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Abstract—This paper addresses the problem of profit max-
imization for a data center with battery banks deployed
at various levels of the power hierarchy. An optimization
framework that covers the request dispatch, server resource
allocation, and battery charging management is proposed.
Instead of controlling the input/output power of the batteries
after knowing the power profile of all other components of the
data center as in a set of prior work, an optimal management
policy is proposed which adjusts the power consumption (or
supply) of servers and the battery banks at the same time. A
response time dependent revenue model is adopted based on the
delay estimation using the generalized processor sharing model.
The rate capacity effect and the state of health degradation of
the batteries, as well as the conversion and transmission loss
in the power delivery network, are considered for the purpose
of accurate power modeling and utility cost estimation. It is
shown that the problem can be transformed into a series of
convex optimization problems and then solved using standard
solvers.

I. INTRODUCTION

Since the concept of cloud computing [1] is brought
up, it has been continuously drawing attention because of
its major advantages in on-demand self-service, ubiquitous
network access, location independent resource pooling, and
transference of risk [2]. To host the cloud computing service
for the ever-growing client population, warehouse scale data
centers are built up. According to [3], electricity used by the
data centers has grown to account for 3% of the overall
consumption in the US. Data centers are power-hungry
(each usually consumes megawatts of electricity power) and
require careful power provisioning to ensure that the power
infrastructure is utilized efficiently [4]. According to the
information provided in [5], [6], the utility bill (mainly
electricity) can contribute up to 24% to the total amortized
monthly cost of a 10MW data center. Consequently, con-
trolling the expenditure on the required electricity energy
becomes a crucial part for data center operators in order to
maximize the net profit.

The most direct approach to control the utility cost of
a data center is to reduce its total power consumption
without any significant performance loss. With the flexibility
provided by power management techniques, some prior

work has focused on finding the desirable tradeoff between
the processing latency and total power consumption. For
instance, authors of [7] study the resource allocation problem
in a multi-tier cloud computing system aimed at profit
maximization, while authors of [8] propose an algorithm to
optimally dispatch the service requests and set the dynamic
voltage and frequency scaling (DVFS) policy for each pro-
cessing core. Since only constant utility pricing is considered
in these references, the achieved improvement is limited.

With the emerging practice of dynamic energy pricing [9],
utility companies vary the energy price based on the time-
of-day or other factors to balance the supply and demand,
thus reducing their capital expenditure. The topic of peak
power shaving in power management has also become of
importance for data center operators because the utility
cost not only depends on how much energy is consumed
but also when the energy is consumed. Amongst a variety
of peak power shaving techniques including DVFS [10],
virtual-machine-aware power budgeting [11], and online job
migration [12], one of the most common approaches is to
extend the usage the energy storage devices, e.g. batteries,
supercapacitors, etc., in a data center. By provisioning larger
energy storage capacity, the energy storage devices can
not only serve as uninterruptible power supply (UPS) units
but also help achieve peak power shaving because of their
capability of partially migrating the power demand between
different hours of a day.

When trying to design effective power management tech-
niques involving batteries or other types of energy storage
devices at different levels of a data center (e.g. cluster, power
distribution unit, rack, server), one must carefully select
an appropriate model for these devices. Admittedly, some
accurate battery models, either based on electrochemical
analysis [13] or in the form of equivalent electrical circuits
[14], [15] are difficult to be incorporated into an optimization
problem with efficient solutions. Nevertheless, the adopted
battery model should not be over simplified in order to
avoid a significant loss of accuracy, which may even lead to
misleading results. Therefore, some key phenomena should
be captured when modeling the battery charging/discharging
process, e.g. rate capacity effect and the state of health (SoH)



degradation. Unfortunately, these phenomena are partially or
completely overlooked in prior work that uses energy storage
devices for peak power shaving in a data center such as [16]–
[18].

The rate capacity effect, which can be captured by Peuk-
ert’s law [19], suggests that the decreasing rate of the
remaining capacity in a battery cell or, equivalently, that
of the remaining energy is actually a super-linear function
of the discharging current. In other words, the maximum
amount of energy that can be drawn from a battery cell
in one cycle decreases with higher discharging currents.
As suggested by the authors of [20], if the rate capacity
effect is overlooked, large discharging peaks are likely to
appear to allow for maximum amount of peak shaving.
As a result, the predicted improvement of some battery
management techniques will be too optimistic compared
to the measurement due to overestimation of the available
energy storage.

