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Abstract—Dynamic power management (DPM) in battery-

powered mobile systems attempts to achieve higher energy 

efficiency by selectively setting idle components to a sleep state. 

However, re-activating these components at a later time 

consumes a large amount of energy, which means that it will 

create a significant power draw from the battery supply in the 

system. This is known as the energy overhead of the “wakeup” 

operation. We start from the observation that, due to the rate 

capacity effect in Li-ion batteries which are commonly used to 

power mobile systems, the actual energy overhead is in fact 

larger than previously thought. Next we present a model-free 

reinforcement learning (RL) approach for an adaptive DPM 

framework in systems with bursty workloads, using a hybrid 

power supply comprised of Li-ion batteries and supercapacitors. 

Simulation results show that our technique enhances power 

efficiency by up to 9% compared to a battery-only power supply. 

Our RL-based DPM approach also achieves a much lower 

energy-delay product compared to a previously reported expert-

based learning approach. 

Keywords-dynamic power management; reinforcement learning; 

hybrid power supply 

I.  INTRODUCTION 

Power consumption has become a primary concern 
especially in battery-powered electronics ranging from mobile 
computing systems to sensor nodes. In case of portable devices 
such as smartphones and tablets, a judiciously-selected power 
management approach can result in lower power dissipation, 
less heat, and longer battery life, since some components of 
these devices undergo frequent transitions between working 
(busy) and idle states. Dynamic power management (DPM), 
which shuts off or slows down idle system components to 
achieve energy efficiency while meeting performance 
requirements such as request turnaround time and/or request 
loss rate, has thus been widely employed in such devices. In 
particular, a Power Manager (PM) makes decisions on when 
and which components should be turned off or awakened 
according to the adopted power management policy. 

Power management policies may be classified as timeout, 
predictive, stochastic and learning-based [1][2]. Timeout 
policies set the component to wait for a specified time interval, 
called timeout, before transitioning to a low-power state. 
Predictive methods [3][4] decide whether a component should 
go to sleep or stay awake based on predictions about the 

duration of the next idle period in comparison to a pre-
calculated break-even time [1]. Both these methods have low 
performance for random service request sequences whose 
arrival rate distribution is unknown or non-stationary. 
Unfortunately, this is the common case for portable devices. 

Stochastic power management policies can handle non-
determinism and uncertainty. There are two main categories: 
synchronous and event-driven [5], and the optimality of both 
categories is guaranteed assuming the validity of the underlying 
Markov chain (or process) model. Benini et al. propose a 
management approach based on a discrete-time Markov 
Decision Process (MDP) in [6]. They assume multiple power 
states and obtain the optimal synchronous solution by 
formulating a linear optimization problem. This model was 
improved in [7] by employing a continuous-time MDP model, 
leading to an event-driven management policy.  

Another power management method proposed more 
recently is based on learning theories. Compared to traditional 
stochastic policies, learning algorithms do not require a priori 
knowledge of the state transition probability matrix and can 
adapt themselves to the workload variations. Dhiman et al. 
implement a machine learning algorithm in [8], which chooses 
which expert (from among a set of offline generated and 
optimized experts) to activate at run time. The performance of 
this type of manager is highly dependent on the available 
expert set. In addition, it can only achieve a relatively small 
range of energy-delay tradeoffs. Reference [9] implements an 
enhanced model-free, Q-learning approach for system-level 
DPM. Through learning, the PM makes decisions according to 
some reward function, without the need to design a set of 
experts in advance. Moreover, this approach can produce larger 
range of energy-delay tradeoffs. Wang et al. [2] improved this 
algorithm by making the PM work in an event-driven manner 
and using temporal difference learning method combined with 
a Bayesian classifier. 

