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Abstract—Incorporating residential-level photovoltaic energy
generation and energy storage systems have proved useful in
utilizing renewable power and reducing electric bills for the res-
idential energy consumer. This is particular true under dynamic
energy prices, where consumers can use PV-based generation and
controllable storage modules for peak shaving on their power
demand profile from the grid. In general, accurate PV power
generation and load power consumption predictions and accurate
system modeling are required for the storage control algorithm
in most previous works. In this work, the reinforcement learning
technique is adopted for deriving the optimal control policy for
the residential energy storage module, which does not depend on
accurate predictions of future PV power generation and/or load
power consumption results and only requires partial knowledge
of system modeling. In order to achieve higher convergence
rate and higher performance in non-Markovian environment,
we employ the 7"D())-learning algorithm to derive the optimal
energy storage system control policy, and carefully define the state
and action spaces, and reward function in the 7'D(\)-learning
algorithm such that the objective of the reinforcement learning
algorithm coincides with our goal of electric bill minimization
for the residential consumer. Simulation results over real-world
PV power generation and load power consumption profiles
demonstrate that the proposed reinforcement learning-based
storage control algorithm can achieve up to 59.8% improvement
in energy cost reduction.

I. INTRODUCTION

The traditional electrical power grid is an interconnected
transmission network, which moves the electric power from
power generators until it reaches users/consumers through long
distances. Since the end user profiles often significantly change
according to the day of week and time of day, the power grid
must be able to support the worst-case demand of power to all
end users [1]. On the other hand, the emerging smart power
grid will exploit digital technology allowing for bidirectional
communication between the utilities and the corresponding
consumers to meet the expected growth of end user power
consumption at the worst case [2], [3]. Integrating a substantial
amount of renewable power sources, such as photovoltaic
(PV) or wind power sources, into both residential and power
grid levels of the smart grid will increase the efficiency of
the current electricity infrastructure and reduce environmental
impacts [4]. Smart meters and smart distribution system enable
two-way information flow, real-time reporting of power grid
status and outages and effective interconnection of renewable
power sources. These technologies allow monitoring power
consumption, automated control of power consumption of
smart devices and appliances, dynamic pricing policies of

electricity, and fault detection/tolerance in the smart grid, etc.

Although integrating residential-level renewable (PV) power
generations into the smart grid proves useful in reducing fossil
fuel consumption, several issues need to be addressed for
realizing the full benefits. First, there is a mismatch between
the peak solar power generation time (typically at noon) and
the peak residential-level power consumption time (typically
in the evening.) This time skew means that the PV power
cannot be optimally utilized for peak shaving. Besides, the
daily distribution of the PV output power is almost fixed,
depending on the solar irradiance [5], which also restricts the
ability of peak shaving for residential consumers.

In order to mitigate the issues mentioned above, one way
is to introduce an energy storage module for houses equipped
with PV modules [6]. The proposed energy storage module
stores power from the smart grid during off-peak hours of
each day and (or) from the PV system, and offers power to
the residential consumer during the peak period of the day for
peak shaving and electricity cost reduction since electricity
price is the most expensive during the peak period. Therefore,
the design of dynamic pricing-aware energy control algorithm
for the residential energy storage system is a critical task for
the smart grid to deliver on its promises.

The energy storage capacity of the storage system is limited
due to the relatively high cost of the (battery) storage elements.
Hence, it is very important for the controller to predict the
PV power generation and load power consumption so that
it can optimally control the storage system to minimize the
electricity cost. For example, reference [6] presented PV power
generation and load power consumption predictions specifical-
ly designed to help a residential storage controller. However,
in many cases the load power consumption predictions result
in relatively significant prediction errors, which will affect
the performance of the residential storage controller. Besides
being robust to prediction inaccuracies, the residential storage
controller should also be resilient and robust with respect to
inaccuracies and variabilities arisen from modeling, aging, and
cell-level variability of PV and storage systems, as well as
efficiency variations of power conversion circuitry.