In addition to the dependence on the magnitude of
the discharging current, the effective energy capacity of a
fully charged battery cell may vary after each discharg-
ing/recharging cycle, which is defined as the SoH degra-
dation. The SoH degradation suggests that the maximum
capacity of a battery cell (when it is fully charged) will
decrease after each discharging/recharging cycle from its
nominal capacity gradually towards a threshold value. The
decreasing rate is determined by various factors including
the average state of charge (SoC) during the discharging
process and the swing of the SoC (i.e. the difference between
the starting point and the ending point of the discharging
process). After its maximum capacity reaches the threshold
value, the battery cell should be replaced. Although some
prior work identifies the problem of SoH degradation, the
SoH model is simplified as a function of depth of discharge
(DoD) and the effect of the average SoC during the dis-
charging process is overlooked.

In this paper, we take into consideration various aspects
in data center management including the request dispatch,
resource allocation, and peak power shaving using the bat-
tery banks at different levels of the power hierarchy of a data
center to minimize the overall cost from the perspective of
a data center operator. Rather than first design management
policies for each part separately and then combine them
together, we propose a joint optimization framework that
finds the request flow control and the battery management
policies at the same time. By doing so, we can perfectly
address the inter-dependency between these aspects. A gen-
eralized time-of-use (TOU) pricing model that allows energy
sell back is considered. The average response time of each
request is calculated using the generalized processor sharing
(GPS) model. Batteries are installed as the energy storage
devices at each level of the power hierarchy of the data
center. Both the rate capacity effect and the SoH degradation
of the batteries are accounted for to realistically model the

energy conversion efficiency of the battery.
The rest of this paper is organized as follows. Section II

introduces the system model we will use. The optimization
problem of cost minimization is formulated and solved
using standard convex optimization techniques in Section
III. Section IV presents the experimental results. And the
last section is the conclusion.

II. SYSTEM MODEL

A. Data center structure

In this paper, we consider the data center structure com-
prised of J heterogeneous servers labeled from 1 to J and
a set of battery banks (as shown in Fig. 11). The power
infrastructure hierarchy has a tree structure with the root
node directly connected to the power grid and each leaf node
directly connected to a server, and each node is equipped
with a battery array. We index each battery array by a label
(k,m), where k is the level it is at and m is its index within
the level. Therefore, if there are K levels in total and the
number of nodes at the k-th level is denoted by Mk, the
battery array at the data center level is labeled by (1, 1),
and the server level battery arrays are labeled by (K, 1)
– (K,J). Without loss of generality, we assume that the
battery array (K, j) is connected to the same node as the j-
th server. The nominal charge capacity (in the unit of A·h) of
battery array (k,m) is denoted by Cnomk,m . All battery arrays
can exchange energy with the power grid through power
lines but may suffer from energy loss in transmission. The
transmission efficiency between two adjacent levels k and
k+ 1 is denoted by η

T,k
. Furthermore, we define a function

S(k,m) where S(k,m) = m′ means that the parent node
of the node to which battery array (k,m) is connected is
(k−1,m′). In the case that battery arrays are only installed
on a portion of the nodes, one can simply set Cnomk,m to 0 for
the nodes without energy storage capability.

B. Response time modeling

The GPS model is used in this paper to calculate the
average response time for each request. In order to find the
analytical form of the response time, we assume that both
the arrival and the processing of each request follow Poisson
processes. To consider different amount of workload and
utility prices at different time of a day, we partition each day
into L time periods, and each time period l ∈ {1, 2, . . . , L}
has a duration of Tl. If the average arrival rate of the
service requests in time period l is denoted by λl, and the
probabilities that a service request is dispatched to a specific
server in time period l are denoted by p1,l, . . . , pJ,l, then the
request arrival rate for the j-th server in time period l can
be calculated as pj,l · λl. If the maximum processing rate
of the j-th server is denoted by µj , and the proportion of

1The DC/AC, AC/DC, and DC/DC converters in the infrastructure are
omitted in the figure, but the power conversion efficiency is accounted for
in the proposed model.



Figure 1. The structure of a data center with multi-level power hierarchy
and energy storage devices

resources that is allocated to process the incoming requests
by the j-th server in time period l is denoted by φj,l, then
the average response time for a service request dispatched
to the j-th server, denoted by Rj,l can be calculated as

Rj,l =


1

φj,l · µj − pj,l · λl
, pj,l > 0

0, otherwise
(1)

And the average response time for all the requests in time
period l, denoted by R̄l, can be calculated as

R̄l =
∑
j

pj,lRj,l (2)

Please note that as long as Rj,l’s are non-negative, R̄l is a
convex function of pj,l’s, and it is also a convex function of
φj,l’s.

