
Reinforcement Learning Based Dynamic Power

Management with a Hybrid Power Supply

Siyu Yue, Di Zhu, Yanzhi Wang, and Massoud Pedram

University of Southern California

Department of Electrical Engineering

Los Angeles, CA USA

Email: {siyuyue, dizhu, yanzhiwa, pedram}@usc.edu

Abstract—Dynamic power management (DPM) in battery-

powered mobile systems attempts to achieve higher energy

efficiency by selectively setting idle components to a sleep state.

However, re-activating these components at a later time

consumes a large amount of energy, which means that it will

create a significant power draw from the battery supply in the

system. This is known as the energy overhead of the “wakeup”

operation. We start from the observation that, due to the rate

capacity effect in Li-ion batteries which are commonly used to

power mobile systems, the actual energy overhead is in fact

larger than previously thought. Next we present a model-free

reinforcement learning (RL) approach for an adaptive DPM

framework in systems with bursty workloads, using a hybrid

power supply comprised of Li-ion batteries and supercapacitors.

Simulation results show that our technique enhances power

efficiency by up to 9% compared to a battery-only power supply.

Our RL-based DPM approach also achieves a much lower

energy-delay product compared to a previously reported expert-

based learning approach.

Keywords-dynamic power management; reinforcement learning;

hybrid power supply

I. INTRODUCTION

Power consumption has become a primary concern
especially in battery-powered electronics ranging from mobile
computing systems to sensor nodes. In case of portable devices
such as smartphones and tablets, a judiciously-selected power
management approach can result in lower power dissipation,
less heat, and longer battery life, since some components of
these devices undergo frequent transitions between working
(busy) and idle states. Dynamic power management (DPM),
which shuts off or slows down idle system components to
achieve energy efficiency while meeting performance
requirements such as request turnaround time and/or request
loss rate, has thus been widely employed in such devices. In
particular, a Power Manager (PM) makes decisions on when
and which components should be turned off or awakened
according to the adopted power management policy.

Power management policies may be classified as timeout,
predictive, stochastic and learning-based [1][2]. Timeout
policies set the component to wait for a specified time interval,
called timeout, before transitioning to a low-power state.
Predictive methods [3][4] decide whether a component should
go to sleep or stay awake based on predictions about the

duration of the next idle period in comparison to a pre-
calculated break-even time [1]. Both these methods have low
performance for random service request sequences whose
arrival rate distribution is unknown or non-stationary.
Unfortunately, this is the common case for portable devices.

Stochastic power management policies can handle non-
determinism and uncertainty. There are two main categories:
synchronous and event-driven [5], and the optimality of both
categories is guaranteed assuming the validity of the underlying
Markov chain (or process) model. Benini et al. propose a
management approach based on a discrete-time Markov
Decision Process (MDP) in [6]. They assume multiple power
states and obtain the optimal synchronous solution by
formulating a linear optimization problem. This model was
improved in [7] by employing a continuous-time MDP model,
leading to an event-driven management policy.

Another power management method proposed more
recently is based on learning theories. Compared to traditional
stochastic policies, learning algorithms do not require a priori
knowledge of the state transition probability matrix and can
adapt themselves to the workload variations. Dhiman et al.
implement a machine learning algorithm in [8], which chooses
which expert (from among a set of offline generated and
optimized experts) to activate at run time. The performance of
this type of manager is highly dependent on the available
expert set. In addition, it can only achieve a relatively small
range of energy-delay tradeoffs. Reference [9] implements an
enhanced model-free, Q-learning approach for system-level
DPM. Through learning, the PM makes decisions according to
some reward function, without the need to design a set of
experts in advance. Moreover, this approach can produce larger
range of energy-delay tradeoffs. Wang et al. [2] improved this
algorithm by making the PM work in an event-driven manner
and using temporal difference learning method combined with
a Bayesian classifier.

All of the aforesaid DPM works have focused on improving
the energy efficiency by modifying management policies of the
PM. From another perspective, the energy efficiency of the
whole system can also be improved by customizing the power
supply network. One approach is the multi-battery power
supply with battery scheduling, which has been discussed in
[10]. Reference [11] develops a continuous-time MDP model
for a two-battery power supply and presents an optimal
solution by using a power switch to control the battery bank
discharging.

This research is supported in part by a grant from the CISE directorate of

the National Science Foundation.