All of the aforesaid DPM works have focused on improving 
the energy efficiency by modifying management policies of the 
PM. From another perspective, the energy efficiency of the 
whole system can also be improved by customizing the power 
supply network. One approach is the multi-battery power 
supply with battery scheduling, which has been discussed in 
[10]. Reference [11] develops a continuous-time MDP model 
for a two-battery power supply and presents an optimal 
solution by using a power switch to control the battery bank 
discharging. 
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A significant portion of battery supply power loss is due to 
the rate capacity effect: A battery’s effective charge decreasing 
rate is a super-linear function of the discharging current [12]. 
For example, a battery discharging at 10A for an hour will lose 
more energy than at 1A for 10 hours. Notice that when a power 
managed system component transitions from sleep state to 
active, the power consumption during the transition period can 
be two to four times higher than that of the active state [2]. Due 
to rate capacity effect, the energy overhead is even larger than 
previous thought. To address this issue, we combine another 
type of storage bank, namely supercapacitors, with the batteries 
to form a hybrid power supply subsystem. A key advantage of 
supercapacitors is that their rate capacity effect is negligible 
compared to batteries [13]. To derive an efficient hybrid power 
supply management policy, reference [14] proposes a learning 
method for such a system powering an arbitrary load. However, 
the model in [14] is limited since it assumes that the battery 
bank and supercapacitor bank cannot power the load 
simultaneously and the battery bank can only charge 
supercapacitors with constant current. Nor does the paper 
address how they reduce the problem complexity which is a 
function of the number of state-action pairs. 

To the best of our knowledge, our work is the first in power 
management area that incorporates design and management of 
a hybrid power supply into the general DPM framework for 
portable systems. In this paper, we present a system model of 
the hybrid power supply based DPM and use RL to solve the 
joint optimization problem. We adopt discrete-time RL 
technique for the supply PM, since the remaining charges of 
both the battery and supercapacitor are sampled at regular 
intervals regardless of system events, while for the device PM 
we use continuous-time RL technique since the device PM 
functions in an event-driven manner with events coming at 
arbitrary times.  

The contribution of this paper is twofold: First, we integrate 
supercapacitors with the battery pack in order to deal with the 
fluctuating part of the load current demand, thereby greatly 
reducing the battery energy loss caused by rate capacity effect. 
Second, we formulate and solve a joint optimization problem 
for the hybrid power supply and load device. In the learning 
process, the device PM collects information from both the load 
component and the power supply. In the meantime, the supply 
PM is provided with the load component state. 

The rest of the paper is organized as follows: Section II 
presents the system model and the DPM problem formulation. 
Section III describes the RL-based DPM algorithm for both the 
device PM and the supply PM. Experimental results and 
conclusion are given in Section IV and Section V, respectively. 

II. PROBLEM STATEMENT 

In this section we first describe the hybrid power supply 
model employed in our paper. Next we present the complete 
system model comprised of two PMs (device PM and supply 
PM). The DPM problem is formulated in the last subsection. 

A. Hybrid Power Supply Network 

Figure 1 shows the structure of the hybrid power supply 
network. As mentioned earlier, we combine a supercapacitor 
bank with a battery bank to form a hybrid power supply. Three 

unidirectional converters control either their output voltages or 
currents according to the commands received from the supply 
PM. 
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Figure 1. Hybrid power supply network structure. 

There are three operation modes of the power supply 
network. In the first mode, only Converter 1 is turned on and 
the battery alone powers the load device. In the second mode, 
both Converter 1 and Converter 2 are turned on, and the battery 
provides power for the load device and simultaneously charges 
the supercapacitor. In this case Converter 1 regulates the supply 
voltage of the load device while Converter 2 controls the 
supercapacitor charging current. In the third mode, both 
Converter 1 and Converter 3 are turned on, and both the battery 
and the supercapacitor provide power for the load device. In 
this case Converter 3 regulates the supply voltage of the load 
device while Converter 1 controls its output current. 

Apart from energy loss caused by the internal resistance of 
batteries and supercapacitors, there are three other main factors 
that account for energy losses in the power supply network, as 
explained next. 