C. Battery modeling accounting for the rate capacity effect
and the SoH degradation

Because of the rate capacity effect, the equivalent energy
increasing/decreasing rate of the battery is different from the
power consumed/provided by the battery. If we denote the
input power of the battery as Pbat, and the equivalent energy
increasing rate of the battery by Pbat,eq , then the relationship
between Pbat and Pbat,eq can be expressed as

Pbat =


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(3)
where γ

C
and γ

D
are Peukert factors for charging and

discharging, respectively, which have the typical values

ranging from 1.1 to 1.3 depending on the battery type, η
C

and η
D

are the power conversion efficiency for charging
and discharging process, respectively, Vbat is the storage
terminal voltage which is near-constant, and Iref is the
reference discharging current with negligible rate capacity
effect which is proportional to the nominal capacity of
the battery. When Pbat,eq > 0, Eqn. (3) corresponds to
the charging process, and when Pbat,eq < 0, Eqn. (3)
corresponds to the discharging process. Please note that
since both γ

C
and γ

D
are greater than 1, and both η

C
and

η
D

are less than 1, it can be proved that Pbat is a convex
increasing function of Pbat,eq .

The SoH of the battery is defined as

SoH =
Cfull

bat

Cnom
bat

(4)

where Cnombat is the nominal charge capacity of the battery
when it is new, and Cfullbat is the degraded charge capacity
of the used battery. With SoH degradation, the SoC of the
battery should be defined as

SoC =
Cbat

Cfull
bat

(5)

where Cbat is the remaining charge in the battery.
We calculate the SoH degradation of each charg-

ing/discharging cycle of the battery as a function of the
average SoC and the SoC swing as proposed in [21]. For one
charging/discharging cycle, if the average SoC is denoted by
SoCavg and the SoC swing is denoted by SoCsw, then the
SoH degradation in this cycle, denoted by DSoH,cycle can
be calculated as
DSoH,cycle =SoH · exp [4KSoC (SoCavg − 0.5)]

· exp

[
KT (TB − Tref ) · TB

Tref

]
·
{
Kco exp

[
(SoCsw − 1)

Tref
KexTB

]
+

0.2τ

τlife

}
(6)

where KSoC , Kco, Kex and KT are battery specific param-
eters, TB is the battery temperature, Tref is the reference
temperature, τ is the duration of the charging/discharging
cycle, and τlife is the calendar life of the battery.

If a battery has gone through a series of charg-
ing/discharging cycles, and the SoH degradation of each
cycle is calculated as D(1)

SoH,cycle, . . . , D
(M)
SoH,cycle using Eqn.

(6), then the SoH of the battery can be calculated as

SoH = 1−
M∑
m=1

D
(m)
SoH,cycle (7)

Therefore, if the purchasing price of a battery is denoted by
Pricebat, the value loss of the battery for a given amount
of SoH degradation, denoted by CostSoH , can be calculated
as

CostSoH =
DSoH

1− SoHth
· Pricebat (8)



where SoHth is the preset SoH threshold level after reaching
which the battery should be replaced.

III. PROBLEM FORMULATION AND SOLUTION METHOD

For the purpose of maximizing the net profit, a data center
operator should consider both to increase the revenue by
serving the clients and to reduce the capital and operational
cost incurred by the data center. The revenue depends on the
total number of clients using the service and the fee charged
for each client, which is set by the service level agreement
(SLA) and is usually a function of the response time of
the service request. On the other hand, the expenditure of
the data center mainly consists of the amortized cost of its
components and the utility cost which depends on the power
consumption. Since most parts of the data center including
the servers, the network connections, the cooling system,
etc., are considered to have constant life expectancy which
is irrelevant to the request dispatch, resource allocation, or
the battery management policy, we can omit them in our
problem formulation.