A significant portion of battery supply power loss is due to
the rate capacity effect: A battery’s effective charge decreasing
rate is a super-linear function of the discharging current [12].
For example, a battery discharging at 10A for an hour will lose
more energy than at 1A for 10 hours. Notice that when a power
managed system component transitions from sleep state to
active, the power consumption during the transition period can
be two to four times higher than that of the active state [2]. Due
to rate capacity effect, the energy overhead is even larger than
previous thought. To address this issue, we combine another
type of storage bank, namely supercapacitors, with the batteries
to form a hybrid power supply subsystem. A key advantage of
supercapacitors is that their rate capacity effect is negligible
compared to batteries [13]. To derive an efficient hybrid power
supply management policy, reference [14] proposes a learning
method for such a system powering an arbitrary load. However,
the model in [14] is limited since it assumes that the battery
bank and supercapacitor bank cannot power the load
simultaneously and the battery bank can only charge
supercapacitors with constant current. Nor does the paper
address how they reduce the problem complexity which is a
function of the number of state-action pairs.

To the best of our knowledge, our work is the first in power
management area that incorporates design and management of
a hybrid power supply into the general DPM framework for
portable systems. In this paper, we present a system model of
the hybrid power supply based DPM and use RL to solve the
joint optimization problem. We adopt discrete-time RL
technique for the supply PM, since the remaining charges of
both the battery and supercapacitor are sampled at regular
intervals regardless of system events, while for the device PM
we use continuous-time RL technique since the device PM
functions in an event-driven manner with events coming at
arbitrary times.

The contribution of this paper is twofold: First, we integrate
supercapacitors with the battery pack in order to deal with the
fluctuating part of the load current demand, thereby greatly
reducing the battery energy loss caused by rate capacity effect.
Second, we formulate and solve a joint optimization problem
for the hybrid power supply and load device. In the learning
process, the device PM collects information from both the load
component and the power supply. In the meantime, the supply
PM is provided with the load component state.

The rest of the paper is organized as follows: Section II
presents the system model and the DPM problem formulation.
Section III describes the RL-based DPM algorithm for both the
device PM and the supply PM. Experimental results and
conclusion are given in Section IV and Section V, respectively.

II. PROBLEM STATEMENT

In this section we first describe the hybrid power supply
model employed in our paper. Next we present the complete
system model comprised of two PMs (device PM and supply
PM). The DPM problem is formulated in the last subsection.

A. Hybrid Power Supply Network

Figure 1 shows the structure of the hybrid power supply
network. As mentioned earlier, we combine a supercapacitor
bank with a battery bank to form a hybrid power supply. Three

unidirectional converters control either their output voltages or
currents according to the commands received from the supply
PM.

Converter #1

Converter #2

Converter #3

Battery

Supercap
Load

2C

outi

2C

ini

3C

outi

3C

ini

1C

outi

1C

ini

loadi

BAT

outi

SC

outi

Figure 1. Hybrid power supply network structure.

There are three operation modes of the power supply
network. In the first mode, only Converter 1 is turned on and
the battery alone powers the load device. In the second mode,
both Converter 1 and Converter 2 are turned on, and the battery
provides power for the load device and simultaneously charges
the supercapacitor. In this case Converter 1 regulates the supply
voltage of the load device while Converter 2 controls the
supercapacitor charging current. In the third mode, both
Converter 1 and Converter 3 are turned on, and both the battery
and the supercapacitor provide power for the load device. In
this case Converter 3 regulates the supply voltage of the load
device while Converter 1 controls its output current.

Apart from energy loss caused by the internal resistance of
batteries and supercapacitors, there are three other main factors
that account for energy losses in the power supply network, as
explained next.

1) Rate capacity effect of batteries
The discharge efficiency is defined as the ratio of the

battery’s output current to the degradation rate of its stored
charge. As mentioned above, the rate capacity effect describes
the phenomenon that an increase of battery discharging current
will lead to the decrease in the discharge efficiency. It is
evaluated by an empirical equation, called the Peukert’s
formula [15], as follows:

  
 

BAT

disch

disch

k
I

I


 
 (1)

where , are constants, and denotes the discharging
current, the discharge efficiency. Rate capacity effect is
prominent for lead-acid and Li-ion batteries, but is negligible
for supercapacitors, i.e. .

