Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams'

Afshin Abdollahi

Massoud Pedram

Department of Electrical Engineering
University of Southern Cdifornia
{ afshin, pedram} @usc.edu

Abstract

Quantum information processing technology isin its pioneering
stage and no proficient method for synthesizing quantum circuits
has been introduced so far. This paper introduces an effective
analysis and synthesis framework for quantum logic circuits. The
proposed synthesis algorithm and flow can generate a quantum
circuit using the most basic quantum operators, i.e., the rotation
and controlled-rotation primitives. The paper introduces the
notion of quantum factored forms and presents a canonical and
concise representation of quantum logic circuits in the form of
guantum decision diagrams (QDD’s), which are amenable to
efficient manipulation and optimization including recursive
unitary functional bi-decomposition. This paper concludes by
presenting the QDD-based algorithm for automatic synthesis of
guantum circuits.

1. Introduction

We are beginning to reach the fundamental limits of the
materials used in the planar CMOS process [1]. Quantum
computers can evolve a superposition of quantum states until the
final output is obtained. Such “quantum paralelism” could
potentially outstrip power of classical computers [2][3]. Certain
problems for which there is no polynomia solution in classical
domain can be solved in polynomial time in quantum domain
(e.g., the factoring problem). Similarly, the complexity of some
other problems (eg. unstructured search and Boolean
satisfiability) can be reduced by transforming them into the
guantum domain [4]. Indeed, quantum circuits have the ability to
perform massively parallel computations in a single time step
[5][6]. Hence quantum computing has become a very attractive
research area, which is expected to play an increasingly critical
role in building more efficient computers [7][8]. Computer aided
design of quantum circuits is a primitive stages, which
motivates rigorous research aimed a developing CAD
techniques and tools for quantum circuits.

In this paper we address the problem of synthesizing a general
guantum operation. Exact definition of the problem is provided
clearly at the end of section 2 In this paper a canonical decision
diagram based representation of quantum circuits is presented
and a CAD methodology and novel techniques for synthesis of
guantum logic circuits based on these decision diagrams are
described. The remainder of this paper is organized as follows.
In section 2 fundamental aspects of quantum mechanics and in
section 3 previous work on quantum circuit synthesis are
reviewed. In section 4, quantum factored forms, quantum
decision diagrams (QDD’s), and a QDD-based quantum circuit
synthesis are introduced. Conclusions are provided in section 5.

! This research is funded in part by the NSF QnTM program under
grant no. 0524602.

2. Fundamentals of Quantum Computing

In quantum computation quantum bits (qubits), derived from the
states of micro-particles such as photons, electrons or ions are
used instead of classical binary bits to represent information. For
example, two possible spin rotations of an €electron are
represented as [1 of and [o 1J', Which are the basis states (basis

vectors) of this computational quantum system [9][10].

Each particle in a quantum system is represented by a wave
function inheriting the powerful concept of superposition of
states. For example, the state of a particle p, may be represented
by a wave function v =41 o +g[0 1 =[e, p] Where the
coefficients a, and 3, are in general complex and |ay[+|,[*=1. In
general, the wave function of a quantum system with n qubits
represents an arbitrary superposition of 2" states while in a
classical system n bits represent only 2" distinct states. Therefore
the space of quantum systems is exponentially larger than that of
the classical binary systems. Analysis (and by extension,
synthesis) of quantum logic circuits is more difficult than that of
the digital logic circuits because the former requires
manipulation of matrices and bases in Hilbert space whereas the
latter requires binary, or at most multi-valued, logic operations.
Quantum operators over a set of qubits are modeled as matrix
operations. As an example, for a quantum system comprising of
asingle particle p;, a quantum operator (gate) is represented by a
2x2 (in genera complex) unitary matrix U which transforms
state ¥, =[a, p,]" to State y, =uy,. Recal that a matrix U is
unitary exactly if UU"=1 where U" is the hermitian (complex
conjugate transpose) of U. Since matrix U is unitary, the inverse
of this gate is matrix U*, which isthe inverse of U. An important
class of quantum operators is the rotation operator. A @ rotation
around the X axis in Bloch sphere representation [4] is:
0 .8

COoS— —1sin—|.