A. Calculating the power consumption in the multi-level
power hierarchy

Seen from the perspective of the power grid, the total
power consumption of the data center is comprised of
two major parts: 1) the power supply to keep the servers
functioning, which includes the power consumption of the
servers as well as other supporting components such as the
power infrastructure, the network connection, the cooling
system, etc., and 2) the power flow into/out of the centralized
and decentralized battery cells which serves the purpose of
peak power shaving and operational cost minimization. To
account for first component which depends on the utilization
status of each server, we use the following model to calculate
the total power consumption of the j-th server in time period
l, which is denoted by P servj,l

P servj,l = kφ,j · φj,l + kλ,j · (φj,lµj) ·
pj,lλl
φj,lµj

+ kC,j

= kφ,j · φj,l + kλ,j · pj,l · λl + kC,j

(9)

where kφ,j , kλ,j , and kC,j are parameters that depend on
the power efficiency of the server and the power usage
effectiveness (PUE) [22] of the data center. In Eqn. (9),
the right hand side consists of three terms. The first term
is the power consumption related to activating the requested
amount of resource, which is proportional to φj,l, the second
term is the power consumption related to processing the
service requests, which is proportional to the request arrival
rate, and the last term is the static power consumption of the
server as well as the constant power overhead. To account
for the second component of the total power consumption,
we denote the input power for the battery array labeled by
(k,m) in time period l by P batk,m,l, and the equivalent energy
increasing rate considering rate capacity effect by P bat,eqk,m,l .

Using the power consumption of servers as modeled in Eqn.
(9), the total input power from the power grid in time period
l can be calculated iteratively as a function of P servj,l ’s and
P batk,m,l’s. If the amount of power required by node (k,m) in
time period l is denoted by P reqk,m,l, then P req1,1,l is the total
power that is drawn from the power grid. When k < K, i.e.
except for the case of a leaf node, the following equation
holds

P reqk,m,l =
∑

S(k+1,m′)=m

PT

(
P reqk+1,m′,l; ηT,k

)
+ P batk,m,l (10)

where PT (P0; η) is the function to calculate the input power
required from one level higher in the hierarchy in the case
that the actual required power is P0 and the transmission
efficiency between the two adjacent level is η, which is
defined as follows

PT (P0; η) =


1

η
P0, P0 > 0

η · P0, P0 < 0
(11)

The reason that PT (P0; η) has different expressions when
P0 > 0 and P0 < 0 is that the power flows in opposite
directions in the two cases. And when k = K, we have

P reqK,m,l = P servm,l + P batK,m,l (12)

Therefore, given the request flow status, the resource al-
location scheme, and the battery management policy, one
can start from calculating the values of P reqK,m,l’s using Eqn.
(12). And once the values of P reqk,m,l’s of the k-th level are
all obtained, one can proceed to calculating the values of
P reqk−1,m,l by applying Eqn. (10) and (11). This process can
be repeated until the value of P req1,1,l is obtained.

From Eqn. (3), (9) and (12), we know that P reqK,m,l is a
convex increasing function of P bat,eqk,m,l ’s, pj,l’s, and φj,l’s
jointly. Since the transmission efficiency can only take
values from (0, 1), the function PT (P0; η) as defined in Eqn.
(11) is a convex increasing function of P0. Furthermore,
since the non-negative weighted sum of convex increasing
functions and the convex increasing function of a convex
increasing function are both convex increasing functions
[23], using the relation specified in Eqn. (10), one can prove
using mathematical induction that P req1,1,l is also a convex
function of P bat,eqk,m,l ’s, pj,l’s, and φj,l’s jointly.

B. Problem formulation
To account for both the revenue and the expenditure, we

define a cost per day function which can be used as the
objective function in the optimization problem, denoted by
Cost total , as follows

Cost total =
∑
l

(
Priceelecl · P req1,1,l · Tl

)
+
∑
k,m

CostSoH,k,m

+ kD
∑
l

(
R̄l · λl · Tl

)
(13)



where Priceelecl is the electricity price in time period l,
P req1,1,l is calculated using Eqn. (9) – (12), R̄l is the average
request response time as defined in Eqn. (2), kD is a positive
factor which can be set by the data center operator based on
the SLA to reflect the revenue loss when the response time
increases, and CostSoH,k,m is the value loss of the battery
array (k,m) in one day which is a function of the SoC levels
of battery array (k,m) in each time period. The first term
on the right hand side addresses the total electricity cost per
day, the second term addresses the value loss for the battery
per day, and the last term addresses the total revenue loss
per day.

