Dept of Electrical Engineering

Los Angeles CA

Abstract

One of the key challenges of computer system design is the management and conservation of
energy. This challenge is evident in a number of ways. The goal may be to extend the battery
lifetime of a portable, battery-powered device. The processing power, memory, and network
bandwidth of such devices are increasing quickly, resulting in an increase in demand for higher
power dissipation, while the battery capacity is improving at a much slower pace. Other goals
may be to limit the cooling requirements of a computer system or to reduce the financial cost of
operating a large computing facility with a high energy bill. This chapter focuses on techniques
which dynamically manage electronic systems in order to minimize its energy consumption.
Ideally, the problem of managing the energy consumed by electronic systems should be addressed
at all levels of design, ranging from low-power circuits and architectures to application and
system software capable of adapting to the available energy source. Many research and
industrial efforts are currently underway to develop low-power hardware as well as energy-
aware application software in the design of energy-efficient computing systems. Our objective in
this chapter is to explore what the system software, vis-à-vis the operating system (OS), can do
within its own resource management functions to improve the energy efficiency of the computing
system without requiring any specialized, low-power hardware or any explicit assistance from
application software and compilers. There are two approaches to consider at the OS-level for
attacking most of the specific energy-related goals described above. The first is to develop
resource management policies that eliminate waste or overhead and allow energy-efficient use of
the devices. The second is to change the system workload so as to reduce the amount of work to
be done, often by changing the fidelity of objects accessed, in a manner which will be acceptable
to the user of the application. This chapter provides a first introduction to these two approaches
with appropriate review of related works.

Background
A system is a collection of components whose combined operation provides a useful service.
Typical systems consist of hardware components integrated on single or multiple chips and
various software layers. Hardware components are macro-cells that provide information
processing, storage, and interfacing. Software components are programs that realize system and
application functions. Sometimes, system specifications are required to fit into specific
interconnections of selected hardware components (e.g., Pentium processor) with specific system
software (e.g., Windows or Linux) called computational platforms.

System design consists of realizing a desired functionality while satisfying some design
constraints. Broadly speaking, constraints limit the design space and relate the major design
trade-off between quality of service (QoS) versus cost. QoS is closely related to performance, i.e.,
system throughput and/or task latency. QoS relates also to the system dependability, i.e., to a
class of system metrics such as reliability, availability, and safety that measure the ability of the
system to deliver a service correctly, within a given time window and at any time. Design cost

 2

relates to design and manufacturing costs (e.g., silicon area, testability) as well as to operation
costs (e.g., power consumption, energy consumption per task.)

In recent years, the design trade-off of performance versus power consumption has received
large attention because of: (i) the large number of systems that need to provide services with the
energy provided by a battery of limited weight and size, (ii) the limitation on high-performance
computation because of heat dissipation issues, and (iii) concerns about dependability of systems
operating at high temperatures because of power dissipation. Here we focus on energy-managed
computer (EMC) Systems. These systems are characterized by one or more high-performance
processing cores, large on-chip memory cores, various I/O controller cores. The use of these
cores will force system designers to treat them as black boxes and abandon the detailed tuning of
their performance/energy parameters. On the other hand, various I/O devices are provisioned in
the system level design to maximize the interaction between the user and the system and/or
among different users of the same system.

Dynamic power management (DPM) is a feature of the run-time environment of an EMC
system that dynamically reconfigures itself to provide the requested services and performance
levels with a minimum number of active components or a minimum activity level on such
components. DPM encompasses a set of techniques that achieve energy-efficient computation by
selectively turning off (or reducing the performance of) system components when they are idle
(or partially unexploited.) The fundamental premise for the applicability of DPM is that systems
(and their components) experience non-uniform workloads during operation time. Such an
assumption is valid for most systems, both when considered in isolation and when inter-
networked. A second assumption of DPM is that it is possible to predict, with a certain degree of
confidence, the fluctuations of workload. In this chapter we present and classify different
modeling frameworks and approaches to dynamic power management.

Modeling Energy Managed Computers (EMC)
An EMC models the electronic system as a set of interacting power manageable components
(PMC’s) controlled by one or more power managers (PM’s.) We model PMC’s as black boxes.
We are not concerned on how PMC’s are designed; instead we focus on how they interact with
each other and the operating environment. The purpose of this analysis is to understand what type
and how much information should be exchanged between a power manager and system
components in order to implement effective system wide energy management policies. We
consider PMC’s in isolation first. Next, we describe DPM for systems with several interacting
components.

A. Power Manageable Components
A PMC is defined to be an atomic block in an electronic system. PMCs can be as complex as a
printed circuit board realizing an I/O device, or as simple as a functional unit within a chip. At the
system level, a component is typically seen as a black box, i.e., no data is available about its
internal architecture. The key attribute of a PMC is the availability of multiple modes of
operation, which span the power-performance tradeoff curve. Non-power-manageable
components are designed for a given performance target and power dissipation specification. In
contrast, with PMC’s, it is possible to dynamically switch between high-performance, high-power
modes of operation and low-power, low-performance ones so as to provide just enough
computational capability to meet a target timing constraint while minimizing the total energy
consumption of completing a computational task. In the limit, one can think of a PMC to have a
continuous range of operational modes. Clearly, as the number of available operational modes
increases the ability to perform fine-grained control of the PMC to minimize the power waste and
achieve a certain performance level increases. In practice, the number of modes of operation

 3

tends to be small because of the increased design complexity and hardware overhead of
supporting multiple power modes.

Another important factor about a PMC is the overhead associated with the PMC
transitioning from one mode of operation to next. Typically, this overhead is expressed as
transition energy and a delay penalty. If the PMC is not operational during the transition, some
performance is lost whenever a transition is initiated. The transition overhead depends on PMC
implementation: in some cases the cost may be negligible, but, generally, it is not. Transition
overhead plays a significant role in determining the number and type of operational modes
enabled by the PMC designer. For example, excessive energy and delay overheads for transitions
into and out of a given PMC state may make that state nearly useless because it will be very
difficult to recompense the overheads unless the expected duration of contiguous time that the
PMC remains in that state is especially long.

Mathematically, one can represent a PMC by a finite state machine where states denote the
operational modes of the PMC and state transitions represent mode transition. Each edge in the
state machine has an associated energy and delay cost. In general, low-power states have lower
performance and larger transition overhead compared to high-power states. This abstract model is
referred to as a Power State Machine (PSM.) Many single-chip components like processors [1]
memories [2], and archetypal I/O devices such as disk drives [3], wireless network interfaces [4],
and displays [5] can readily be modeled by a PSM.