2) Self-discharge of supercapacitors
Supercapacitors suffer from severe self-discharge: They

continuously lose stored energy no matter whether they are
connected to a load or not. Similar to a normal capacitor, the
amount of energy stored in a supercapacitor is proportional to
the square of its open circuit terminal voltage ().
When no load is connected to it, a supercapacitor may lose
20%~40% of its stored energy in one day [13]. The
supercapacitor voltage decay after time is given by:

    SC SC tV t t V t e   (2)

where is the self-discharge time constant..

3) Converter power dissipation
Converters can maintain legal output voltage or current

regardless of input and output voltage variations (within certain
ranges, of course). Efficiency of a converter depends on its
input and output voltages , as well as its input and
output currents . We have the following expression:

 


  
converter

converter out out out in in

in in in in in

P V I V I P

P V I V I
 (3)

Typically, the power conversion efficiency of converters
decreases as the difference between its input and output
voltages increases [18]. Moreover, a converter has much lower
efficiency when its output current is small since the converter
consumes a certain amount of static power when it is on.

B. Service Processing Module

In our system model we consider a specific I/O component,
e.g., a WLAN module. When CPU is running applications, it
generates requests through a service requestor (SR), and pushes
them into a service queue (SQ) if they have to wait for
processing.

The service processor (SP) has three main states and two
transitional states, as shown in Figure 2. It is in active state
when processing services, and it becomes idle after it has
finished processing them all. When idle, SP will autonomously
transition to active state as soon as any request arrives.
Unfortunately, SP has non-zero power consumption in idle
state. It can also go to sleep state, consuming little power
compared to an idle one, but it suffers from large wakeup
latencies along with high power consumption during the
transition-to-active state. The goal of a power management
policy is to properly schedule the sleep and wakeup time for SP
in order to reach a balance between delay (performance) and
energy consumption.

Transition to sleepTransition to active

Active Idle

Sleep

Figure 2. State diagram of SP.

More precisely, the device PM makes two types of
decisions: First, every time when SP transitions from active to
idle state, it will decide whether to go to sleep straightaway or
set a timeout. If a timeout is set and no requests arrive during
this period, SP will subsequently go to sleep. Second, while SP
is in sleep state, the device PM decides whether or not to wake
up SP based on the number of waiting requests in SQ.

C. System Model

The complete architecture of the portable system with two
PMs is presented in Figure 3. The device PM receives
information from SR, SQ, SP as well as the supply PM, and
issues control commands to SP. There are three pieces of
information for the supply PM, namely status of the battery
bank, status of the supercapacitor bank and the load power
demand. The supply PM controls the power supply network by

adjusting the output setups of the converters. The two PMs
communicate with one another to exchange information: The
device PM provides the supply PM with the current power
consumption level of SP, while the supply PM provides the
device PM with the current status of the supercapacitor.

SR SQ SP Battery Supercap

Information flow

Control flow

Device

PM

Supply

PM

Chargers

Figure 3. System architecture with two dedicated PMs.

D. Problem Formulation

The DPM problem with hybrid supply system is formulated
as an online optimization problem. For simplicity we assume
there are one battery bank and one supercapacitor bank without
loss of generality. We use state-of-charge (SoC) to denote the
status of the power supply. SoC is defined as the ratio of the
remaining charge of a battery or a supercapacitor to its total
stored charge when fully charged. SoC is given as a percentage
(0% = empty; 100% = full).

Given: 1) (supply side) Battery capacity
 , initial SoC

of battery
 and supercapacitor

 , 2) (device side)

device operating voltage , and power consumption of
SP’s five states: .

During online operation, the input parameters at each
decision epoch are:

 Number of services waiting in SQ: ;

 Current state of SP: ;

 Current SoC of battery and supercapacitor:

 .

Find: 1) SP state transition time (i.e. from idle to sleep and
from sleep to active), 2) discharging current of battery and
charging/discharging current of supercapacitor, and 3) output
setup of the three converters.

Minimize:
 , where

 is the total
energy drawn from the battery and is the total delay,
which is the summation of the response time of all service
requests. Parameters and are used for normalization
purpose and can be controlled to achieve a desired energy-
delay tradeoff.

Subject to: the constraint that the supercapacitor voltage is

within the range

 .

III. REINFORCEMENT LEARNING

In this section we first provide the theoretical bases of our
RL algorithm. Next we present the implementation details of
both the supply PM and the device PM.