In order to minimize the cost function as specified in
Eqn. (13), we can determine the request flow pattern,
the amount of allocated resource of each server, and the
charging/discharging policies for the battery arrays based
on the incoming workload and the time-of-day utility price.
Therefore, the optimization problem can be formulated as
follows:

Find pj,l’s, φj,l’s, P bat,eqk,m,l ’s, SoCk,m,l’s

Minimize Cost total

Subject to ∑
j pj,l = 1 ∀l (14)

pj,l · λl 6 φj,l · µj , ∀j, l (15)

SoCk,m,l+1 = SoCk,m,l +
P bat,eqk,m,l · Tl
V batk,m · C

full
k,m

, ∀k,m, l(16)

SoCk,m,l > SoCth, ∀k,m, l(17)
SoCk,m,l 6 1, ∀k,m, l(18)

SoCk,m,1 = SoCbegink,m , ∀k,m (19)

SoCk,m,L+1 = SoCendk,m, ∀k,m (20)
pj,l ∈ [0, 1] ∀j, l (21)
φj,l ∈ [0, 1] ∀j, l (22)

where pj,l is the probabilities that a request is dispatched
to the j-th server in time period l, φj,l is the proportion of
resources in the j-th server that is used to process incoming
requests in time period l, P bat,eqk,m,l is the equivalent input
power of battery array (k,m). Constraint (14) ensures that
all the requests are dispatched to a specific server to be
processed. Constraint (15) ensures that each server allocates
enough resource to the incoming requests. In Constraint
(16), the SoC of each battery array in the next time period
is calculated from the SoC of the current time period and
the equivalent input power of the current time period. V batk,m

is the terminal voltage of battery array (k,m) and Cfullk,m is
the capacity of battery array (k,m) when it is fully charged
that can be calculated from Cnomk,m and the SoH of the battery
array. Constraints (17) and (18) set the upper bound of the
SoC to 100% and the lower bound of SoC to a preset value

SoCth such that some energy is reserved for backup in the
case of power outages. Constraints (19) and (20) set the SoC
level for each battery array at the beginning of the day as
well as the desired SoC for each battery array at the end of
the day. Constraints (21) and (22) set the domain for pj,l’s
and φj,l’s. Please note that although how to set the values
for SoCbegink,m ’s and SoCendk,m’s in Constraints (19) and (20)
is also an interesting problem, it is beyond the scope of this
paper and we consider these values already given.

C. Solution method

One major challenge to solve the problem formulated in
Section III-B comes from the term CostSoH,k,m in Eqn.
(13) because the SoH degradation in one day is difficult
to calculate using cycle based SoH calculation in Eqn. (6).
Since we make the observation that charging/discharging
cycles with a larger SoC swing have more significant impact
on the SoH of the battery, the SoC change in each day can
be approximated as one large charging/discharging cycle
between the highest SoC and the lowest SoC observed
during the day. Therefore, the SoH degradation can be
calculated directly by applying Eqn. (6). The original prob-
lem formulation should be modified by adding the average
SoC for each battery array, denoted by SoCavgk,m’s, and the
SoC swing for each battery array, denoted by SoCswk,m’s, as
control variables. To be consistent with the chosen average
SoC and the SoC swing, the highest SoC and the lowest
SoC that battery array (k,m) can have, denoted by SoChik,m
and SoClok,m, respectively, can be calculated as follows

SoChik,m = SoCavgk,m +
SoCswk,m

2
(23)

SoClok,m = SoCavgk,m −
SoCswk,m

2
(24)

And the following constraint should be added to the original
problem formulation

SoClok,m 6 SoCk,m,l 6 SoChik,m, ∀k,m, l (25)
SoCavgk,m ∈ [0, 1], ∀k,m (26)
SoCswk,m ∈ [0, 1], ∀k,m (27)

where Constraint (25) sets the bound for SoCk,m,l with
specific average SoC and SoC swing, and Constraints (26)
and (27) set the domain for SoCavgk,m’s and SoCswk,m’s.

With the aforementioned approximation, one can make
the following observations from the formulated problem. 1)
All equality constraints and inequality constraints are affine
functions of the control variables. 1) The first two terms
in the expression for Cost total as defined in Eqn. (13),
i.e.
∑
l

(
Priceelecl · P req1,1,l · Tl

)
and

∑
k,m CostSoH,k,m are

convex functions of the control variables, which can be
proved using Eqn. (3), (6), (8), (9) – (12). 3) The third term
in Eqn. (13), i.e. kD

∑
l

(
R̄l · λl · Tl

)
is a convex function

of all control variables except for pj,l’s, and at the same



time, it is a convex function of all control variables except
for φj,l’s.

Based on these three observations, we propose an efficient
approach that solves the problem in two phases, namely the
request dispatch phase and the resource allocation phase. In
the request dispatch phase, we set the values of φj,l’s as
constant and solve the optimization problem subject to all
constraints except for Constraint (22). And in the resource
allocation phase, we set the values of pj,l’s as constant and
solve the optimization problem subject to all constraints
except for Constraints (14) and (21). Since the problems in
both phases are convex, standard convex optimization tools,
e.g. CVX [24], can be used to solve the problems. To achieve
better results, the two optimization phases can be performed
iteratively until the solution converges.