Example: The StrongARM SA-1100 processor [6] is an example of a PMC. It has three modes of
operation: RUN, STDBY, and SLEEP. The RUN mode is the normal operating mode of the SA-
1100: every on-chip resource is functional. The chip enters the RUN mode after successful
power-up and reset. STDBY mode allows a software application to stop the CPU when it is not in
use, while continuing to monitor interrupt requests on or off chip. In the STDBY mode, the CPU
can be brought back to the RUN mode quickly when an interrupt occurs. SLEEP mode offers the
greatest power savings and, consequently, the lowest level of available functionality. In the
transition from RUN or STDBY, the SA-1100 performs an orderly shutdown of its on-chip
activity. In a transition from SLEEP to any other state, the chip steps through a rather complex
wake-up sequence before it can resume normal activity. The PSM model of the StrongARM SA-
1100 is shown in Figure 1. States are marked with power dissipation and performance values,
edges are marked with transition times and energy dissipation overheads. The power consumed
during transitions is approximately equal to that in the RUN mode. Notice that both STDBY and
SLEEP have null performance, but the time for exiting SLEEP is much longer than that for
exiting STDBY (10s versus 160ms.) On the other hand, the wake-up time from the SLEEP state is
much larger, and therefore, it must be carefully compared with the environment’s time constants
before deciding to shut the processor down. In the limiting case of a workload with no idle
periods longer than the time required to enter and exit the SLEEP state, a greedy policy which
would shut down the processor as soon as an idle period was detected tends to reduce
performance without actually saving any power (the ratio of the energy consumption divided by
the transition time associated with any of the state transitions is of the same order of power
dissipation in the RUN state.) An external PM that controls the inter-mode transitions of the SA-
1100 processor must observe the workload and make decisions according to a policy whose
optimality depends on workload statistics and on predefined performance constraints. Notice that
the policy becomes trivial if there are no performance constraints: the PM can keep the processor
nearly always in the SLEEP state. ♦

 4

B. Dynamic Power Management Techniques
This section reviews various techniques for controlling the power state of a system and its
components. One may consider components as black boxes, whose behavior is abstracted by the
PSM model and focus on how to design effective power management policies. Without loss of
generality, consider the problem of controlling a single component (or, equivalently, the system
as a whole.) Furthermore, assume that transitions between different states are instantaneous and
the transition energy overhead is non-existent. In such a system, DPM is a trivial task and the
optimum policy is greedy one i.e., as soon as the system is idle, it can be transitioned to the
deepest sleep state available. On the arrival of a request, the system is instantaneously activated.
Unfortunately, most PMC’s have non-negligible performance and power costs for state
transitions. For instance, if entering a low-power state requires power-supply shutdown, returning
from this state to the active state requires a (possibly long) time in order to 1) turn on and
stabilize the power supply and the clock; 2) reinitialize the system; and 3) restore the context.
When power state transitions have a cost, finding the optimal DPM policy becomes a difficult
optimization problem. In this case, the DPM policy optimization is equivalent to a decision
making problem in which the PM must decide if and when it is worthwhile (from a performance
and power dissipation viewpoint) to transition to which low-power state (in case of having
multiple low-power states.)

Example: Consider the StrongARM SA-1100 processor described in previous example.
Transition times between RUN and STDBY states are very fast so that the STDBY state can be
optimally exploited according to a greedy policy possibly implemented by an embedded PM. On
the other hand, the wake-up time from the SLEEP state is much longer and has to be compared
with the time constants for the workload variations to determine whether or not the processor
should be shut down. In the limiting case of a workload without any idle period longer than the
time required to enter and exit the SLEEP state, a greedy policy for shutting down the processor
(i.e., moving to SLEEP state as soon as an STDBY period is detected) will result in performance
loss, but no power saving. This is because the power consumption associated with state
transitions is of the same order of magnitude as that of the RUN state. An external PM which
controls the power state transitions of the SA-1100 processor must make online decisions based
on the workload and target performance constraints. ♦

The aforementioned example was a simple DPM optimization problem, which illustrated the
two key steps of designing a DPM solution. The first task is the policy optimization, which is the
problem of solving a power optimization problem under performance constraints. The second
task is the workload prediction, which is the problem of predicting the near-future workload. In
the following, different approaches for implementing these two problems will be discussed.

The early works on DPM focused on predictive shutdown approaches [7][8] which make use of

Figure 1. Power State Machine for Strong ARM SA1100

 5

“time-out” based policies. A power management approach based on discrete time Markovian
decision processes was proposed in [9]. The discrete-time model requires policy evaluation at
periodic time instances and may thereby consume a large amount of power even when no change
in the system state has occurred. To surmount this shortcoming, a model based on continuous-
time Markovian decision processes (CTMDP) was proposed in [10]. The policy change under this
model is asynchronous and is thus more suitable for implementation as part of a real-time
operating system environment. Reference [11] proposed time-indexed semi-Markovian decision
processes for system modeling. Other approaches such as adaptive learning based strategies [12],
session clustering and prediction strategies [13], on-line strategies [14][15], and hierarchical
system decomposition and modeling [34] have also been utilized to find a DPM policy of EMCs.

In the following sections, we describe various DPM techniques in more detail.

B.1 Predictive Shutdown Approaches
Applications such as display severs, user interface functions, and communication interfaces are
“event-driven’’ in nature with intermittent computational activity triggered by external events and
separated by periods of inactivity. An obvious way to reduce average power consumption in such
applications is to shut the system down during periods of inactivity. This can be accomplished by
shutting off the system clock or in certain cases by shutting off the power supply (cf. Figure 2.)

An event-driven application will alternate between a blocked state where it stalls the CPU
waiting for external events and a running state where it executes instructions. Let Tblocked and
Trunning denote the average time spent in the blocked and the running states, respectively. One can

improve the energy efficiency by as much as a factor of 1 blocked

running

T

T
+ provided that the system is

shut down whenever it is in the blocked state.

There are two key questions: 1) how to shutdown, and 2) when to shutdown. The first
question is addressed by developing mechanisms for stopping and restarting the clock or for
turning off and on the power supply. The second question is addressed by devising policies such
as “shut the system down if the user has been idle for five minutes.” Although these two issues
are not really independent because the decision about when to shutdown depends on the overhead
of shutting down the system, the predictive shutdown approaches focus primarily on the question
of deciding when to shutdown while being aware of the available shutdown mechanisms. Simple
shutdown techniques, for example shutting down after a few seconds of no keyboard or mouse
activity, are typically used to reduce power consumption in current notebook computers.
However, the event-driven nature of modern applications, together with efficient hardware
shutdown mechanisms provided by PMCs, suggests the possibility of a more aggressive
shutdown strategy where parts of the system may be shutdown for much smaller intervals of time
while waiting for events.

In this section we explore a shutdown mechanism where we try to predict the length of idle
time based on the computation history, and then shut the processor down if the predicted length
of the idle time justifies the cost in terms of both energy and performance overheads of shutting

Figure 2. Event-driven application alternates between blocked and running states

 6

down. The key idea behind the predictive approach can be summarized as follows: “Use history
to predict whether Tblocked will be long enough to justify a shutdown.” Unfortunately, this is a
difficult and error-prone task. One therefore has to resort to heuristics to predict Tblocked for the
near future. References [7][8] present approaches where based on the recent history, a prediction
is made as to whether or not the next idle time will be long enough to at least break even with the
shutdown overhead. Results demonstrate that for reasonable values of the shutdown overhead, the
predictive approaches tend to result in sizeable energy savings compared to the greedy shutdown
approach, while the performance degradation remains negligible.

Restricting the analysis to a simple event-driven model of an application program running on
the SA-1100 processor and considering internally controlled transfer between RUN and STDBY
states and externally controlled transfer between STDBY and SLEEP states of the processor, the
system can be modeled by a partially self-power-managed PSM with only two states (cf. Figure
3): ON and OFF. The ON state is a macro-state representing the RUN and STDBY states of the
processor and the local policy used by the processor itself to move between RUN and STNDBY
states depending on the workload. The OFF macro-state is the same as the SLEEP state. The
power consumption associated with the ON state is the expected power consumption in this
macro-state and is calculated as a function of standby time, local transition probabilities and
energy overhead of the transitions. Transitions between ON and OFF macro-states correspond to
transitions between RUN and SLEEP states and their overheads are set accordingly.