R.(6)= o2
—isn= cos—
2 2

The following relation shows that rotation operators around X
are commutative with respect to matrix multiplication:

R<(01)R<(92) = R<(92)R<(91) = R<(91+92)'
In general for an n-qubit system, a quantum operation is
represented by a 2"x2" unitary matrix. An example of a 2-qubit
gate is the controlled-U gate depicted in Figure 1. For a 2x2
unitary matrix U, the controlled-U gate works as follows: when
the control signal ais [1 0]", g=b and when itis o 1, then
g=Ub. For both cases, p=a.

S N

b LU | q

Figure 1. Schematic diagram of a controlled-U.

Similar to controlled-U operator, one can easily define a
significant class of 2-qubit operators as the controlled-rotation
operator. Rotation operators are elementary and easily
realizable in most implementations of quantum computation [4],
e.g., huclear magnetic resonance and ion trap reaizations. These
factors are precisely why this paper will focus on rotation and
controlled-rotation operators as the elementary building blocks
for synthesis of quantum circuits. A new concise and canonical
data structure, called quantum decision diagrams or QDD’s, will
be introduced and subsequently used for conducting quantum
operations and synthesizing quantum logic circuits. More
precisely, the QDD’s are designed to have the ability to express
the functionaity of every quantum circuit composed of
controlled-rotation operators assuming that al rotations are
about a single axis and a ‘binary control signal’ constraint is
enforced.

3. Previous Work on Quantum Logic Synthesis

Several approaches for reversible logic circuit synthesis have
been presented in [11]-[14]. These approaches resort to
exhaustive search or methods such as matrix decomposition,
local transformations, spectral approaches, and on adaptations of
EXOR logic decomposition, Reed-Muller representations, and
other classical combinational circuit design methods. Toffoli
[15] provided an agorithm for implementing an arbitrary
function with the “CNTS’ library, comprising of controlled-
NOT, NOT, Toffoli gate, and SWAP gate (see section 4).
Kerntopf [16] proposed a search method to perform synthesis of
small-scale circuits. In [17] a synthesis method based on
manipulating the truth tables is presented. Shende et a. [18]
generate alibrary of small optimal circuits based on branch-and-
bound and exploiting the property that any sub-circuit of an
optimal circuit isitself optimal. Agrawal and Jha [19] presented
a RM-expansion based technique for optimizing a circuit that is
mapped to reversible gates. In [20] an agorithm for synthesis of
guantum circuits using reversible Davio expansion was
proposed. In [21], Shende et d presented a top-down structure
using the Cosine-Sine decomposition and introduced and used
the quantum multiplexer for recursive implementation of
guantum gates. Group theory has also been employed as atool to
analyze reversible gates [22] and investigate generators of the
group of reversible gates [23]. In [24], Hung et a transform the
synthesis problem into a satisfiability problem. They in fact use a
SAT solver instead of employing an exhaustive search. This
method is practical only for very small circuits since the reported
run-time of the algorithm for optimal synthesis of a single-bit
adder with 6 quantum gates is 7 hours on a 850MHz Pentium 111
processor running Linux. Other researchers have turned to
evolutionary algorithms to reduce the CPU time [27]. It can be
inferred that developing a practica synthesis agorithm for
guantum circuits is extremely difficult because of the fast
increase of data sizes. Indeed to-date there are no counterpartsin
quantum logic of such useful tools as algebraic decomposition,
decision diagram based synthesis, or other standard logic
synthesis techniques such as reduction to covering/coloring
combinational approaches. In this paper we introduce an
efficient data structure based on decision diagrams for
representation, analysis and synthesis of quantum circuits and
provide a synthesis approach based on the proposed decision
diagrams.

4. Quantum Logic Synthesis

In this section, we will address the problem of automatically
synthesizing a given Boolean function, f, by using R (9) and

controlled-R () operators as the elementary operations (gate
primitives.) In a synthesized quantum circuit, the quantum states
representing binary (basis states) values 0 and 1 will be:

A T

0=[1 0] 1=R(m0=[0 —iI"

With this definition of 0 and 1, the basis states remain
orthogonal, and hence, they can be completely distinguished
with proper quantum measurements. We adopt this definition
because inversion from one basis state to the other is simply
obtained by a x rotation around the X axis. With these
assignments, the R () operation acts as the quantum NOT gate
(sincer (7)R, () = R (27) = | -) Subsequently, the controlled-
NOT (CNOT) gate can be described by using the controlled-
R, (z) operator (cf. Figure 2(i).) In addition, the Toffoli gate,
aso known as the 3x3 Feynman gate or the Controlled-
Controlled-NOT gate, may be described by using the controlled-
R (z) operator (cf. Figure 2(ii).) Notice that the Boolean
functions for each output of the CNOT and Toffoli gates are also

shown in thisfigure, where*.” and ‘@’ denote binary ‘AND’ and
‘XOR’ operators.

a p=a a p=a
" R@ET P
= (ab)®
© mE— e
() (i)

Figure 2. (i) CNOT gate (ii) Toffoli gate.