IV. EXPERIMENTAL RESULTS

In this section, we present the simulation results of the
proposed optimization framework on selected data center
configurations. Please note that for clarity of illustration,
we use normalized values rather than absolute values of
parameters related to time, power consumption, and/or price.

We use a 3-level power hierarchy which corresponds to
the data center level, the rack level and the server level.
The data center level node is connected to 2 nodes at the
rack level, and each node at the rack level is connected
to 4 nodes at the server level, which then connects to a
group of servers. The capacity of battery arrays at the data
center level, the rack level, and the server level is set to 4,
2, and 1, respectively. The transmission efficiency between
two adjacent levels is set to 0.9. According to [25], we set
the parameters in the SoH degradation model in Eqn. (6) as
follows

KSoC = 0.916 Kco = 3.66× 10−5

Kex = 0.717 KT = 0.0693
(28)

The initial SoH is set to 100% and the temperature is set to
300K. The Peukert factors, γ

C
and γ

D
, as in Eqn. (3) are

both set to 1.1, and the charging and discharging efficiency
of the batteries, η

C
and η

D
are both set to 0.85. The terminal

voltage of each battery, Vbat , is set to 1, and the reference

charging/discharging current, Iref , is set to
1

20
of the battery

capacity. SoHth as in Eqn. (8) is set to 80% for each battery
array, and the amount of reserved SoC as in Eqn. (17) is
set to 5%. The initial SoC and the required SoC at the
end of the day are set to 50% for each battery array. The
price per unit amount of battery capacity is set to 200. Each
day is divided into 24 time periods with equal length, each
having a normalized duration of 1. The request arrival rates,
λl’s, are randomly selected from [λ0, 2λ0] (which matches
the workload fluctuation in Google cluster dataset2) where
λ0 is a reference request arrival rate that can be changed

2https://code.google.com/p/googleclusterdata/

in different rounds of simulations. The electricity prices,
Priceelecl ’s, are randomly selected from [0.05, 0.15]. To
account for the heterogeneity of the servers, we also use
random values for parameters in the delay model (Eqn. (1))
and the power consumption model (Eqn. (9)). The maximum
processing rate of each server, µj , follows a uniform distri-
bution between [1.0, 2.0]. The power consumption factors,
kλ,j , kφ,j , and kC,j , follow uniform distributions between
[1.0, 2.0], [1.0, 2.0], and [0.2, 0.4], respectively.

First, we show how the amount of workload will affect
the total cost of the data center. The factor kD in Eqn.
(13) is set to 0.5, and the value of λ0 varies from 1.0
to 2.0. The simulation results of three different random
schemes are shown in Fig. 2. As can be seen from the figure,
the total cost per day function is generally an increasing
function of the average request arrival rate, which matches
the intuition because with more incoming requests, the
servers will consume more power to finish processing each
request in time, and the revenue loss will increase due to
a larger number of requests and possibly longer processing
delay. When λ0 is doubled from 1.0 to 2.0, the total cost
per day increases by 75%.

Figure 2. The total cost per day of a data center under different request
arrival rate

Then, we show how different components of the total cost
as in Eqn. (13) are balanced with different values of kD. The
change of total cost per day as well as the cost resulting from
revenue loss with λ0 = 1.5 and kD ranging from 0.25 to
0.75 is shown in Fig. 3. As can be seen from the figure, the
contribution of revenue loss increases with higher kD values.
However, the increase in revenue loss is not proportional to
the increase in kD. When kD increases by 50% from 0.50 to
0.75, the revenue loss only increases by 40.7%, which means
that the average delay is reduced at the cost of higher power
consumption so that the total cost is minimized. The same
is true when kD decreases by 50% from 0.50 to 0.25, and



the revenue loss only decreases by 43.7%.

Figure 3. The contribution of revenue loss to the total cost per day

V. CONCLUSION

In this paper, we address the joint optimization problem
of request dispatch, resource allocation, and battery man-
agement in a data center with multi-level power hierarchy
and energy storage devices. In addition to the efficiency of
energy transmission and conversion, the rate capacity effect
and the SoH degradation of the battery are also considered,
which adds to the accuracy of the power consumption
model. Future work includes the incorporation of the battery
deployment problem and the study of more efficient power
hierarchy.
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