The processor starts in the ON state, and makes transitions from ON to OFF back to ON
state. Let TON[i] and TOFF[i] denote the time spent by the application in the ith visit to the ON and
the OFF states, respectively. Furthermore, we define TON as the average of TON[i] over all i, and
similarly TOFF as the average of TOFF[i] over all i. Let TON-OFF and EON-OFF denote the time and
energy dissipation overhead associated with the transfer to OFF state. TOFF-ON and EOFF-ON are
similarly defined (cf. Figure 4.) In predictive shut down approaches the PM predicts the
upcoming duration of time for which the system will be idle, TOFF[i], based on the information
from the current active period, TON[i] and previous active and idle periods TON[j] and TOFF[j] for
j=i–1, i–2, … 1. The policy then is to transfer the processor from ON to OFF state if TOFF[i]≥TBE,
where TBE is the duration of break-even time. The processor is then turned on (it moves from OFF
to ON state) as soon as a new request for data processing comes in.

In [7], the authors proposed two different approaches for predicting TOFF[i]. The first
approach uses regression analysis on application traces and calculates TOFF[i] in terms of TOFF[i–
1] and TON[i]. Notice that TOFF[i–1] denotes the actual (and not the initially predicted) duration of
the OFF time on the (i–1)st visit to the OFF state. For their second approach, the authors simplify
the analysis based on the observation that long OFF periods are often followed by short ON
periods. Therefore, a simple rule is constructed whereby, based on the duration of the current ON
period, TON[i], the PM predicts the duration of the next OFF period, TOFF[i], to be larger or
smaller than the break-even time, TBE, and therefore, decides whether it should maintain or

Figure 3. PSM of a two-state power-manageable component.

 7

change the current power state of the processor.

Reference [8] improves this approach by using an exponential-average of the previous OFF
periods as the predicted value for the upcoming idle period duration. More precisely,

2

2

[] [1] (1) [2] (1) [3]

(1) [1] (1) []

est act act act
Off Off Off Off

m act m est
Off Off

T i a T i a a T i a a T i

a a T i m a T i m−

= ⋅ − + ⋅ − ⋅ − + ⋅ − ⋅ − + +

⋅ − ⋅ − + + − ⋅ −

"
 (1)

where 0≤a≤1 is a weighting coefficient. Parameter a controls the relative weight of recent and

past history in the prediction. If a = 0, then []est
OFFT i = []act

OFFT i m− , i.e., the recent history has no

effect on the estimation. On the other hand, if a = 1, then []est
OFFT i = [1]act

OFFT i − , i.e., only the

immediate past matters in setting the duration of the next idle period. In general, however, this

equation favors near past historical data. For example, for a = ½, [1]act
OFFT i − has a weight of ½

whereas [3]act
OFFT i − has a weight of ⅛ .

As mentioned before, when the PMC resumes the ON state from the OFF state (i.e., on
system wake-up), the PMC suffers a delay penalty of TOFF-ON having to restore the original system
state. This delay penalty can have a large negative impact on the PMC’s performance. Reference
[8] circumvents this problem by proposing a pre-wakeup approach before the arrival time of the
next event. In this approach, the system starts the activation process immediately after the
predicted time interval for the current idle period. Let’s consider the case where the predicted idle

period is overestimated i.e., [] [] for 0est act
Off OffT i T i d d= + > . Two sub-cases are possible 1.1) d ≤

TOFF-ON: the system wakes up after TOFF-ON and the delay penalty is (TOFF-ON – d); 1.2) d > TOFF-ON:
the system is awakened after TOFF-ON time units. Next, consider the case where the predicted idle

period is underestimated i.e., [] [] for 0est act
Off OffT i T i d d= − ≥ . Again we consider two-sub-cases:

2.1) d ≤ TOFF-ON: the system will wake up after TOFF-ON and immediately starts executing the
arrived computational task. There is no energy waste and the delay penalty is (TOFF-ON – d). 2.2) d
> TOFF-ON: the system will wake up after TOFF-ON and remain ON for a period of (d – TOFF-ON) time
units ahead of the next required computation. Energy waste is (d – TOFF-ON).PON . There is no
delay penalty. In summary, the pre-wakeup policy results in shorter delay penalty in sub-cases
1.1, 2.1, and 2.2, but it results in energy waste in subcase 2.2.

To alleviate the chances for under-estimation of the idle period, reference [8] proposes a
timeout scheme which periodically examines the PMC to determine whether it is idle but not shut

Figure 4. Graphical illustration of how a simple greedy algorithm can result in a significant delay
penalty.

 8

down. If that is the case, then it increases []est
OFFT i . The chance of over-prediction is reduced by

imposing a saturation condition on predictions, i.e., max[] [1]est est
OFF OFFT i C T i≤ ⋅ − .

Several other adaptive predictive techniques have been proposed to deal with non-stationary
workloads. In the work by Krishnan et al. [16], a set of prediction values for the length of ile
period is maintained. In addition, each prediction value is annotated with an indicator to show
how successful it would have been if it had been used in the past. The policy then chooses for the
length of next idle period the prediction which has the highest indicator value among the set of
available ones. Another policy, presented by Helmbold et al. [17], also keeps a list of candidate
predictions and assigns a weight to each timeout value based on how well it would have
performed for past requests relative to an optimum offline strategy. The actual prediction is then
obtained as a weighted average of all candidate predictions. Another approach, introduced by
Douglis et al. [18], keeps only one prediction value but adaptively changes the value. In
particular, it increases (decreases) the prediction value when this value causes too many (few)
shutdowns.

The accuracy of workload prediction can be increased by customizing predictors to a
particular class of workloads. This kind of customization restricts its scope of applicability, but
also reduces the difficulties of predicting completely general workloads. A recently proposed
adaptive technique [19], which is specifically tailored toward hard-disk power management, is
based on the observation that disk accesses are clustered in sessions. Sessions are periods of
relatively high disk activity separated by long periods of inactivity. Under the assumption that
disk accesses are clustered in sessions, adaptation is only used to predict the session length.
Prediction of a single parameter is easily accomplished and the reported accuracy is high.

As mentioned earlier, there are periods of unknown duration, during which there are no tasks
to run and the device can be powered down. These idle periods end with the arrival of a service
request. The decision that the online DPM algorithm has to make is when to transition to a lower
power state, and which state to transition to. The power-down states are denoted by s0,…, sk, with
associated decreasing power consumptions of P0,…, Pk. At the end of the idle period, the device
must return to the highest power state, s0. There is an associated transition energy eij and
transition time tij to move from state si to sj. The goal is to minimize the energy dissipation
consumed during the idle periods. Online power-down techniques can be evaluated according to a
competitive ratio (a ratio of 1 corresponds to the optimal solution.) There is a deterministic 2-
competitive algorithm for two-state systems, which keeps the service provider in the active state
until the total energy consumed is equal to the transition energy. It is recognized that this
algorithm is optimally competitive. Furthermore, if the idle period is generated by a known
probability distribution, then there is an optimally competitive probability-based algorithm which
is (

(1)
e

e −
)-competitive [20]. For some systems, the energy needed and time spent to go from a

higher power state to a lower power state is negligible. Irani et al. show in [14] that for such
systems, the two-state deterministic and probability-based algorithms can be generalized to
systems with multiple sleep states so that the same competitive ratios can be achieved. The
probability-based algorithm requires information about a probability distribution, which generates
the length of the idle period. In [15], Irani et al. give an efficient heuristic for learning the
probability distribution based on recent history.