Toffoli gate can be implemented using controlled-rotation
operators as demonstrated in Figure 3. In this figure only the
angle of rotation is shown for controlled-rotation operators.

a p=a
b g=b
c 2| r=(ab) ®c

Figure 3. Toffoli gate by controlled- R (6) Operators.

In this paper, we focus on rotation-based quantum gates, which
are directly realizable in quantum hardware [28][29]. It is critical
to point out that, for al input basis (binary) vectors, control
inputs of the controlled- R (@) operators in the circuit of Figure

3only take 0 or 1 values. This condition, which we shall refer
to as the binary control signal constraint, is set as a design
congtraint in the synthesis process. From the viewpoint of
representing quantum logic circuits, this constraint does not
affect the expressive power of R(€) and controlled- R,(6)
operators. This constraint has aso been adopted by other
researchers in the field (cf. [24][27].) This constraint does not
imply that a control signal cannot adopt a superposition value,
i.e., it is possible that a control signa takes a superposition
value, which happens exactly when the inputs to the circuit are
non-binary. In the reminder of this paper, when we constrain a
variable to assume a binary value, we only mean that if binary
inputs are applied to the circuit, then constraint will be enforced.
Finaly, to the best of our knowledge, there is no evidence that
relaxing this constraint, can improve the optimality of the
synthesis result for quantum circuits.

4.1 Quantum Factored Forms

In any quantum circuit synthesized with binary control signal
constraint, the first output, p, of any controlled-R (@) operator
is equal to the control input a. However, the second output
depends on both inputs. We use the notation q=aR (8)b to
describe the second output g. With this new notation R (g) can
also be regarded as a two-operand operator with the following
functionality: if a=0, then q=b €else q=R (#)b- (The left
operand, a, only assumes 0 or 1.)

Definition: Quantum Factored Form. 0 is a quantum factored
form. Every variable is a quantum factored form. If h is a
factored form, then f =R (9)h is a quantum factored form.
Moreover, if g and h are factored forms and g only takes 0 and
1 values, then f = gr (g)h isaquantum factored form.

In a quantum circuit synthesized with R (@) and controlled-

R (@) operators (with binary control signal constraint), any

output (or internal signal) of the circuit can be described as a
guantum factored form. For example, the output function r in
Figure 3 can be described as.

r =[aR, (7)b]R (-7 /2)[aR (7 / 2)[bR (7 / 2)c]]-

The following two commutative and associative relations are
useful for manipulating quantum factored forms:
aR, (7)b= bR, (7)a.aR (6,)bR,(6;)c]= bR (6,)[aR.(8,)c]-

Cascade form, which is a subclass of factored forms, is defined
asfollows.

Definition: Quantum Cascade Form. 0 and every variable are
guantum cascade forms. If hisa cascade form and vis avariable
not present in h, then f =yR (9)h is a quantum cascade form.

(f =R, (#)h isaso considered aquantum cascade form.)
A general quantum cascade form is expressed as:

f =R (E)MR(O)MR(@) . WR.6,)0]]]
Note that if g = then v, R (6,)0=, . It can be verified that
this cascade form expression can be rewritten as:

f = R(8,)V,,R.(0,)l,,R.0,,) - [v,.R.(6,)0]]]

where (p,, p,...., p,) isapermutationof (1,2,...n)-

The problem of realizing a function using R () and controlled-
R, () operators is equivalent to finding a quantum factored

form for the function. To do this, we first introduce a graph-
based data structure in the form of a decision diagram for
representing quantum logic functions.