In this paper, we use the reinforcement learning technique
for deriving the optimal control policy for the residential
energy storage module, which does not depend on accurate
predictions of future PV power generation and/or load pow-



er consumption results and only requires partial knowledge
of system modeling. More specifically, the reinforcement
learning-based storage control does not need information of
the power conversion efficiencies of various DC/DC converters
and DC/AC inverters, but needs information to precisely
estimate the remaining energy in the storage module. In order
to achieve higher convergence rate and higher performance in
non-Markovian environment, we employ the 7'D(\)-learning
algorithm to derive the optimal energy storage system control
policy, and carefully define the state and action spaces, and
reward function in the T'D(\)-learning algorithm such that
the objective of the reinforcement learning algorithm coincides
with our goal of electric bill minimization for the residential
consumer. Simulations over real PV power generation and load
power consumption profiles demonstrate that the proposed
reinforcement learning-based storage control algorithm can
achieve up to 59.8% improvement in energy cost reduction.

II. REINFORCEMENT LEARNING BACKGROUND

Reinforcement learning provides a mathematical framework
for discovering or learning strategies that map situations onto
actions with the goal of maximizing a cumulative reward func-
tion [8]. The learner and decision-maker is called the agent.
The thing it interacts with, comprising everything outside the
agent, is called the environment. The agent and environment
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Fig. 1. The agent-environment interaction in reinforcement learning.
interact continually, the agent selecting actions and the envi-
ronment responding to those actions and presenting new states
to the agent. The environment also gains rewards, which are
special numerical values that the agent tries to maximize over
time.

Fig. 1 illustrates the agent-environment interaction in rein-
forcement learning. Specifically, the agent and environment
interact at each of a sequence of discrete time steps, i.e.,
t=0,1,2,3,---. At each time step ¢, the agent receives some
representation of the environment state, i.e., s; € S, where
S is the set of possible states, and on that basis selects an
action, i.e., a; € A(s;) C A, where A(s;) is the set of actions
available in state S; and A is the set containing all possible
actions. One time step later, in part as a consequence of its
action, the agent receives a numerical reward, i.e., 741 € R,
and finds itself in a new state, i.e., S;11.

A policy, denoted by =, of the agent is a mapping from
each state s € S to an action a € A that specifies the action

a = 7(s) that the agent will choose when the environment is
in state s. The ultimate goal of an agent is to find the optimal
policy, such that the value function

VT(s) = E{Z Vo eprgalse = s} (1)
k=0

is maximized for each state s € S. The value function V™ (s)
is the expected return when the environment starts in state s
at time step ¢ and follows policy 7 thereafter. 0 < v < 1 is
a parameter called the discount rate that ensures the infinite
[e's) k .
sum » .~ v - Tyip41 converges to a finite value. More
importantly,  reflects the uncertainty in the future. ry4 g1
is the reward received at time step ¢t + k + 1.

III. SYSTEM DESCRIPTION
A. System Architectures

In this paper, we consider a residential consumer equipped
with PV power generation and energy storage modules as
shown in Fig. 2. The primary purpose of energy storage
modules in this system is to serve critical loads during a utility
outage and offer power to residential consumer during the
peak period of the day for peak shaving and electricity cost
reduction. The PV and storage modules are connected to a
residential DC bus via DC-DC converters. The smart grid and
the residential AC load are connected to the AC bus which is
further connected to the residential DC bus via AC/DC inverter
and rectifier.
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Fig. 2. Block diagram showing the interface between PV module, storage
system, residential load, and the smart grid.

We adopt enhanced communication and control support as
shown in Fig. 3. The utility smart grid can provide interactive
anti-islanding control and dynamic energy pricing information.
The system control function shown in the figure represents
the core part of the system. The functions including: inverter
and converter control, energy storage management, could all
be incorporated into a single device, or be separate devices
communicating with each other. The energy storage controller
can supply energy to the energy storage modules when utility-
supplied electricity is at lower cost, and can convert the output
of energy storage module to AC load during the peak period
of the day. Both of them could be operated in coordination
with the PV energy generation.