B.2 Markovian Decision Process-Based Approaches
The most aggressive predictive power management policies turn off every PMC as soon as it
becomes idle. Whenever a component is needed to carry out some task, the component must first
be turned on and restored to its fully functional state. As mentioned above, the transition between
the inactive and the functional state has latency and energy overheads. As a result, “eager”

 9

policies are often unacceptable because they can degrade performance without decreasing power
dissipation. The heuristic power management policies are useful in practice although no strong
optimality result has been proved for these types of policies. On the other hand, stochastic control
based on Markov models has emerged as an effective power management framework. In
particular, the stochastic PM techniques have a number of key advantages over predictive
techniques. First, they capture a global view of the system, thus allowing the designer to search
for a global optimum which can exploit multiple inactive states of multiple interacting resources.
Second, they compute the exact solution (in polynomial time) for the performance-constrained
power optimization problem. Third, they exploit the vigor and robustness of randomized policies.
However, a number of key points must be considered when deciding whether or not to utilize a
stochastic DPM technique. First, the performance and power obtained by a policy are expected
values, and there is no guarantee that the results will be optimum for a specific workload instance
(i.e., a single realization of the corresponding stochastic process.) Second, policy optimization
requires a priori Markov models of the service provider (SP) and service requester (SR.) One can
safely assume that the SP model can be pre-characterized; however, this assumption may not be
true about the SR’s model. Third, policy implementation tends to be more involved. An implicit
assumption of most DPM techniques is that the power consumption of the PM is negligible. This
assumption must be validated on a case-by-case basis, especially for stochastic approaches.
Finally, the Markov model for the SR or SP may be only an approximation of a much more
complex stochastic process. If the model is not accurate, then the “optimal” policies are also
approximate solutions.

In the following, we consider a discrete-time (i.e., slotted time) setting [9]. Time is described
by an infinite series of discrete values tn = T.n, where T is the time resolution (or period), and
n +∈` . The EMC is modeled with a single SR (or user) whose requests are en-queued in a single
queue, service queue (SQ), and serviced by a single SP. The PM controls over time the behavior
of the SP (Figure 5.)

Service Requester (SR): This unit sends requests to the SP. The SR is modeled as a Markov
Chain whereby the observed variable is the number of requests sr sent to the SP during time
period tn. The service request process and its relevant parameters are known. Moreover, it is
known that in each time period a maximum of Sp requests can be generated.

Example: Consider a “bursty” workload with a maximum of one request per period, i.e., the
SR has two states as depicted in Figure 6. Since the workload comes in bursts, a request will be
generated at time tn+1 with a probability of 0.85 if a request is received at time tn. On the other
hand, if there is no request at time tn, then with a probability of 0.92 there will be no request at
time tn+1. The mean duration of a stream of requests is equal to 1/0.15 =6.67 periods. ♦

,

Figure 5. Illustration of the abstract system model

 10

Service Provider (SP): The SP is a PMC which services requests issued by the SR. In each time

period, the SP can be in only one state. Each state { }1, ,p Ps S∈ " is characterized by a

performance level and by a power consumption level. In the simplest example, one could have
two states: ON and OFF. In each period, transitions between power states are controlled by a
power manager (PM) through commands: { }1, , Ccmd CMD N∈ = " . For example, one can

define two simple commands: Go2Active and Go2Sleep. When a specific command is issued, the
SP will move to a new state with a fixed probability depending on the command cmd, and on the
departing and arriving states. In other words, when a command is issued by the PM, there is no
guarantee that the command is immediately executed. Instead, the command influences the way
in which the SP will act in the future. This probabilistic model describes the view where the
evolution in time of power states is modeled by a Markov process in which the transition
probability matrix is dependent on the commands issued by the PM. In other words, there is one
transition probability matrix for each command cmd.

Back to the SA-1100 example with two states, Figure 7 depicts the probabilistic behavior of
the device under influence of Go2Sleep and Go2Active commands:

The transition time from OFF to ON when Go2Active has been issued is a geometric random
variable with an average of 1/0.04 = 25 time periods. Each power state has a specific power
consumption rate and performance (e.g., clock speed), which is a function of the state itself. In
addition, each transition between two power states in annotated with an energy cost and a latency,
representing the overhead of transitioning between the two corresponding states. Such
information is usually provided in the data-sheets of the PMCs.

Service Queue (SQ): When service requests arrive during one period, they are buffered in a
queue of length (Sq ≥ 1.) The queue is usually considered to be a FIFO, although other schemes
can also be modeled efficiently. The request is processed and serviced within the period with a
probability dependent on the power state of the SP. In this way, the model captures the non-
deterministic service time of a request as a geometric random variable, similar to the exponential

Figure 6. A Bursty Service Requester’s Stochastic Model

a. stochastic model of the PMC when
Go2Sleep command has been issued

b. stochastic model of the PMC when
Go2Active command has been issued

Figure 7. Stochastic model of the SA-1100

 11

service time for the G/M/1 class in the queuing theory [21]. It follows that also the queue length
(denoted by sq, with 0 ≤ sq < Sq) is a Markov process with transition matrix PSQ(sp, sr). Again back
to the example, if a request is serviced with probability 0.9 in the ON state and with probability
zero in the OFF state and the buffer can contain at most one request, then the transition matrix
PSQ(sp, sr) will be

0 1

0 1.0 0.0
(,0)

1 0.9 0.1SPP ON
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

0 0.9 0.1
(,1)

1 0.9 0.1SPP ON
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

0 1.0 0.0
(,0)

1 0.0 1.0SPP OFF
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0 1

0 0.0 1.0
(,1)

1 0.0 1.0SPP OFF
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

(2)

Power Manager (PM): This component communicates with the SP and attempts to set its state at
the beginning of each period by issuing commands from among a finite set, CMD. This goal is in
turn achieved only in a probabilistic sense, that is, the PM changes the transition matrix of the SP
by issuing a particular command. In the aforementioned example, the two possible commands are
Go2Active, and Go2Sleep. The PM has all specifications and collects all relevant information (by
observing SR, SQ, and SP) needed for implementing a power management policy. The power
consumption of the PM is assumed to be much smaller than that of the PMCs it controls and so it
is not a concern. The state of the EMC composed of the SP, the SR and the queue is then a triplet,

(, ,)p q rs s s s= . Being the composition of three Markov chains, s is a Markov chain (with S =

Sr×Sp×Sq states), whose transition matrix P(cmd) depends on the command cmd issued to the SP
by the PM. Hence, the system is fully described by a set of NC transition matrices, one for each
command.

In the above description no mention is made of the energy source (i.e., the battery.) In the
stochastic approaches the goal is to minimize (or bound) the average power consumption of the
SP, and not to maximize the expected battery life. This choice has several advantages: it does not
need to consider the details of the power source (rate-dependent energy discharge characteristics,
and energy recovery), while still retains the primary feature of minimizing (or constraining) the
power consumption level. However, there have been recent attempts to incorporate the battery
behavior in modeling the EMC systems while finding a solution to DPM problem [22].

At the beginning of each time period tn, the PM observes the “history” of the system, i.e., the
sequence of states and commands up to tn-1. It then controls the SP by making a decision. In
deterministic policies, the PM makes a single decision to issue specific command on the basis of
the history of the system. On the other hand, in the much broader set of policies called the
randomized policies, PM assigns probabilities to every available command and then chooses the
command to issue, according to this probability distribution. In this way, even if the same
decision is taken in different periods, the actual commands issued by the PM can be different.