1) Rate capacity effect of batteries 
The discharge efficiency is defined as the ratio of the 

battery’s output current to the degradation rate of its stored 
charge. As mentioned above, the rate capacity effect describes 
the phenomenon that an increase of battery discharging current 
will lead to the decrease in the discharge efficiency. It is 
evaluated by an empirical equation, called the Peukert’s 
formula [15], as follows: 
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where  ,   are constants, and        denotes the discharging 
current,      the discharge efficiency. Rate capacity effect is 
prominent for lead-acid and Li-ion batteries, but is negligible 
for supercapacitors, i.e.      . 

2) Self-discharge of supercapacitors 
Supercapacitors suffer from severe self-discharge: They 

continuously lose stored energy no matter whether they are 
connected to a load or not. Similar to a normal capacitor, the 
amount of energy stored in a supercapacitor is proportional to 
the square of its open circuit terminal voltage (       ). 
When no load is connected to it, a supercapacitor may lose 
20%~40% of its stored energy in one day [13]. The 
supercapacitor voltage decay after    time is given by: 

    SC SC tV t t V t e    (2) 

where   is the self-discharge time constant..  



3) Converter power dissipation 
Converters can maintain legal output voltage or current 

regardless of input and output voltage variations (within certain 
ranges, of course). Efficiency of a converter depends on its 
input and output voltages         , as well as its input and 
output currents         . We have the following expression: 
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Typically, the power conversion efficiency of converters 
decreases as the difference between its input and output 
voltages increases [18]. Moreover, a converter has much lower 
efficiency when its output current is small since the converter 
consumes a certain amount of static power when it is on. 

B. Service Processing Module 

In our system model we consider a specific I/O component, 
e.g., a WLAN module. When CPU is running applications, it 
generates requests through a service requestor (SR), and pushes 
them into a service queue (SQ) if they have to wait for 
processing.  

The service processor (SP) has three main states and two 
transitional states, as shown in Figure 2. It is in active state 
when processing services, and it becomes idle after it has 
finished processing them all. When idle, SP will autonomously 
transition to active state as soon as any request arrives. 
Unfortunately, SP has non-zero power consumption in idle 
state. It can also go to sleep state, consuming little power 
compared to an idle one, but it suffers from large wakeup 
latencies along with high power consumption during the 
transition-to-active state. The goal of a power management 
policy is to properly schedule the sleep and wakeup time for SP 
in order to reach a balance between delay (performance) and 
energy consumption. 
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Figure 2. State diagram of SP. 

More precisely, the device PM makes two types of 
decisions: First, every time when SP transitions from active to 
idle state, it will decide whether to go to sleep straightaway or 
set a timeout. If a timeout is set and no requests arrive during 
this period, SP will subsequently go to sleep. Second, while SP 
is in sleep state, the device PM decides whether or not to wake 
up SP based on the number of waiting requests in SQ. 

C. System Model 

The complete architecture of the portable system with two 
PMs is presented in Figure 3. The device PM receives 
information from SR, SQ, SP as well as the supply PM, and 
issues control commands to SP. There are three pieces of 
information for the supply PM, namely status of the battery 
bank, status of the supercapacitor bank and the load power 
demand. The supply PM controls the power supply network by 

adjusting the output setups of the converters. The two PMs 
communicate with one another to exchange information: The 
device PM provides the supply PM with the current power 
consumption level of SP, while the supply PM provides the 
device PM with the current status of the supercapacitor. 
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Figure 3. System architecture with two dedicated PMs. 

D. Problem Formulation 

The DPM problem with hybrid supply system is formulated 
as an online optimization problem. For simplicity we assume 
there are one battery bank and one supercapacitor bank without 
loss of generality. We use state-of-charge (SoC) to denote the 
status of the power supply. SoC is defined as the ratio of the 
remaining charge of a battery or a supercapacitor to its total 
stored charge when fully charged. SoC is given as a percentage 
(0% = empty; 100% = full). 

Given: 1) (supply side) Battery capacity      
   , initial SoC 

of battery        
    and supercapacitor        

  , 2) (device side) 

device operating voltage      , and power consumption of 
SP’s five states:                                           . 