We adopt a slotted time model, i.e., all system constraints
and decisions are provided for discrete time intervals of equal
and fixed length. We divide each day into 7' time slots, each
with duration D. Hence, we use T' = 96 and D = 15 minutes.
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Residential system with enhanced communication and control

Consider the day-ahead energy pricing scenario with billing
period of one day. At the beginning of the day, the smart
grid will announce the price signal Price[t] at each time
slot t. The residential AC load at time slot ¢ of that day is
denoted by P,qq[t]. The output power levels of PV and energy
storage modules at time slot ¢ are denoted by P, [t] and Ps]t],
respectively, where Ps:[t] can be positive, negative, or zero
which means discharging the storage, charging the storage,
or idle respectively. The power required from the smart grid,
i.e., the grid power consumption, at time slot ¢ is denoted by
Pyrialt]. Pyrialt] is positive when electric power is drawn from
the smart grid to the residential system. Meanwhile, we should
consider the efficiency of each converter. The efficiencies of
the DC/DC converter between PV and DC bus, the DC/DC
converter energy storage module and DC bus, and the DC/AC
inverter and rectifier between DC bus and AC bus are denoted
by 7y [t], nse[t], and nac/pe(t], respectively, at time slot ¢.

The power flowing from the DC bus to the DC/AC inverter
(i.e., on the left side of the DC/AC inverter), denoted by

Ppcyac,iep(t]s is given by

va [t] : T];D’U [t] + Pst[t] : nst[t]7 ZfPst[t] Z 0 (2)
va[t} : npv[t] + Pst[t] : ﬁv ifRet[t] <0

On the other hand, the power flowing from the DC/AC inverter
(i.e., on the right side of the DC/AC inverter), denoted by

Ppcyac,rignt|t], is given by
Ppcyac,rightlt] = Pioadlt] — Pyrialt] 3)
Please note that both Ppc/acesi[t] and Ppejac,right(t]
can be positive or negative, and they satisfy the following
relationship:
nac/pclt] - Pocjaciesilt]
= Ppcyac,right[t], if Ppcjac,ies(t] >0

1
[ ») rilt
ﬁAC/DC[t] DC/AC,I selt]

= Ppcjac,right(t], if Ppcjaces(t] <0 (4)

The total energy cost we pay in a billing period (one day)
is given by:

Costg = Z Pricelt] - max{0, P4t} - D, 3)
t

which implies that selling power back to the grid, i.e.,
Pyriqlt] < 0, will not get reimbursed. This is due to realistic
considerations.

The residential energy storage controller has knowledge
of the current power consumption values Pjoqqlt], Ppolt],
and P,,;q[t] from real-time measurement, and it controls the
discharging/charging power Py[t] of the storage module. On
the other hand, the power conversion efficiencies 7, [t], 7s¢[t],
and n4c/pc(t] are functions of the input/output power of
the corresponding converter/inverter, and the energy storage
controller has no prior knowledge of these efficiency values
for realistic concerns.

B. Energy Storage Module Modeling

In the residential energy system, the energy storage con-
troller requires a precise estimation of the current energy
stored in the storage module, and thus, an accurate modeling
of the energy storage module is required.

The most significant cause of power losses in the storage
system, which is typically made of lead-acid batteries or Li-
ion batteries, is the rate capacity effect of batteries [10],
[11]. To be more specific, high discharging current of the
battery will reduce the amount of available energy that can
be extracted from the battery, thereby reducing the battery’s
service life between fully charged and fully discharged states
[10]. In other words, high-peak pulsed discharging current
will deplete much more of the battery’s stored energy than
a smooth workload with the same total energy demand. We
use discharging efficiency of a battery to denote the ratio of
the battery’s output current to the degradation rate of its stored
charge. Then the rate capacity effect specifies the fact that the
discharging efficiency of a battery decreases with the increase
of the battery’s discharging current. The rate capacity effect
also affects the energy loss in the battery during the charging
process in a similar way.

The rate capacity effect can be captured using the Peukert’s
formula, an empirical formula specifying the battery charg-
ing and discharging efficiencies as functions of the charging
current /. and discharging current I, respectively:

1 1
rate,c(le) = 77— Mrate,d(la) = 7>
Thrate, ( ) (IC/I’(‘Sf)ac Nrat 7d( d) (Id/Iref)Otd

where a. and o4 are peukert’s coefficients, and their values are
typically in the range of 0.1 —0.3; I,..¢ denotes the reference
current of the battery, which is proportional to the battery’s
nominal capacity Cyom. Typically, I.f is set to Chom /20,
indicating that it takes 20 hours to fully discharge the battery
using discharging current I,...