4.2 Quantum Decision Diagrams (QDD)

The concept of Reduced Ordered BDD (ROBDD) was
introduced by Bryant [30], who also proved its canonicity
property and also provided a set of operators for manipulating
ROBDD’s. From now on, we shall simply write BDD to mean
ROBDD. Using complement edges can further reduce the size
of the BDD [31]. La et al. [32] proposed Edge-Vaued BDD’s
(EVBDD), which can represent and manipulate integer functions
and can be used for functional decomposition. In this section, we
describe a new decision diagram for the representation of
quantum functions. In a previous work [25] decision diagrams

have been used to describe a quantum circuit. The proposed
structure is basically a complete tree with as many leaf nodes as
the size of input space. This representation is not more efficient
than tabular or any other representation. Another type of
decision diagrams has been used (for a fundamentally different
purpose of unitary matrix multiplication) in which the decision
variables correspond to different rows and columns of
matrices 26].

The input and output spaces of an n qubit quantum function
include arbitrary superpositions of 2" states (with norm one.)
Therefore, an n-qubit function is represented by a 2"x2" unitary
matrix i.e., an arbitrary superposition of basis binary inputs may
be applied to a quantum circuit. However, based on the concept
of superposition and linearity of quantum functions, the behavior
of a quantum function (its functionality) can be completely
described by using the results of its operation on basis victors.

More precisely, given input _ z a,|K) (where ‘k>’s are the

basis vector) and function U, the output can be calculated as

Uy = UZak\k ZakU\k ZO’U where y is equal to

U|k)- Each basis vector‘ > (k =0, 1, ..., 2"1) represents a

point in the n-dimensional Boolean space. Hence knowing the
effect of a quantum function on all possible binary combinations
(n-vectors of 0 and 1) can completely specify the functionality
of the quantum circuit. Quantum Decision Diagrams are
thereby introduced next in order to represent the vaue of
guantum functions for binary basis vectors, which bear enough
information to compute the functions for arbitrary quantum input
states.

Definition: A QDD is a directed acyclic graph with three types
of nodes: a single termina node with value 0 , a weighted root
node, and a set of non-termina (internal) nodes. Each internal
node represents a quantum function. It is associated with a
kli nary decision variable and has two outgoing edges: aweighted
1 -edge (solid line) leading to another node (the 1-child) and a
non-weighted 0 -edge (dashed line) leading to another node (the
0 -child.) The weights of the root node and 1-edges are in the
form of R (¢) matrices. Since al the weights in a QDD are in
the form of R (), the value @ is sufficient to specify the
weight. We assume that -7 < @ < 7. Furthermore, when the edge
or root node weight is the identity matrix (i.e, R (0)=1), it
will not be shown in the diagram.

Figure 4(i) shows an internal node, f, in a QDD with decision
variable, a, the corresponding 0 and 1 edges, and child nodes,
fo and f;. This relation between the QDD nodesin thisfigureisas
follows. If a=1,then f =R (0)f, else f = f,. In addition, if
f is the weighted root node of a QDD (cf. Figure 4(ij)), then the
following relation holds. If a=1, then
f = Rx(gr)Rx(g) fl = Rx(gr +6) f1 el% f = Rx(er)fo'

Similar to BDD's, in QDD’s isomorphic sub-graphs (nodes with
the same quantum function) are merged. Additionally, if the 0 -
child and the 1 -child of a node are the same and the weight of
the 1 -edge is R (0) = | , then that node is eliminated. Using

these two reduction rules and given a total ordering on input
variables, the QDD will be uniquely constructed for a quantum
function.

Rx(@ \\

(i) (ii)
Figure 4. Structure of a QDD.
Consider a quantum function with n variables f(vy, Vo, ..., V).