During online operation, the input parameters at each 
decision epoch    are: 

 Number of services waiting in SQ:    ; 

 Current state of SP:    ; 

 Current SoC of battery and supercapacitor:     
        

  . 

Find: 1) SP state transition time (i.e. from idle to sleep and 
from sleep to active), 2) discharging current of battery and 
charging/discharging current of supercapacitor, and 3) output 
setup of the three converters. 

Minimize:        
           , where       

   is the total 
energy drawn from the battery and        is the total delay, 
which is the summation of the response time of all service 
requests. Parameters   and   are used for normalization 
purpose and can be controlled to achieve a desired energy-
delay tradeoff. 

Subject to: the constraint that the supercapacitor voltage is 

within the range      
       

   . 

III. REINFORCEMENT LEARNING 

In this section we first provide the theoretical bases of our 
RL algorithm. Next we present the implementation details of 
both the supply PM and the device PM.  

A. Theoretical Background 

Reinforcement learning (RL) is a type of machine learning 
technique and is widely used when the problem is essentially to 
exploit the interaction between a goal-oriented agent and an 
uncertain environment [16]. This interaction between the agent 
and the environment is usually modeled using a finite state 



space  , a set of available actions  , and a reward function 
       . The ultimate goal of RL is to figure out a policy 
      , which chooses action     in each state    , to 
optimize a reward function.  

Decision epochs are a sequence of time points 
                  at which an action is chosen and state 
transition may appear. At time    when the system has 
transitioned to state   , the agent selects an action     , and 
this will lead to an instant reward rate             regarding the 

state-action pair        . In the next decision epoch     , the 
system switches to state     . 

The key problem of RL is to find an optimal policy that 
maximizes the cumulative rewards over a potentially infinite 
time span. We build our RL algorithm based on Q-learning i.e., 
we associate a   value, denoted by       , with each state-
action pair      , which approximates the expected cumulative 
reward of taking action   starting at state  . At decision epoch 
  , the action    with the highest   value will be chosen. At 
decision epoch     , we update this   value          
according to the following equation in continuous-time RL: 
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In discrete-time RL, we have: 
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In the above two equations, the empirical constant   controls 
the learning rate, while   and   are discount factors.      
denotes the integration of decayed instant reward rate from    
to     , given by 
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One important issue in RL is exploration vs. exploitation 
[16]. An RL agent must exploit the best action known so far to 
gain rewards while exploring all possible actions to find a 
potentially better choice. In Q-Learning, if the action with the 
temporarily highest   value is always chosen, we take the risk 
of getting stuck in a sub-optimal solution. We address this issue 
by breaking our learning procedure into two phases: In the 
exploration phase,  -policy [16] is adopted, i.e., the current best 
action is chosen with probability     and a random action is 
chosen with probability  . In the exploitation phase, as the   
values of all state-action pairs have converged, we always 
choose the action with the highest   value. 

B. RL-Based DPM Algorithm 

In this work, we use discrete-time Q-learning for the power 
supply PM and continuous-time Q-learning for the device PM. 

1) Supply PM Learning Algorithm 
As shown in Figure 3, the supply PM collects load demand 

information from the device PM and SoC information from the 
battery bank and supercapacitor bank. 

Since the SoCs of battery and supercapacitor change over 
time, we must sample the SoC values at regular intervals 
regardless of system events. Therefore discrete-time Q-
Learning technique is adopted for the supply PM, and the 
decision epoch set can be represented by a set of sequential 
discrete indices             with fixed time interval between 
two consecutive decision epochs. The state space and actions 
used in the RL algorithm are provided follows: 

 State space                  , where       is the 
current power demand of the device, and       is the 
SoC of the supercapacitor bank; 

 Action set        
                    , where     

    
is the discharging current of the battery bank, with   
possible discrete values. 

The action set is defined as above because given battery 
discharging current together with load demand from the device 
PM, the supply PM can set the output voltages or currents of all 
three converters. Between two consecutive decision epochs, the 
battery discharging current is fixed. The intuition is that the 
battery discharging current should be constant to alleviate the 
rate capacity effect, resulting in the supercapacitor taking over 
the fluctuating portion of the load. 