We name I./I,.; and I;/I..; the battery’s normalized
charging current and normalized discharging current, re-
spectively. Notice that the efficiency values 7,qeo(I.) and
Nrate,d(L4) in Eqn. (6) are greater than 100% if the magnitude
of the normalized charging or discharging current is less than
one, which implies that the above-mentioned Peukert’s formu-
la is not accurate in this case. We modify the Peukert’s formula
such that the efficiency values 7rqte.c(lz) and Mrate,a(lq)

(6)



become equal to 100% if the magnitude of the normalized
charging/discharging current is less than one. In other words,
the battery suffers from no rate capacity effect in this case.

We denote the increase/degradation rate of storage energy
in the ¢-th time slot by P ;n[t], which may be positive (i.e.,
discharging from the storage, and the amount of stored energy
decreases), negative (i.e., charging the storage, and the amount
of stored energy increases), or zero. Based on the modified
Peukert’s formula, the relationship between P ;,[t] and the
storage output power Py [t] is given by:

Vit * Lst ref (%) zfv” 1:[2,0 >1
Fasinl Af -1 el <
Pst,in stin [t T
Vot ey - (gpetl)if et < 1
(7

where V; is the storage terminal voltage and is supposed to be
(near-) constant; I r.r is the reference current of the storage
system, which is proportional to its nominal capacity Cs¢, nom
given in Ampere-Hour (Ahr); coefficient 3; is in the range of
0.8 — 0.9, whereas coefficient 35 is in the range of 1.1 — 1.3.

The residential energy storage controller estimates the re-
maining energy in the storage module using the Coulomb
counting method [12], i.e., the remaining energy FE[t] at the
begin of time slot ¢ (i.e., at the end of time slot ¢ — 1) is
estimated via:

Est [t]

Z P@f 1n : (8)

t'=1

st ant

where F; iy is the initial energy stored in the storage module
at the beginning of day.

IV. REINFORCEMENT LEARNING BASED ENERGY STORAGE
SYSTEM CONTROL

A. Motivations

Reinforcement learning provides a efficient solution to the
problems in which (i) with the change of system states, dif-
ferent actions should be taken, and both the current states and
the selected action determine the future state; (ii) an expected
return will be optimized cumulatively instead of immediately;
(iii) the agent only needs knowledge of the current state and
the reward it receives, which means it is a Markov process;
(iv) the system might be non-stationary to some degree. These
properties make reinforcement learning different from other
machine learning techniques, model-based optimal control and
dynamic programming, and Markov decision process-based
approach respectively.

On the other hand, the energy storage system control pos-
sesses all of the four properties mentioned above. (i) During
a whole day, the PV power generation, energy storage level,
load power consumption and electricity price require different
operation modes and actions, and also the future energy
storage level depends on the charging/discharging current.
(i) The energy storage system aims at minimizing the total
electricity cost during a whole day rather than electricity cost
rate (price) at a certain time step. (iii) The energy storage

system control agent does not have a priori knowledge of a
whole day, while it has only the knowledge of the current
PV power generation, load power consumption and energy
storage level as a result of the action taken. (iv) The actual
consumer load consumption profiles are non-stationary. Hence,
the reinforcement learning technique better suits the energy
storage system than other optimization methods.

B. State, Action and Reward of the Reinforcement Learning
Algorithm

1) State Space: We define the state space of the energy
storage system control problem as a finite number of states,
each represented by the residential load consumption, PV
power generation, energy storage level, and energy price:

S :{8 = [-Pload7 va7 Esta P’rice]T“Dload € Pload7 va S va7
E,; € Eg, Price € Price},

©))
where Plgad, Ppv, Est, and Price are respectively the finite
sets of residential load power consumption levels, residential
PV power generation levels, energy storage levels in the stor-
age module, and electricity prices. Discretization is required
when defining these finite sets.