A. Theoretical Background

Reinforcement learning (RL) is a type of machine learning
technique and is widely used when the problem is essentially to
exploit the interaction between a goal-oriented agent and an
uncertain environment [16]. This interaction between the agent
and the environment is usually modeled using a finite state

space , a set of available actions , and a reward function
 . The ultimate goal of RL is to figure out a policy
 , which chooses action in each state , to
optimize a reward function.

Decision epochs are a sequence of time points
 at which an action is chosen and state
transition may appear. At time when the system has
transitioned to state , the agent selects an action , and
this will lead to an instant reward rate regarding the

state-action pair . In the next decision epoch , the
system switches to state .

The key problem of RL is to find an optimal policy that
maximizes the cumulative rewards over a potentially infinite
time span. We build our RL algorithm based on Q-learning i.e.,
we associate a value, denoted by , with each state-
action pair , which approximates the expected cumulative
reward of taking action starting at state . At decision epoch
 , the action with the highest value will be chosen. At
decision epoch , we update this value
according to the following equation in continuous-time RL:

   

       1

1

1 1 1

, ,

max , ,k k

k

update

k k k k

t t

k k k k k
a

Q s a Q s a

R e Q s a Q s a








 

  

  

 

 (4)

In discrete-time RL, we have:

   

     
1

1 1 1

, ,

max , ,
k

update

k k k k

k k k k k
a

Q s a Q s a

R Q s a Q s a





  

  

 

(5)

In the above two equations, the empirical constant controls
the learning rate, while and are discount factors.
denotes the integration of decayed instant reward rate from
to , given by

   

1 ()

1 ,

  

  
k

k

k k
k

t
t t

k s at
R r t e dt (6)

One important issue in RL is exploration vs. exploitation
[16]. An RL agent must exploit the best action known so far to
gain rewards while exploring all possible actions to find a
potentially better choice. In Q-Learning, if the action with the
temporarily highest value is always chosen, we take the risk
of getting stuck in a sub-optimal solution. We address this issue
by breaking our learning procedure into two phases: In the
exploration phase, -policy [16] is adopted, i.e., the current best
action is chosen with probability and a random action is
chosen with probability . In the exploitation phase, as the
values of all state-action pairs have converged, we always
choose the action with the highest value.

B. RL-Based DPM Algorithm

In this work, we use discrete-time Q-learning for the power
supply PM and continuous-time Q-learning for the device PM.

1) Supply PM Learning Algorithm
As shown in Figure 3, the supply PM collects load demand

information from the device PM and SoC information from the
battery bank and supercapacitor bank.

Since the SoCs of battery and supercapacitor change over
time, we must sample the SoC values at regular intervals
regardless of system events. Therefore discrete-time Q-
Learning technique is adopted for the supply PM, and the
decision epoch set can be represented by a set of sequential
discrete indices with fixed time interval between
two consecutive decision epochs. The state space and actions
used in the RL algorithm are provided follows:

 State space , where is the
current power demand of the device, and is the
SoC of the supercapacitor bank;

 Action set
 , where

is the discharging current of the battery bank, with
possible discrete values.

The action set is defined as above because given battery
discharging current together with load demand from the device
PM, the supply PM can set the output voltages or currents of all
three converters. Between two consecutive decision epochs, the
battery discharging current is fixed. The intuition is that the
battery discharging current should be constant to alleviate the
rate capacity effect, resulting in the supercapacitor taking over
the fluctuating portion of the load.

Although increasing the number of state-action pairs may
ensure better learning policy, the convergence time and the
algorithm runtime also increase linearly. In the RL algorithm

for the supply PM, takes five possible values because SP
has five states, whereas is discretized into 10 states. For
the action set , we use . Altogether for
the supply PM, we have state-action pairs.
In practice, this number of state-action pairs is sufficient to
achieve acceptable performance with negligible overhead.

We use penalty instead of reward in the updating equation
of the RL algorithm, thus actions with smaller -values are
favored. The penalty of time interval is the system’s
energy loss during that time interval, calculated by
subtracting the load energy consumption and the supercapacitor
energy increase from the total energy drawn from the battery
(decay factor for simplicity):

 BAT load SC

k lossE E E E   (7)

Finally, the -value updating rule performed at decision
epoch is given by (in our experiments α and Г are set to
0.02 and 0.1, respectively):

   

     
1

1 1

, ,

min , ,
k

update

k k k k

k k k k k
a

Q s a Q s a

E Q s a Q s a




 

  

 

 (8)

2) Device PM Learning Algorithm
Since the device PM functions in an event-driven manner,

we use continuous-time Q-learning instead. We first define
decision epochs used in the algorithm. As shown in Figure 4,
there are two cases that the system encounters a decision epoch
and updates -values, called the idle-state type and the sleep-
state type. They have different state spaces and action sets.
Notice that the -values of both types are not independent, and
the values of one type can be used to update those of the other
type.

idle idlesleep sleep

kt 1kt  2kt 1kt  t

kQ
1kQ  2kQ 1kQ 

Update

Figure 4. Device PM Q-value updating diagram. An arrow from B to A means

A is updated based on the information provided by B.