Mathematically speaking, let Hn represent history of the EMC, then a decision δ(Hn) in a
randomized policy is a set of probabilities, pcmd, where each pcmd represents the probability of
issuing command, cmd, given that the history of the system is Hn. A deterministic decision is the
special case with pcmd = 1 for some command, cmd. Over a finite time horizon, the decisions
taken by the PM are a finite discrete sequence δ(1),…,δ(n). We call this sequence a policy π. The
policy π is the free variable of our optimization problem. If a policy

(1) ()(, ,)nπ δ δ= … is adopted,

then we can define
()

1
i

n

n
i

P Pπ
δ

=

= ∏ , which is simply the n-step transition matrix under policy π.

 12

Example: Consider the example of the previous section. Suppose that the PM observes the
following history: s1 = (0, ON, 0), s2 = (1, OFF, 0) (states in periods 1, 2), and cmd(1) =
Go2Sleep (action taken at time 1.) A possible decision at time 2 in a randomized policy, when
state s2 is observed, consists of setting probabilities for issuing commands Go2Active and
Go2Sleep to pGo2Active = 0.34, pGo2Sleep = 0.66, respectively. On the other hand, in case of a
deterministic policy, for example, the PM will decide to issue the Go2Active command to the
underlying PMC. ♦

Policy Optimization: The problem is to find the optimal policy (set of state-action pairs) for the
PM such that some power-related cost function is minimized subject to a set of performance
constraints. Consider that the system is in state (, ,)p q rs s s s= at the beginning of time period n.

A typical example of a cost function is the expected power consumption of the SP in that time
period, which is denoted as ()(,)p nc s δ and represents the power consumption when the SP starts

in state sp and the PM takes decision δ(n). (Note that
()

()(,) (,)
n

p n cmd p
cmd

c s p c s cmd
δ

δ
∈

= ⋅∑ .) A second

parameter of interest is the performance penalty in that time period, which is denoted by ()qd s

and is typically set to the queue length, sq. Finally, one can consider the request loss in the time
period, denoted by (,)r qb s s . The loss factor is in general set to one when a request arrives (sr =

1) and the queue buffer is full (sq = Sq); otherwise it is set to zero. We are interested in finding the
optimum stationary PM policy for the system. This means that decision, δn, is only a function of
the system state, s, and not of the time period at which the decision is made. In other words, the
policy sought is one in which the same decision is made for a given global state regardless of
time. With this in mind, we can now define a power consumption vector, ()sc δ , a performance

penalty vector, ()sd δ , and a request loss vector, ()sb δ . Each vector has S elements.

Furthermore, the sth element of each vector is the expected value of the corresponding quantity
when the system is in global state s and decision δn is taken. When performing policy
optimization, we want to minimize the expected power consumption while keeping the average
performance and request loss below some levels specified by the user. Given the probability
distribution of the initial system state at the beginning of the first period, p1, the problem of
determining the optimal stationary policy can be formally described as follows:

1 1 ()
1

1 1 ()
1

1 1 ()
1

1
min lim ()

s.t.

1
lim ()

1
lim ()

N

n n
N

n

N

n n M
N

n

N

n n M
N

n

p P c
N

p P d D
N

p P b B
N

π

π

π

π

δ

δ

δ

−→∞ =

−→∞ =

−→∞ =

⋅ ⋅

⋅ ⋅ ≤

⋅ ⋅ ≤

∑

∑

∑

 (3)

where () ()() () if n s nc c s sδ δ= = and DM and BM denote the upper bounds on average required

performance penalty and request loss in any time period, respectively. The optimization is carried
over the set of all possible policies. Hence, solving the aforementioned optimization appears to be
a formidable task. Fortunately, if the delay constraint for the EMC is an active constraint, the
optimal power management policy will generally be a randomized policy [23]. The randomized

 13

optimal policy can be obtained by solving a linear programming problem as explained in [9]. This
approach offers significant improvements over previous power management techniques in terms
of its theoretical framework for modeling and optimizing the EMC.

There are, however, some shortcomings. First, because the EMC is modeled in the discrete-
time domain, some assumptions about the PMCs may not hold for real applications, such as the
assumption that each event comes at the beginning of a time slice, or the assumption that the
transition of the SQ is independent of the transition of the SP, etc. Second, the state transition
probability of the system model cannot be obtained accurately. For example, the discrete-time
model cannot distinguish the busy state and the idle state because the transitions between these
two states are instantaneous. However, the transition probabilities of the SP when it is in these
two states are different. Moreover, the PM needs to send control signals to the PMCs in every
time-slice, which results in heavy signal traffic and a heavy load on the system resources (and,
therefore, more power.)

Reference [10] overcomes these shortcomings by introducing a new system model based on
continuous-time Markov decision processes (CTMDP.) As a result of this model, the power
management policy becomes asynchronous which is more appropriate for implementation as part
of the operating system. The new model considers the correlation between the state of the SQ and
the state of the SP, which is more realistic than previous models. Moreover, the service requester
model is capable of capturing complex workload characteristics and the overall system model is
constructed exactly and efficiently from those of the component models. An analytical based
approach is used to calculate the generator matrix for the joint process of SP-SQ and a tensor
sum-based method is utilized to calculate the generator matrix of the joint process of SP-SQ and
SR. The policy optimization problem under the CTMDP model can be solved using (exact) linear
programming and (heuristic) policy iteration algorithms. Moreover, this work models the service
queue as two queues consisting of low-priority and high-priority service requests, which
furthermore captures the behavior of real-life EMCs.

Because the CTMDP policy is a randomized policy, at times it may not turn off the SP even
when there is no request in the SQ. If the stochastic model exactly represents the system behavior,
then this policy is optimal. However, in practice, because the stochastic model is not accurate
enough, the CTMDP policy may cause unnecessary energy dissipation by not turning off the SP.
For example, the real requests pattern on the SP may be quite different from what has been
assumed in theory, and the SP idle time may be much longer than one would expect based on the
assumption of exponential input inter-arrival time. In this case keeping the SP on while it is idle
can result in power waste. The authors of [10] thus present an improved CTMDP policy (called
CTMDP-Poll) by adding a polling state. The functionality of the polling state is very simple.
After adding this state, even if the CTMDP policy allows the SQ to stay on when the SQ is
empty, the policy will re-evaluate this decision after some random-length period of time. For
example, if the SQ is empty and the PM has made a decision (with probability of 0.1) of letting
the SQ to stay ON, then after 2s, if there is no change in the SQ, the models will enter the polling
state, and the PM will have to re-evaluate its decision. At this time, the probability for it to still let
SQ remain on is again 0.1. So as the time goes on, the total probability of the SQ remaining in the
ON state reduces in a geometric manner. In this way, one can make sure that the SP will not be
idle for too long, resulting in less wasteful energy dissipation.

The timeout policy is an industry standard that has been widely supported by many real
systems. A DPM technique based on timeout policies may thus be easier and safer for users to
implement. At the same time, it helps them achieve a reasonably good energy-performance trade-
off. To implement a more elaborate DPM technique requires the users to directly control the
power-down and wake-up sequences of system components, which normally necessitates detailed
knowledge of hardware and involves a large amount of low-level programming dealing with the

 14

hardware interface and device drivers. Notice also that the various system modules typically
interact with each other implying that sudden power-down of a system module may cause the
whole system to malfunction or become unstable i.e., direct control over the state of a system
module is a big responsibility that should not be delegated unceremoniously. A DPM technique
based on a simple and well-tested timeout policy and incorporated in the operating system will
have none of the above concerns. Based on these reasons, the authors of [24] present a timeout-
based DPM technique, which is constructed based on the theory of Markovian processes and is
capable of determining the optimal timeout values for an electronic system with multiple power-
saving states. More precisely, a Markovian process based stochastic model is described to
capture the power management behavior of an electronic system under the control of a timeout
policy. Perturbation analysis is used to construct an offline gradient-based approach to determine
the set of optimal timeout values. Finally, online implementation of this approach is also
discussed.