At each time slot ¢, the storage controller has knowledge of
Price[t] which is pre-announced by the smart grid controller
at the beginning of day; it measures the P,,[t] and Pyyqq(t]
levels; and estimates the energy storage level Fg[t] using
Eqn. (8). In this way the storage controller knows the current
state at time slot ¢. In other words, the reinforcement learning
framework is partially model-free in that it does not need
information of the power conversion efficiencies of various
DC/DC converters and DC/AC inverters, but needs information
to precisely estimate the remaining energy in the storage
module.

The current state space is comprised of four dimensions, i.e.,
Pioads Ppv, Est, and Price, which makes the total number
of states high. The complexity and convergence speed of
reinforcement learning algorithms are proportional to the num-
ber of state-action pairs [8]. In order to reduce computation
complexity and accelerate convergence, we use FPioqq — Py
to replace both P4 and P, in the state vector, and thus the
state space becomes:

S :{8 = [Pload va7Est>PTice]T|]Dload
E,; € Eg, Price € Price}

- va S Pnetloady

(10
Please note that Pj,,q — P,y could be either positive or
negative. The proposed replacing Pj,qq and P,y by Pioqq—Ppy
in the state vector is intuitive because (i) when P,qq — Py is
less than zero, the excessive power consumption can be used
to charge the storage, and (ii) when Pj,qq — P, is large, it is
more desirable to discharge storage in order to provide power
for the residential loads.
2) Action Space: We define the action space of the energy
storage system control problem as a finite number of actions,
in which each action represents a specific discharging/charging



power of the energy storage module:

A:{a:Pst|Pst 6:Pst}» (11)

The set Pgt contains within it a finite number of current
values in the rage of [—Psi mazs Pst.maz)- Pst > 0 denotes
discharging the energy storage module; P;; < 0 denotes
charging the energy storage module. Discretization is required
when defining this finite set Pg;.

3) Reward Function: We define the reward that the re-
inforcement learning agent receives after taking action a at
state s as the negative value of the electricity cost in that
time step, i.e., —Price[t] - max{0, Pyriq[t]} - D. In this reward
function, Py,;4[t] is pre-announced by the smart grid controller
at the beginning of day and Price[t] can be measured by
the residential controller. Remember from Section II that the
reinforcement learning-based storage controller aims at maxi-
mizing the expected return, i.e., the discounted sum of rewards.
Therefore, by using the negative value of the electricity cost
in a time step as the reward, the total electricity cost will be
minimized while maximizing the expected return.

C. TD()\)-Learning Algorithm for Energy Storage System
Control

To derive the optimal energy storage control policy, we
adopt a specific type of reinforcement learning technique,
namely the 7°D()\)-learning algorithm [9], due to its high-
er convergence rate and higher performance in the non-
Markovian environment (compared with the simplest Q-
learning method.) In T'D())-learning, a value function Q(s, a)
is associated with each state-action pair (s,a), which ap-
proximates the expected (discounted) cumulative reward when
taking action a at state s. There are two basic steps in
the T'D(A)-learning algorithm: action selection and Q-value
update.

1) Action Selection: The most straightforward approach for
action selection is to always select the current best action
with the highest () value. However, this approach is at the
risk of getting stuck at a sub-optimal solution. A judicious
reinforcement learning agent should thus exploit the best
action known so far to gain high rewards and meanwhile
explore the other candidate actions to find a potentially better
choice. We address this exploration versus exploitation issue
by separating the overall learning procedure into two phases:
The first phase is the exploration phase, in which the e-greedy
policy is adopted, i.e., the current best action is chosen with
probability of 1 — e, whereas all the other actions are chosen
with the same probability. The second phase is the exploitation
phase, in which the action with the highest @) value is always
selected for reward maximization.