Although increasing the number of state-action pairs may 
ensure better learning policy, the convergence time and the 
algorithm runtime also increase linearly. In the RL algorithm 

for the supply PM,       takes five possible values because SP 
has five states, whereas       is discretized into 10 states. For 
the action set                , we use     . Altogether for 
the supply PM, we have            state-action pairs. 
In practice, this number of state-action pairs is sufficient to 
achieve acceptable performance with negligible overhead. 

We use penalty instead of reward in the updating equation 
of the RL algorithm, thus actions with smaller  -values are 
favored. The penalty of time interval           is the system’s 
energy loss    during that time interval, calculated by 
subtracting the load energy consumption and the supercapacitor 
energy increase from the total energy drawn from the battery 
(decay factor     for simplicity):  

 BAT load SC

k lossE E E E    (7) 

Finally, the  -value updating rule performed at decision 
epoch     is given by (in our experiments α and Г are set to 
0.02 and 0.1, respectively): 
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2) Device PM Learning Algorithm 
Since the device PM functions in an event-driven manner, 

we use continuous-time Q-learning instead. We first define 
decision epochs used in the algorithm. As shown in Figure 4, 
there are two cases that the system encounters a decision epoch 
and updates  -values, called the idle-state type and the sleep-
state type. They have different state spaces and action sets. 
Notice that the  -values of both types are not independent, and 
the values of one type can be used to update those of the other 
type. 
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Figure 4. Device PM Q-value updating diagram. An arrow from B to A means 

A is updated based on the information provided by B. 

1. Idle-state type: SP state is idle and no services are waiting 

in SQ, i.e.                 . The state space and 

action set in this case are given by: 

 State space              , where    is the SoC 
of supercapacitor and      is the feature of previous 
service request inter-arrival times; 

 Action set                            , where 
     and       . These actions are the 
predefined timeout values in the device PM. 

Different from the supercapacitor SoC state set         in 
the supply PM policy, here      only has three states        : 0 
indicates the supercapacitor voltage is too low to support the 
load, 2 means high supercapacitor voltage (also severe self-
discharge rate), and 1 when in between. Each load feature in 
the set        consists of   bits, denoted by            . 
Bit      if the  -th service request inter-arrival time before 
the current service request is larger than the break-even time 
   , and      otherwise. In the action set          , there 
are two special cases: If      is chosen, SP will immediately 
go to the sleep state; and if        is chosen, SP will wait in 
idle state till the next service request arrives. 

In our experiments we set        , totaling     
     state-action pairs. 

2. Sleep-state type: SP state is sleep and one or more new 

service requests arrive at SQ, i.e.                   

increases. Here we have the following of state space and 

action set (note that      and         sets are the same as  

in the first case): 

 State space                   , where    is 
the number of service requests waiting in SQ; 

 Action set                 , where 0 means 
staying sleep and 1 means transitioning to active. 

We impose a maximum number on    in the sleep state to 
limit the number of total states. In our experiments, SP must 
wake up when the number of service requests waiting in SQ 
exceeds four. Therefore, there are a total of         
   state-action pairs. 

The penalty    used by the device PM is a weighted 
average of system delay and energy consumption. The total 
penalty during time interval           is defined by: 
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where    is the energy consumption of SP during time interval 
         ,    is the total delay, and parameters   and   control 
the energy-delay tradeoff. With fixed  , increasing   will yield 
a more energy-saving result, whereas decreasing it will result in 
smaller latency, and vice versa. 

The continuous-time RL technique in the device PM uses a 
time-dependent factor      instead of a fixed discount factor   
in the discrete-time RL technique. The value updating rule is 
given by (in our experiments α and γ are set to 0.1 and 1.0, 
respectively): 
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IV. EXPERIMENTAL RESULTS 

We conduct simulations based on the setting of a battery-
powered wireless sensor node, which has a WLAN module. To 
accurately evaluate our method, we adopt the battery model 
described in [12] and the DC-DC converter model in [18]. For 
the WLAN module data, we use tcpdump utility in Linux to 
collect real data trace. 