B.3 Petri Net-Based Approaches
The DPM approaches based on Markov decision processes offer significant improvements over
heuristic power management policies in terms of the theoretical framework and ability to apply
strong mathematical optimization techniques [25]-[31]. However, previous works based on
Markov decision processes only describe modeling and policy optimization techniques for a
simple power managed system. Such a system contains one SP that provides services (e.g.
computing, file access, etc.), one SQ that buffers the service requests for the SP, and one SR that
generates the requests for SP. It is relatively easy to construct the stochastic models of the
individual components because their behavior is rather simple. However a significant effort is
required to construct the joint model of SP and SQ mostly because of the required
synchronization between state transitions of SP and SQ. Furthermore, the size of the Markov
process model of the overall system rises rapidly as the number of SPs and SRs is increased.

Generalized Stochastic Petri Nets (GSPNs) target more complex power-managed systems as
shown in Figure 8. The example depicts a typical multi-server (distributed computing) system.
Note that this model only captures those system behaviors that are related to the power
management. The system contains multiple SPs with their own Local SQs (LSQ.) There is a SR
that generates the tasks (requests) that need to be serviced. The Request Dispatcher (RD) makes
decisions about which SP should service which request. Different SPs may have different
power/performance parameters. In real applications, the RD and LSQs can be part of the
operating system, while SPs can be multiple processors in a multi-processor computing system or
number of networked computers of a distributed computing system.

The complexity of the modeling problem for the above system is high not only because of
the increased number of components, but also because of the complex system behaviors that are

Figure 8. A multi-server/distributed-computing system.

 15

present. For example, one needs to consider the synchronization of LSQs and SPs, the
synchronization of the SR and LSQs, the dispatch behavior of the RD, and so on. In this situation
when complex behaviors must be captured by the system model, the modeling techniques in [11]
become inefficient because they only offer stochastic models for individual components and
require that global system behaviors be captured manually. Obviously, we need new DPM
modeling techniques for large systems with complex behaviors.

For a detailed introduction to Petri Nets, please refer to [33].

A Petri Net (PN) model is graphically represented by a directed bipartite graph in which the
two types of nodes (places and transitions) are drawn as circles, and either bars or boxes,
respectively (cf. Figure 9.) The edges of the graph are classified (with respect to transitions) as:

• input edges: arrow-headed edges from places to transitions

• output edges: arrow-headed edges from transitions to places

Multiple (input/output) edges between places and transitions are permitted and annotated
with a number specifying their multiplicities.

Places can contain Tokens, which are drawn as black dots within places. The state of a PN is
called marking, and is defined by the number of tokens in each place. As in classical automata
theory, in PN there is a notion of initial state (initial marking.) Places are used to describe
possible local system states (named conditions or situations.) Transitions are used to describe
events that may modify the system state. Edges specify the relation between local states and
events in two ways: they indicate the local state in which the event can occur, and the local state
transformations induced by the event.

The dynamic behavior of the PN is governed by the firing rule. A transition can fire (an
event takes place) if all the transition input places (i.e., those places connected to the transition
with an arc whose direction is from the place to the transition), contain at least one token. In this
case the transition is said to be enabled. The firing of an enabled transition removes one token
from all of its input places, and generates one token in each of its output places (i.e., those places
connected to the transition with an arc whose direction is from the transition to the place.) The
firing of a transition is an atomic operation. Tokens are removed from input places, and deposited
into output places with one indivisible action. Typically, the firing of a transition describes the
result of either a logical condition becoming true in the system, or the completion of an activity.
The latter interpretation is the reason for associating timing with transitions, as many authors did
in their proposals for the definition of temporal concepts in PNs. Hence, time can be naturally
associated with transitions. In the semantics of PNs, this type of transitions with associated
temporal specifications is called a timed transition. These transitions are represented graphically
by boxes or thick bars and are denoted with names that start with T. On the other hand, Immediate
transitions fire as soon as they become enabled (with zero delay), thus acquiring a sort of
precedence over timed transitions, and leading to the choice of giving priority to immediate

Figure 9. PN description of a switch

 16

transitions in the definition of GSPNs. In this chapter, immediate transitions are depicted as thin
bars.

It should be noted that the PN state transformation is local, in the sense that it involves only
the places connected to a transition by input and/or output arcs (this will be visible in the
forthcoming examples; the PN model of a switch is so simple that local and global states
coincide.) This is one of the key features of PNs, which allows compact description of distributed
systems.

Example: A simple example of a PN model is given in Figure 9, where two places PON and POFF ,
and two transitions TON-OFF and TOFF-ON are connected with four arcs. Both places define
conditions (i.e., the “ON condition” or the “OFF condition”.) The state depicted in the Figure 9 is
such that place POFF contains one token; thus the “OFF condition” is true; instead, since place PON
is empty, the “ON condition” is false. In this simple example, transition TOFF-ON is enabled, and it
fires, removing one token from POFF and depositing one token in PON. The new state is such that
the “ON condition” is true and the “OFF condition” is false. In the new state, transition TON-OFF is
enabled, and it fires restoring the state shown in Figure 9. The simple PN model in Figure 9 may
be interpreted as the PN description of the behavior of a switch. ♦

In a Stochastic Petri Net (SPN) model, each timed transition is associated not only with a
single transition time but a collection of randomly generated transition times from an exponential
distribution. As in case of timed transitions, for the description of SPNs, one can assume that each
timed transition possesses a timer. When the transition becomes enabled for the first time after
firing, the timer is set to a value that is sampled from the exponential pdf associated with the
transition. During all time periods in which the transition is enabled, the timer is decremented.
Transitions fire when their timer readout goes down to zero. With this interpretation, each timed
transition can be used to model the execution of an activity in a distributed environment; all
activities execute in parallel (unless otherwise specified by the PN structure) until they complete.
At completion, activities induce a local change of the system state, which is specified with the
interconnection of the transition to input and output places. In Generalized Stochastic Petri Nets
(GSPNs), the exponentially timed and immediate transitions coexist in the same model. In the
context of GSPNs places can be divided into two different classes based on the type of the
transitions for which they are inputs, i.e., vanishing places and tangible places. The place is a
vanishing place if it is the only input place of an immediate transition; otherwise the place is
called a tangible place.

Let’s see how one can use this modeling tool to develop a DPM policy by capturing the
exact behavior of a complex EMC system. To capture the energy consumption of the EMC in the
GSPN model, the following two definitions are necessary.

Definition: A GSPN with cost is a GSPN model with the addition of two types of cost: impulse
cost associate with marking transitions and rate cost associated with places. Impulse cost occurs
when the GSPN makes a transition from one marking to another. Rate cost is the cost per unit
time when the GSPN stays in a certain marking.

Definition: A controllable GSPN with cost is a GSPN where all or part of the probabilities of
timed transitions can be controlled by outside commands.