Each binary value assignment to the variables vi, v, ..., Vv,
corresponds to a path from the root to the terminal node of the
QDD of f. Assuming the variable ordering vi<v.<...<v,, the
corresponding path can be identified by a top-down traversal of
the QDD starting from the root node. For each node that is
visited during the traversal, we select the edge corresponding to
the value of its decision variable v.. (i.e,, if vi=1 select the 1 -
edge; otherwise, select the 0 -edge) and continue with the node
at the end of the selected edge until the terminal node is visited.
During such atraversal for every variable v;, only one node with
decision variable v; will be visited specifying a path from the
root to the terminal node with a total number of n-1 edges. Let's
denote the weight of the root node by w, and the weight of the
selected edges by wy, Wy, ..., W,.1. The value of the function f for
assigned values to Vi, Va, . A
IS (Vy, Vo ey V) = WoW,.o oW, 10 Clearly, if, during thls graph
traversal, a 0 -edge is selected for variable v; (i.e., if vi=0), then
the corresponding edge weight will be w;=Il. We have shown that
QDD’s provide a concise and canonical representation for a
guantum function. QDD’s can be regarded as an extension of
BDD’si.e., each BDD can also be regarded as a QDD (A QDD
is a BDD exactly if al the weights of the QDD are either
R, (0)=1 or R (x).) As will be shown later, the synthesis
process starts with the QDD of the given logic function and
decomposes the given QDD to realizable QDD’s. The QDD
structure has some useful properties. One important property,
i.e., the linear topology property, is demonstrated in Figure 5.
The ideais that when the 0 -child and the 1 -child of a node, f,
are the same node, g, then that node can be directly redized by a
controlled-R (@) operator in terms of its child i.e,

f =aR (8)g - As an example, Figure 5 shows the QDD’s of

functions g, and r, in Figure 3. The QDD’s in Figure 5 are
associated with functions that have a quantum cascade form
representation. For example function r; can be represented as:

r, = aR, (7 /2)[bR, (x / 2)c] which is acascade form.
ri=aR(m2)r,
=aR(mb
f=aR(& g

Figure5. Thelinear topology property of a QDD.

Generally every QDD with a chain structure (such as QDD’s in
Figure 5) is associated with a cascade form and can directly be
realized with the rotation and controlled-rotation operators. This
property will extensively be used in the synthesis agorithm.

It is important to develop a method for applying rotation and
controlled-rotation operators to QDD’s. Suppose the QDD for a
function, f, is given. The QDD for h=R (y)f can smply be
obtained by multiplying the weight of the root node of f by
R.(y). To obtan h= fR (y)g for given QDD’s f and g

(assuming f only takes 0 and 1 values,) we use the quantum
apply operation (g-apply), the details omitted here due to space
limitation.

Given other representations for a function, the QDD can be

obtained by first creating the complete binary decision tree for

the function and repeatedly applying the following steps:

a) Convert the wei ghtAof 0 -edge to | (by changing the weight
of corresponding 1 -edge and edges ending at the parent
node.)

b) Mergeisomorphic sub-graphs.

4.3 QDD-based Functional Decomposition

As mentioned earlier, the problem of realizing a function, f,
using R (@)and controlled- R (@) operators is equivaent to
finding a quantum factored form for the function, which can in
turn be performed by recursive bi-decomposition of the given
function f.

Definition: Quantum (unitary) functional bi-decomposition of f
is defined as finding functions g and h and value Y such that

f = gR, (y)h where function g only assumes values 0 and 1

Next we provide an agorithm for quantum unitary bi-
decomposition which can be used to bi-decompose a given

functionf to gR, (¥)h. Subsequently, g and h are recursively bi-
decomposed, which will eventually result in a quantum factored

for f. The bi-decomposition algorithm is based on the notion of
quantum linear (g-linear) variables. In the reminder of this

paper, while expressing a function as f(v,v,,..,v), it is
implicitly assumed that f depends on all varlables vy, VeV,

210y

(i.e., f depends on al of these variables.)
Definition: For a given function HRVRYRVRY V)

i—17 Vi Vi1

variable v; is‘g-linear’ if there exists a rotation value, g, such

that for every value assignment to Vi Voo Ving, Viggsee Vi -
_ Rx(el)f(/ , where f = f(Vo,V _1yivi+1v""vn) and
f? = f(Vl 21 ’Vl—l’o Vi !Vn)

A variableis caled g-nonlinear exactly if it isnot g-linear.

Lemma 1. Consder functionf(v,v,,..,v,)with variable
ordering v, <v, <...<v,. Vaiables v, ,,v,,,,..,v, ae dl o
linear if and only if for each of these variables, vi, thereis exactly
one node, n;, with decision variable v; in the QDD of function f.
The weight of the i-edge of n; will be R (). Also no edge

originating from nodes above n; (i.e., nodes with decision
variable v, j<i) will end at a node below n; (a node with decision
variablev;, j>i.)