In the following, we use the term “RL-based hybrid system” 
as the abbreviation for the RL-based DPM system with 
proposed hybrid power supply. The baseline systems include 
an expert-based learning DPM method [8] and a RL-based 
DPM system both with battery-only supply (hereinafter 
referred as “expert-based system” and “RL-based battery-only 
system”, respectively). In the expert-based system three types 
of expert policies are used: 

1) Fixed timeout, with timeout set to a certain constant; 

2) Adaptive timeout: Timeout value is initialized to the break 

even time    , and is subsequently modified by         

under each adjustment; 

3) Exponential predictive [4]: The predicted request inter-

arrival time    is updated as follows:              
     , where    denotes the k-th request inter-arrival time, 

and   is a coefficient representing the learning rate. 

TABLE 1. POWER CONSUMPTION AND DELAY TIME OF WLAN CARD. 

actP  
idleP  

sleepP  
_tran sleepP  

_tran actP  
_tran actt  

beT  

1.5 W 0.9 W 0 0 3 W 0.3 s 0.7 s 

We mainly focus on the power consumption of the WLAN 
module, assuming the rest part of the wireless sensor node has 
constant power consumption. In Table 1,                      
                      stand for the power consumption of 

WLAN module when it is in the corresponding state.           

denotes the latency to wake up a sleeping SP, and     refers to 
the break-even time. Note that            is much higher than 

the power consumption of active and idle states.  

 
Figure 5. Battery efficiency and energy consumption as a function of system 

delay. 



Figure 5 compares the energy efficiency and total energy 
consumption as a function of system delay for battery-only 
system and hybrid supply system. Here the energy efficiency 
refers to the ratio of load device energy consumption to the 
total energy drawn from the battery. As shown in Figure 5, 
smaller delay means fewer transitions to sleep state and more 
time in idle state, therefore the overall energy consumption is 
higher. At the left-most point of Figure 5(a), the systems 
experience almost zero delay, and have least times to encounter 
high power consumption in the transition-to-active state, 
meaning the least energy loss due to the rate capacity effect. 
The battery efficiency at this point reaches 92%. More often, 
however, delay is sacrificed to save energy. That will lead to a 
rapid drop of battery efficiency because of more frequent high 
discharging currents during the transition-to-active state. This 
situation is ameliorated in our RL-based hybrid system shown 
in Figure 5(b). Our algorithm applied to hybrid power supply 
has an average of 87% energy efficiency, which shows an 
improvement of up to 9% compared with battery-only system. 

 
Figure 6. Energy-delay tradeoff for wireless sensor node. 

Figure 6 shows the wireless sensor node’s tradeoff curves 
between energy consumption and total delay, comparing the 
three systems mentioned above: RL-based battery-only system, 
RL-based hybrid system, and expert-based system. In the 
region where overall energy consumption is low, RL-based 
hybrid system consumes much less energy compared to 
battery-only system with identical delay. As for the expert-
based battery-only system, it only has satisfying performance at 
one single point. It cannot reach a wide range of energy-delay 
tradeoff as RL-based DPM framework does. 

V. CONCLUSION 

This paper presents an efficient RL-based DPM 
methodology on a novel system model with hybrid power 
supply for portable devices. Conventional battery-only supply 
suffers from efficiency degradation during peak load due to 
rate capacity effect. To address this problem, we first develop a 
hybrid power supply with batteries and supercapacitors. The 
entire system combines the hybrid supply module and the 

service processing module, allowing information exchange 
between these two sides for more substantial optimization. 
Next we present an RL-based DPM algorithm for the supply 
PM and the device PM to achieve near-optimal power 
management of the computing system. Simulation results on 
WLAN module show an improvement in energy efficiency of 
up to 9% compared with a battery-only supply and a wider 
range of energy-delay tradeoff with higher performance 
compared to an expert-based DPM approach. 
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