Example: Consider that a SP in the processor has two power states: {ON, OFF}. In the ON state,
the SP provides service with an average service time of 5ms. The average time to switch from the
ON state to OFF state is 0.66ms, the average time to switch from the OFF state to ON state is
6ms. The power consumption of the SP is 2.3W when it is in the ON state and 0.1W when it is in
the OFF state. The energy needed to switch from the ON state to OFF state is 2mJ, the energy
needed to switch from the OFF state to ON state is 30mJ. Assume that the maximum length of
the SQ is 3. Figure 10 shows the GSPN model of the single processor system. The input gate

 17

Gcapacity sets the SQ capacity constraint. The place PON-OFF denotes the SP status when it is
switching from the ON state to OFF state while the place POFF-ON denotes the SP status when it is
switching from the OFF state to ON state. The place Pidle(ON)/Pidle(OFF) denotes the SP status when
it is idle and the power state is ON/OFF. The place Pwork(ON) denotes the SP status when it is
working and the power state is ON. The SP will have exactly one such status at any time. From
the topology of the GSPN, one realizes that the sum of tokens in places PON-OFF, Pidle(ON), Pwork(ON),
Pidle(OFF), POFF-ON is 1 at any time.

The number of tokens in PSQ denotes the number of waiting requests in the SQ. The initial
marking of Pidle(ON) is 1 while the initial marking of the other places is 0, which indicates that the
initial state of the SP is idle and the initial state of SQ is empty. The places Pdecision(ON), Pdecision(OFF)
are vanishing places. They indicate the very short period of time when the SP is taking command
from PM and is in the ON or OFF state. The place Pchanging is also a vanishing place. It is an
auxiliary place, which indicates that the state of the system is changing so that it is time for the SP
to receive the power management command if it is currently idle. TON-OFF and TOFF-ON are timed
activities. They indicate the time needed to switch from the ON state to OFF state and the time
needed to switch from the OFF state to ON state. Tprocessing is also a timed transition, which
indicates the time needed to process one request. Tinput denotes the time needed to generate the
next request. It actually belongs to the GSPN model of the request generation system. Tdecision(ON)
and Tdecision(OFF) are immediate transitions. They represent the process of randomized action issued
by the power manager (PM.) The two cases in Tdecision(ON) or Tdecision(OFF) are mutually exclusive.
The case probability equals the action probability, which is marking and policy dependent. If the
policy is unknown, the GSPN is a controllable GSPN. When the SP is idle and ON (a token is in
place Pidle(ON)) and SQ is not empty, the immediate transition Tstart is completed which indicates
that the SP enters the busy state. When the SP is OFF (a token is in place Pidle(OFF)) and the state
of SQ is changing (a token is in place Pchanging), the immediate transition Tre-decision is completed
which indicates that the SP returns to the action taking stage. If the SP is not OFF and the state of
SQ is changing, the immediate transition Tvanish is completed which indicates that the change is
ignored.

In the complex system the Request Generation System (RGS) can be very complicated and

Figure 10. Example GSPN model of a Single Requester-Single Server system.

 18

cumbersome. RGS can generate various types of requests. The generation time of different types
of request may be different. Some types of requests can be serviced by several different SPs;
whereas some other types of requests can be serviced by only a certain SP. There may exist
correlations among the generation of different types of requests. If the SQ is full, the RGS will
stop generating request. It will resume request generation when there is vacancy in the SQ.

Example: Assume that there are three types of requests, one is type A which can only be serviced
by SP A, one is type B which can only be service by SP B, the other is type AB which can be
serviced by both SP A and SP B. The correlations among these requests are given by a
probabilistic matrix, For example, from the matrix one will know that the probability that a type
AB request was issued after a type A request is 0.6. Figure 11 shows the GSPN model of this
RSG. In this figure, the case probability of activities Tswitch(A), Tswitch(B) and Tswitch(AB) takes value
from a probabilistic matrix. The input gate Gcap_A represents the condition that the SQ in SP A is
not full. The input gate Gcap_B represents the condition that the SQ in SP B is not full. The input
gate Gcap_AB represents the condition that the SQ in SP A or the SQ in SP B is not full. Notice that
the input places of these input gates belong to the GSPN model of each SP. These input gates
enable or disable the request generation. For example, if the condition given by Gcap_A is false,
which means that SQ of SP A is full, then the time activity Tgen(A) is disabled, which means that
request generation procedure of type A request pauses. Tgen(A) will be enabled when the condition
given by Gcap_A becomes true, which means that the request generation procedure resumes when
there is a vacancy in the SQ. ♦

To model a complex system composed of several SP’s, similar to the one shown in Figure 8
with an RGS and interactions among the components, a hierarchical approach can be used. First,
each SP is modeled using a single requester–single server model. Next, the requests generated by
the RGS are sent to the SP #i with probability pi through a dispatcher. If the request can only be
serviced by SP #i, then pi is 1. If the request cannot be serviced by SP #i then pi is 0. In all other
cases the probability pi is controlled by the dispatcher. The optimal dispatch policy can be
obtained by solving a Markov decision process. The GSPN model of such complex system
contains the following components:

1. The GSPN models of RGS and SP’s.

2. A set of input gates {Gcap_i}. The input place of a Gcap_i is the PSQ of all SP’s, which
can provide service for request type i. The activity of Gcap_i is Tgen(i). A gate Gcap_i
indicates the condition that there are free positions in SQ to buffer the request.

Figure 11. Example GSPN model for an RGS.

 19

3. Arcs from transition Tgen(i) in RGS to place PSQ in any SP that can provide service for
request i.

Example: Consider a complex system which contains two SP’s and one RGS as described in a
previous example.

Figure 12 shows the GSPN model of this system. ♦

After generating the controllable GSPN model, one can reduce it to a SPN, which is the
same as a GSPN except that SPN does not have instantaneous activities [32]. From the SPN, we
can find its reachability graph, and thereby, generate the corresponding continuous time Markov
decision process. The state si of the CTMDP corresponding to the marking Mi in the reachability
set. The rate cost of si is the sum of the rate costs of places in Mi. The transition cost of the
CTMDP from state si to sj is the impulse costs of the completed activities when the GSPN is
switching from marking Mi to Mj. The reader may refer to [32] for the procedure of reducing a
GSPN to a SPN. The optimal policy is CTMDP is obtained by solving a set of linear
programming. A GSPN can be converted to a CTMDP, hence it can be evaluated efficiently.
However, the exponential distribution is not always an appropriate way to represent the transition
time. If the transition time has a general distribution, the Markovian property will be destroyed.
This problem can be circumvented by using the stage method [31], which approximates the
general distributions using the series or parallel combinations of exponential stages.

Conclusions
This chapter described various dynamic power management approaches for performing energy
efficient computation: predictive shutdown, Markovian decision process-based, and generalized
stochastic Petri net-based approaches. A significant reduction in power consumption can be
obtained by employing these DPM techniques. For example, for applications where continuous
computation is not being performed, an aggressive shut down strategy based on an online
predictive technique can reduce the power consumption by a large factor compared to the
straightforward conventional schemes where the power down decision in based solely on a
predetermined idle time threshold. Moreover, predictive shutdown heuristic may be applied to
manage the shutdown of peripherals such as disks. An on-line algorithm that makes the shutdown
decision using a prediction of the time to next disk access can result in higher power reduction
compared to more conventional threshold based policies for disk shutdown.

On the other hand, construction of optimal power management policies for low-power
system is a critical issue that cannot be addressed by using common sense and heuristic solutions
such as those used in predictive shutdown schemes. Stochastic models provide a mathematical

Figure 12. Example GSPN model of a complex system with two SP’s and three request types.