Let v, be the lowest indexed g-nonlinear variable after which

Viir Visp sV, @€ g-linear variables of f. From Lemma 1,

f, =R(@)f k+1<j<n where g is fixed independent of the
input combination of v,,v,,...,v, ;,v,,,,...,v,. Every path from

the root node of the QDD to its terminal node will either go thru
an internal node with decision variable v or it will skip any such
node and directly go to the single QDD node with decision
variable vy, 1. For the latter case, ka =R,(0) ka = ka and for the

former case, ka :Rx(“i)ka where there will be as many

different rotation angles (e.g., &, o) for variable v as there are
internal nodes with decision variable v, in the QDD.

Definition: The degree of g-nonlinearity of variable v is m-1
where m denotes the number of different rotation angles o
(including 0 if any) that f, =R(a)f, for some
Vi Vo, Vi gy Viyg ooV, - FOr g-linear variables the degree of
g-nonlinearity is zero.

Theorem 1: Consider function f(v,,v,,...,v,)With variable
ordering v, <V, <..<V,. Assume tha v, ,v,.,,..V, &€ 0

linear variables of f and Vv, is a g-nonlinear variable of f with
degree of g-nonlinearity m-1 (i.e,, for each value assignment to
Vy, Vg yeens Vi 1 Vs oo Vi -) EXaCHly 0ne of the following mrelations
holds: ka =R (&) ka ka =R () fgk .) Let function g be
defined as follows. If f, =R(@)f, - then g =1 else
g = 0. Function f can be bi-decomposed as. f =g,R (y)h
where: 9 =VR((®)g: r=(2,-a)/2, h=gR(-7)f and g;
will be a function of v,,Vv,,...,v, (i.e, g, will be invariant of
Vii1r Voo V) @nd v, will be grlinear in function g;. In

addition, h will be a function of V,,V,,....,V,; Vi1:ViipseeiV,
will be g-linear in function h; and the degree of g-nonlinearity
of v in h will be less than or equal to m-2.

Using the proposed bi-decomposition approach f can be bi-
decomposed into f =g,R (y)h where g, and h are recursively
bi-decomposed until a quantum factored form is obtained. Since
g, is independent of Vv, ;,V,,,-..,V, ad v in g is g-linear and
degree of g-non linearity of vi in h is at most m-2, the recursion
will finally stop at terminal cases where g, and/or h have directly
realizable QDD’s, i.e, al the variables will be g-linear in the
functions and hence they will have cascade forms corresponding
to QDD’s with a chain structure similar to QDD’s in Figure 5.
As a result of Lemma 1, in a function with chain structured
QDD, al variables are g-linear. The agorithm, g-factor(f), uses
recursive bi-decomposition in Theorem 1 to generate a quantum
factored form for afunction f.

Algorithm: g-factor (f)
0- If all variables are g-linear then
corresponding cascade form for f ;

1- Find the lowest indexed g-nonlinear variable, v, ,

return the

after which v, ,,V,,,,...,V, are g-linear;

2- Bi-decompose f as f=g,R (y)h where g,, h
and y are given in Theorem 1;

3- Return [g-factor(g,)] R«(7) [a-factor(h)];

It isimportant to notice that all of the above steps can be directly
performed on QDD’s. For example if the QDD of afunction, f, is
a chain structure, there exists a cascade form for f (step 0). For

step 1, according to Lemma 1, identifying v, is equivalent to
identifying the lower chain-structure part of the QDD. As for
step 2, according to Lemma 2, vaues ¢, a,,...,c,, Can be
obtained from the weights of the 1 -edges of nodes with decision
variable v, . Hence, y = (a, — ;) / 2 can also be obtained. Let n

denote the node with decision variable v, and 1 -edges weight
R, (¢4)- The QDD of g; can be constructed from QDD of f with
the following method.

Starting from the QDD of f, change all weights to R (0)=1;
create a QDD node, v, representing vi. as depicted in Figure 6;
redirect all edges toward n, to node v, and make the weight of al
such edges R (7); redirect al edgestoward n,, ns, ..., N, to node
V. and make the weight of all such edges R (0O); discard nodes
N, Ny ..., Ny and finally merge isomorphic sub-graphs,
eliminate nodes with same 0 -child and the 1 -child if the weight
of the 1-edgeis R (0) = | , and update weights of the QDD to
make the QDD of g, canonical.

Having the QDD’sfor g, and f, the QDD of h=g,R (-y)f can
be obtained using the g-apply operation.