2) Updating Q-Values Using Eligibility Traces: Sup-
pose that action ay, i.e., Ps[t], is taken in state sy, i.e.,
[Pioad[t], Ppo[t], Est[t], Price[t]]T, at time step (time slot) ¢,
and reward r.y; and new state s;;; are observed at this time
step. Then at the next time step ¢ + 1, the TD()\)-learning
algorithm updates () value for each state-action pair (s, a) as:

Q(s,a) + Q(s,a) + a-e(s,a) - 0, (12)

where « is the learning rate coefficient, e(s, a) is the eligibility
of the state-action pair (s,a) specifying the frequency that
state-action pair (s,a) is encountered in the past, and § is
calculated as

8 141+ ymazy Q(si1,a’) — Q(st, ar), (13)

where v denotes the discount rate in reinforcement learning
algorithm.

At time step ¢+ 1, the eligibility e(s, a) of each state-action
pair (s,a) is updated by

e(s,a) v Aels,a)+ 1
v-A-e(s,a),

to reflect the degree to which state-action pair (s, a) has been
selected in recent past, in which X is a constant value between
0 and 1.

3) Algorithm Description: The pseudo code of the TD(\)-
learning algorithm for energy storage module control is de-
scribed in Algorithm 1.

s:stf?a:at (14)
otherwise

Algorithm 1 TD())-Learning Algorithm for Residential En-
ergy Storage Controller:

Q(s,a)

Initialize the state-action
pairs.
for For each time step ¢ do
Choose action a; for state s; using the exploration-
exploitation policy discussed in Section IV part C.
Take action a;, observe reward ;1 and the next state
St+1.
0 11+ ymaxey Q(se41,a") — Q(s4, ar).
e(st, ar) < e(sg,ap) + 1.
for For all state-action pair (s, a) do
Q(s,a) + Q(s,a) + a-e(s,a) - 0.
e(s,a) «—v-X-e(s,a).
end for
end for

arbitrarily for all

V. EXPERIMENTAL RESULTS

In this section we provide experimental results on the
effectiveness of the proposed reinforcement-learning based
residential storage module control algorithm. The PV power
profiles used in our experiments are measured at Duffield, VA,
in the year 2007, whereas the residential load consumption
data comes from the Baltimore Gas and Electric Company,
also measured in the year 2007 [13]. We add some random
peaks to the load consumption profiles. Fig. 4 illustrates
the synthesized day-ahead electricity price function during a
day, which has peak-hours in the evening and off-peak hours
mainly in the morning.

We compare the performance in electric bill reduction of
the proposed reinforcement learning-based storage control
algorithm with baseline algorithm. The baseline algorithm
charges the storage module during the off-peak hours (00:00
to 03:59) with constant charging power and discharges the
storage module during the peak hours (20:00 to 21:59) with



TABLE I

0.04 ! ! ! ! ! MONTHLY SAVING OF ELECTRICITY COST OF THE PROPOSED ALGORITHM
AND BASELINE ALGORITHM ($).
=
E 0.03f 7 Jan Feb Mar Apr May Jun
& Proposed 6.1668 73146 139817 143264 19.6353  19.1056
‘q',' Baseline 4.3619 6.2966  11.7838 9.8755 14.1859  17.0373
2 0.02F Jul Aug Sep Oct Nov Dec
o Proposed  17.5026  17.4447  18.9397 12.6236 8.2157 5.3630
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S 0.01} -
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0 4 8 12 16 20 24 er consumption results and only requires partial knowledge
Time (hour) of system modeling. More specifically, the reinforcement
Fig. 4. Synthesized day-ahead electricity price function during a day. learning-based storage control does not need information of

constant discharging power in order to perform peak shaving.
Fig. 5 illustrates the total energy cost of each billing period
(each day) over a whole year. One can clearly observe that
the proposed algorithm consistently outperforms the baseline
algorithm in terms of reducing electric bill.

the power conversion efficiencies of various DC/DC converters
and DC/AC inverters, but needs information to precisely
estimate the remaining energy in the storage module. We
employ the T'D())-learning algorithm to derive the optimal
energy storage system control policy in order to achieve higher
convergence rate and higher performance in non-Markovian
environment. We carefully define the state and action spaces,
and reward function in the 7' D(\)-learning algorithm such that
the objective of the reinforcement learning algorithm coincides

3.2 T r T r Proposed with our goal of electric bill minimization for the residential
Baseline consumer.
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