 20

framework for the formulation of power-managed devices and workloads. The constrained policy
optimization problem can be solved exactly in this modeling framework. Policy optimization can
be cast into a linear programming problem and solved in polynomial time by efficient interior
point algorithms. Moreover, tradeoff curves of power versus performance can be computed.
Furthermore, adaptive algorithms can compute optimal policies in systems where workloads are
highly non-stationary and the service provider model changes over time. CTMDP-based
techniques introduce a new and more complete model of the system components, as well as the
model of the whole system. This mathematical framework captures the characteristics of the real
applications more accurately which is mainly because the problem is solved in continuous-time
domain while previous approaches solve the problem in discrete-time domain.

A shortcoming of DTMDP or CTMDP-based techniques is that it is very difficult to use
these modeling frameworks when attempting to represent complex systems, which in turn consist
of multiple closely interacting SPs and must cope with complicated synchronization schemes. In
this case, generalized stochastic Petri Nets (GSPN) and the corresponding modeling techniques
based on the theory of GSPN have proven to be quite effective. The constructed GSPN model can
be automatically converted to an isomorphic continuous-time Markov decision process. From the
corresponding Markov decision process, one can calculate the optimal DPM policy, which
achieves minimum power consumption for given delay constraints. In real applications, the inter-
arrival time of service requests may not follow an exponential distribution, for example, thety
could have heavy-tail distributions such as Pareto distribution. This problem can be solved by
using the “stage method” (i.e., approximating the given source of requests by a series-parallel
connection of exponentially distributed sources.)

Acknowledgement: This work was sponsored in part by DARPA and NSF CSN program office.

 21

Bibliography
[1] S. Gary et al., “PowerPC 603, a microprocessor for portable computers,” IEEE Design & Test of

Computers, vol. 11, pp. 14–23, 1994.
[2] “Advanced micro devices,” in AM29SLxxx Low-Voltage Flash Memories, 1998.
[3] E. Harris et al., “Technology directions for portable computers,” Proc. IEEE, vol. 83, pp. 636–657,

Apr. 1996.
[4] M. Stemm and R. Katz, “Measuring and reducing energy consumption of network interfaces in

hand-held devices,” IEICE Trans. Commun., vol. E80-B, pp. 1125–1131, Aug. 1997.
[5] H. Shim, N. Chang, and M. Pedram, "A backlight power management framework for the battery-

operated multi-media systems," IEEE Design and Test of Computers, Vol. 21, No. 5, Sept./Oct.
2004, pp. 388-396.

[6] SA-1100 Microprocessor Technical Reference Manual, Intel, 1998.
[7] M. Srivastava, A. Chandrakasan, and R. Brodersen, "Predictive system shutdown and other

architectural techniques for energy efficient programmable computation," IEEE Trans. VLSI
Systems, Vol. 4, pp. 42–55, Mar. 1996.

[8] C-H. Hwang and A. Wu, “A predictive system shutdown method for energy saving of event-
driven computation,” Proc. of Int'l Conf. on Computer-Aided Design, pp. 28–32, Nov. 1997.

[9] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, "Policy optimization for dynamic power
management," IEEE Trans. Computer-Aided Design, Vol. 18, pp. 813–33, Jun. 1999.

[10] Q. Qiu, Q Wu and M. Pedram, "Stochastic modeling of a power-managed system-construction and
optimization," IEEE Trans. Computer-Aided Design, Vol. 20, pp. 1200-1217, Oct. 2001.

[11] T. Simunic, L. Benini, P. Glynn, G. De Micheli, "Event-driven power management," IEEE Trans.
Computer-Aided Design, Vol. 20, pp.840-857, Jul. 2001.

[12] E.-Y. Chung, L. Benini, and G. D. Micheli., ”Dynamic power management using adaptive
learning trees.,” In Proceedings of ICCAD, 1999.

[13] Y. Lu and G. DeMicheli., ”Adaptive hard disk power management on personal computers.,” In
Proceedings of the Great Lakes Symposium on VLSI, 1999.

[14] S. Irani, R. Gupta, and S. Shukla. “Competitive analysis of dynamic power management strategies
for systems with multiple power savings states,” IEEE Conference on Design, Automation and
Test in Europe, 2002.

[15] S. Irani, S. Shukla, and R. Gupta. “Online strategies for dynamic power management in systems
with multiple power saving states,” IEEE Trans. on Embedded Computing Systems, 2003.

[16] P. Krishnan, P. Long, and J. Vitter, “Adaptive disk spin-down via optimal rent-to-buy in
probabilistic environments,” in Int. Conf. Machine Learning, July 1995, pp. 322–330.

[17] D. Helmbold, D. Long, and E. Sherrod, “Dynamic disk spin-down technique for mobile
computing,” in IEEE Conf. Mobile Computing, Nov. 1996, pp. 130–142.

[18] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive disk spin-down policies for mobile
computers,” in 2nd USENIX Symp. Mobile and Location-Independent Computing, Apr. 1995, pp.
121–137.

[19] Y. Lu and G. De Micheli, “Adaptive hard disk power management on personal computers,” in
Great Lakes Symp. VLSI, Feb. 1999, pp. 50–53.

[20] A Karlin, M. Manasse, L. McGeoch, and S. Owicki. “Randomized competitive algorithms for
non-uniform problems,” ACM-SIAM Symposium on Discrete Algorithms, pages 301–309, 1990.

[21] D. Gross and C. M. Harris, Fundamentals of Queuing Theory, Wiley (1985).
[22] P. Rong and M. Pedram, “Battery-aware power management based on Markovian decision

processes,” Proc. of Int'l Conference on Computer Aided Design, Nov. 2002, pp. 712-717.
[23] E. V. Denardo, “On Linear Programming in a Markov Decision Problem,” Management Science,

Vol. 16, No. 5, pp. 281-288, January, 1970.
[24] P Rong and M. Pedram, “Determining the Optimal Timeout Values for a Power-Managed System

based on the Theory of Markovian Processes: Offline and Online Algorithms,” Proc. of Design
Automation and Test in Europe, 2006.

[25] U. Narayan Bhat, “Elements Of Applied Stochastic Processes,” John Wiley & Sons, Inc. 1984
[26] B. Miller, “Finite State Continuous Time Markov Decision Processes With an Finite Planning

Horizon.” SIAM J. Control, Vol. 5, No. 2, pp. 266-281, 1968.

 22

[27] B. Miller, “Finite State Continuous Time Markov Decision Processes With an Infinite Planning
Horizon”. J. Of Mathematical Analysis and Applications, No. 22, pp. 552-569, 1968.

[28] R.A. Howard, Dynamic Programming and Markov Processes, Wiley, New York, 1960
[29] D. P. Heyman, M. J. Sobel, Stochastic Models in Operations Research, McGraw-Hill Book

Company, 1982
[30] G. Bolch, S. Greiner, H. D. Meer and K. S. Trivedi, Queuing Networks and Markov Chains, John

Wiley & Sons, Inc., 1998
[31] L. Kleinrock, Queuing Systems. Volume I: Theory, Wiley-Interscience, New York, 1981.
[32] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli and G. Franceschinis, Modeling With Generalized

Stochastic Petri Nets, John Wiley & Sons, New York, 1995.
[33] Jiacun Wang, “Timed Petri Nets: Theory and Application”, Springer – Mathematics, 1998
[34] Z. Ren, B. H. Krogh, R. Marculescu, “Hierarchical Adaptive Dynamic Power Management,”

February 2004 Proceedings of the conference on Design, automation and test in Europe -
Volume 1.