1. Idle-state type: SP state is idle and no services are waiting

in SQ, i.e. . The state space and

action set in this case are given by:

 State space , where is the SoC
of supercapacitor and is the feature of previous
service request inter-arrival times;

 Action set , where
 and . These actions are the
predefined timeout values in the device PM.

Different from the supercapacitor SoC state set in
the supply PM policy, here only has three states : 0
indicates the supercapacitor voltage is too low to support the
load, 2 means high supercapacitor voltage (also severe self-
discharge rate), and 1 when in between. Each load feature in
the set consists of bits, denoted by .
Bit if the -th service request inter-arrival time before
the current service request is larger than the break-even time
 , and otherwise. In the action set , there
are two special cases: If is chosen, SP will immediately
go to the sleep state; and if is chosen, SP will wait in
idle state till the next service request arrives.

In our experiments we set , totaling
 state-action pairs.

2. Sleep-state type: SP state is sleep and one or more new

service requests arrive at SQ, i.e.

increases. Here we have the following of state space and

action set (note that and sets are the same as

in the first case):

 State space , where is
the number of service requests waiting in SQ;

 Action set , where 0 means
staying sleep and 1 means transitioning to active.

We impose a maximum number on in the sleep state to
limit the number of total states. In our experiments, SP must
wake up when the number of service requests waiting in SQ
exceeds four. Therefore, there are a total of
 state-action pairs.

The penalty used by the device PM is a weighted
average of system delay and energy consumption. The total
penalty during time interval is defined by:

k k kP E   (9)

where is the energy consumption of SP during time interval
 , is the total delay, and parameters and control
the energy-delay tradeoff. With fixed , increasing will yield
a more energy-saving result, whereas decreasing it will result in
smaller latency, and vice versa.

The continuous-time RL technique in the device PM uses a
time-dependent factor instead of a fixed discount factor
in the discrete-time RL technique. The value updating rule is
given by (in our experiments α and γ are set to 0.1 and 1.0,
respectively):

   

          1

1
1 1

, ,

1 min , ,k k

k

update

k k k k

t t

k k k k k k
a

Q s a Q s a

E e Q s a Q s a




   



 

 

  

   

(10)

IV. EXPERIMENTAL RESULTS

We conduct simulations based on the setting of a battery-
powered wireless sensor node, which has a WLAN module. To
accurately evaluate our method, we adopt the battery model
described in [12] and the DC-DC converter model in [18]. For
the WLAN module data, we use tcpdump utility in Linux to
collect real data trace.

In the following, we use the term “RL-based hybrid system”
as the abbreviation for the RL-based DPM system with
proposed hybrid power supply. The baseline systems include
an expert-based learning DPM method [8] and a RL-based
DPM system both with battery-only supply (hereinafter
referred as “expert-based system” and “RL-based battery-only
system”, respectively). In the expert-based system three types
of expert policies are used:

1) Fixed timeout, with timeout set to a certain constant;

2) Adaptive timeout: Timeout value is initialized to the break

even time , and is subsequently modified by

under each adjustment;

3) Exponential predictive [4]: The predicted request inter-

arrival time is updated as follows:
 , where denotes the k-th request inter-arrival time,

and is a coefficient representing the learning rate.

TABLE 1. POWER CONSUMPTION AND DELAY TIME OF WLAN CARD.

actP
idleP

sleepP
_tran sleepP

_tran actP
_tran actt

beT

1.5 W 0.9 W 0 0 3 W 0.3 s 0.7 s

We mainly focus on the power consumption of the WLAN
module, assuming the rest part of the wireless sensor node has
constant power consumption. In Table 1,
 stand for the power consumption of

WLAN module when it is in the corresponding state.

denotes the latency to wake up a sleeping SP, and refers to
the break-even time. Note that is much higher than

the power consumption of active and idle states.