Figure 6. QDD for the node v.
The fina factored form resulting from g-apply will be:

f = g,R.(IO.R.(7)|osR. (7). [0,R.(7,)0]]] which may also
be written as:

t =9, R 7ol00,R 7o)M8,.R (7)o L9, R. (7,0]]
where (p,, p,,.., p,) isapermutationof (12 . k). Notethat g

functions should be decomposed as well using g-apply. In the
following example, it is shown that different permutations on
(1,2,...k) may result in different number of gates while

synthesizing the circuit.

The examples in this paper demonstrate the power of the
proposed synthesis approach. The g-factor algorithm is not
guaranteed to be optimal; however the examples show that the
results of the g-factor match the previously-generated optimal
circuits (obtained by semi-exhaustive search) by previous
researchers, which is one evidence for the effectiveness of the
propose automated synthesis approach.

Example 1: In this part a four-input Toffoli gate, depicted in
Figure 7 (i), will be synthesized by using the g-factor algorithm.
Figure 7 (ii) shows the QDD of the output s of the Toffoli gate.
Throughout the synthesis process we maintain the variable
ordering a<b<c<d.

The resulting quantum circuit realization is depicted in Figure 8.
The first part of the circuit (left of the dashed line) generates
output s whereas the second part generates outputs a, b and c.

This redlization of the 4-input Toffoli gate can be generalized for
n-input Toffoli gates. In [33] a method for synthesizing an n-
input Toffoli gate (including the 4-input gate) is provided which
produces a synthesis result similar to ours. However the
approach in [33] is specialized for gates similar to the n-input

Toffoli gates while our approach automatically and without
assuming any prior knowledge of the function, synthesizes the
circuit. The use of g-factor for synthesizing the n-input Toffoli
gate automatically generates the circuit structures which were
first reported in [33]. In our view, this fact aone demonstrates
the efficacy of the proposed approach. The details can be
verified by the reader.

a
b
c
d Rl
0
Figure7. Four-input Toffoli gate and QDD for output, s.
a | a

’) M 1
T2 -7Z/C

s=(abc®d

Figure 8. Four-input Toffoli gate by the g-factor algorithm.

Example 2. Consider a full adder with inputs x;, X, and X; and
outputs s (sum) and c (carry out): s=x ® X, ® x,and
Cc=(%X%) + (X %)+ (X,.x,) where ‘+ is binay ‘OR’
operation. The resulting quantum circuit realization is depicted
in Figure 9.

X1

Xo

%3 4 7 s
~ 5] h -

0 a2l 72 2 c

Figure 9. Quantum full adder.

The authors of [24] reported the run-time of the algorithm for
optimal synthesis of a single-bit adder with 6 quantum gates as 7
hours on a 850MHz Pentium 111 processor running Linux. As we
can observe, our method results in a circuit with the same
number of quantum gatesin virtually no time.

5. Conclusions

An efficient analysis and synthesis framework for quantum logic
circuits was presented. We introduced the quantum factored
forms, and developed a canonical and concise representation of
quantum logic circuits. The focus of our approach was on the
most basic quantum operators, i.e., the rotation and controlled-
rotation primitives. Finally, an effective QDD-based algorithm,
i.e.,, g-factor for automatic synthesis of quantum circuits was
introduced. The results of applying g-factor to n-input Toffoli

gate and full adders demonstrate the efficiency of the proposed
approach.

References

[1] bttp://www.itrs.net/Common/2004Update/2004Update.htm

[2] R. P. Feynman, “Simulating Physics with Computers,” Int'l Journal of
Theoretical Physics, 21, 1982, pp. 467-488.

[3] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer,” Royal Society, A, 400, 1985, pp. 97-117.

[4 M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, 2000.

[5] C. P. Williams, S. H. Clearwater, Explorations in Quantum Computing,
Springer-Verlag, 1998.

[6] M. Hirvensalo, Quantum Computing, Springer Verlag, 2001.

[71 R. Landauer, “Irreversibility and Heat Generation in the Computational
Process,”IBM Journal of Research and Development, 5, 1961, pp.183-191.

[8] R.Keyes, R. Landauer, “Minimal Energy Dissipation in Logic,” IBM Journal
of Research and Development, 14, 1970, pp. 152-157.