Figure 5. Battery efficiency and energy consumption as a function of system

delay.

Figure 5 compares the energy efficiency and total energy
consumption as a function of system delay for battery-only
system and hybrid supply system. Here the energy efficiency
refers to the ratio of load device energy consumption to the
total energy drawn from the battery. As shown in Figure 5,
smaller delay means fewer transitions to sleep state and more
time in idle state, therefore the overall energy consumption is
higher. At the left-most point of Figure 5(a), the systems
experience almost zero delay, and have least times to encounter
high power consumption in the transition-to-active state,
meaning the least energy loss due to the rate capacity effect.
The battery efficiency at this point reaches 92%. More often,
however, delay is sacrificed to save energy. That will lead to a
rapid drop of battery efficiency because of more frequent high
discharging currents during the transition-to-active state. This
situation is ameliorated in our RL-based hybrid system shown
in Figure 5(b). Our algorithm applied to hybrid power supply
has an average of 87% energy efficiency, which shows an
improvement of up to 9% compared with battery-only system.

Figure 6. Energy-delay tradeoff for wireless sensor node.

Figure 6 shows the wireless sensor node’s tradeoff curves
between energy consumption and total delay, comparing the
three systems mentioned above: RL-based battery-only system,
RL-based hybrid system, and expert-based system. In the
region where overall energy consumption is low, RL-based
hybrid system consumes much less energy compared to
battery-only system with identical delay. As for the expert-
based battery-only system, it only has satisfying performance at
one single point. It cannot reach a wide range of energy-delay
tradeoff as RL-based DPM framework does.

V. CONCLUSION

This paper presents an efficient RL-based DPM
methodology on a novel system model with hybrid power
supply for portable devices. Conventional battery-only supply
suffers from efficiency degradation during peak load due to
rate capacity effect. To address this problem, we first develop a
hybrid power supply with batteries and supercapacitors. The
entire system combines the hybrid supply module and the

service processing module, allowing information exchange
between these two sides for more substantial optimization.
Next we present an RL-based DPM algorithm for the supply
PM and the device PM to achieve near-optimal power
management of the computing system. Simulation results on
WLAN module show an improvement in energy efficiency of
up to 9% compared with a battery-only supply and a wider
range of energy-delay tradeoff with higher performance
compared to an expert-based DPM approach.

REFERENCES

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system level dynamic power management,” IEEE Trans.
on VLSI Systems, 2000.

[2] Y. Wang, Q. Xie, A. Ammari, and M. Pedram, “Deriving a near-optimal
power management policy using model-free reinforcement learning and
Bayesian classification,” DAC, 2011.

[3] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Trans. on VLSI Systems, 1996.

[4] C. H. Hwang and A. C. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” ICCAD, 1997.

[5] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven
power management,” IEEE Trans. on CAD, 2001.

[6] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. on CAD,
1999.

[7] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time Markov decision process”, DAC, 1999.

[8] G. Dhiman and T. Simunic Rosing, “Dynamic power management using
machine learning,” ICCAD, 2006.

[9] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using
reinforcement learning,” ICCAD, 2009.

[10] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, R. Scarsi,
“Extending lifetime of portable systems by battery scheduling,” DATE,
2001.

[11] P. Rong and M. Pedram, “Battery-Aware Power Management Based on
Markovian Decision Processes", ICCAD, 2002.

[12] D. Shin, Y. Wang, Y. Kim, J. Seo, M. Pedram, and N. Chang, “Battery-
supercapacitor hybrid system for high-rate pulsed load applications,” in
DATE, 2011.

[13] M. Pedram, N. Chang, Y. Kim, and Y. Wang, “Hybrid electrical energy
storage systems”, ISLPED, 2010.

[14] A. Mirhoseini, F. Koushanfar, “Learning to manage combined energy
supply systems”, ISLPED, 2011.

[15] D. Linden and T. B. Reddy, Handbook of Batteries. McGrew-Hill
Professional, 2001.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA, 1998.

[17] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time Markov decision problems”, in Advances in Neural
Information Processing Systems, pp. 393-400, MIT Press, 1995.

[18] Y. Wang, Y. Kim, Q. Xie, N. Chang, and M. Pedram, “Charge migration
efficiency optimization in hybrid electrical energy storage (HEES)
systems”, ISLPED, 2011.