[91 P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University
Press, 1% Edition, 1930.

[10] J. von Neumann, Mathematical Foundations of Quantum Mechanics,
Princeton Univ. Press, 1950.

[11] K. Iwama, Y. Kambayashi, S. Yamashita, “Transformation Rules for
Designing CNOT-Based Quantum Circuits,” DAC, 2002, pp.419-424.

[12] A. Khlopotine, M. Perkowski, P. Kerntopf, “Reversible Logic Synthesis by
Iterative Compositions,” IWLS, 2002, pp. 261-266.

[13] D.M. Miller,“Spectra and Two-Place Decomposition Techniques in
Reversible Logic,” Midwest Symp. on Circuits and Systems, CD-ROM, 2002.

[14] M. Perkowski, et. a., “Regularity and Symmetry as a Base for Efficient
Realization of Reversible Logic Circuits,” IWLS, 2001, pp. 90-95.

[15] T. Toffoli, Reversible Computing, Lab. for Computer Science, MIT,
Cambridge, MA, Technical Memo. MIT/LCS/TM-151, 1980.

[16] P. Kerntopf, “A Comparison of Logica Efficiency of Reversible and
Conventional Gates,” Intl. Workshop Logic Synthesis, 2000, pp. 261-269.

[17]) D. M. Miller, D. Maslov, G. W. Dueck, “A Transformation Based Algorithm
for Reversible Logic Synthesis,” Design Automation Conf. 2003, pp. 318-323.

[18] V. V. Shende , A. K. Prasad, I. L. Markov, J. P. Hayes, “Synthesis of
Reversible Logic Circuits,” IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems, vol. 22(6), 2003, pp. 710-722.

[19] A. Agrawal, N. K. Jha, “Synthesis of Reversible Logic,” Design Automation
and Test in Europe, 2004, pp. 21384-21385.

[20] A. Al-Rabadi, “Quantum Circuit Synthesis Using Classes of GF(3)
Reversible Fast Spectral Transforms,” Int'l Symp. on Multi Valued Logic,
2004, pp. 87-93.

[21] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of Quantum Logic
Circuits,” A SP Design Automation Conf., 2005, pp. 272-275.

[22] L. Storme et al., “Group Theoretical Aspects of Reversible Logic Gates,”
Journal of Universal Computer Science 5, 1999, pp 307-321.

[23] A.DeVoset a., “Generating the Group of Reversible Logic Gates,” Journal
of Physics A: Mathematical and General,35, 2002, pp. 7063-7078.

[24] W. Hung, X. Song, G. Yang, JYang, M. Perkowski, “Quantum Logic
Synthesis by Symbolic Reachability Anaysis,” Design Automation
Conference, 2004, pp.838-841.

[25] A. Al-Rabadi, L. Casperson and M. Perkowski, Multiple-valued quantum
logic, Quantum Computers and Computing, Vol. 3, Number 1.

[26] G.F.Viamontes, |.L.Markov and JP. Hayes, “Improving Gate-Level
Simulation of Quantum Circuitsl,” Quantum Information Processing, Vol. 2,
No. 5, 2003

[27] M. Lukac et a, “Evolutionary Approach to Quantum and Reversible Circuits
Synthesis,” Artificial Intelligence in Logic Design, Kluwer Academic
Publisher, 2004, pp. 361-417.

[28] J. I. Cirac, P. Zoller, “Quantum Computation with Cold Trapped lons,”
Physical Review, 74, Issue 20, 1995, pp. 4091-4094.

[29] C. Monroe, et. a., “Simplified Quantum Logic with Trapped lons,” Physical
Review A, 55, Issue 4, 1997, pp. 2489-2491.

[30] R. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Trans. on Computers, vol. 35, 1986, pp. 677-691.

[31] K. Brace, R. Ruddll, and R. Bryant, “Efficient Implementation of a BDD
Package,” Design Automation Conf., 1990, pp. 40-45.

[32] Y.-T. Lai, M. Pedram, and S. Vrudhula, “EVBDD-Based Algorithms for
Integer Linear Programming, Spectral Transformation, and Function
Decomposition,” |EEE Trans. on Computer-Aided Design, 8, 1994,pp. 959-
975.

[33] A. Barenco et a., “Elementary Gates for Quantum Computation,” Physical
Review A, 52, 1995, pp. 3457-3467.

