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In this paper, we investigate the impact of process variations on the speedup and maximum frequency of the extended ISA processor. First, without 
considering the process variations, a custom functional unit (CFU) is designed based on nominal timing parameters and then the timing variations of critical 
paths of the extensible processor including the baseline processor and the CFU are investigated by considering both systematic and random variations. Next, 
the maximum frequency of the extensible processor and the speed enhancement factor of the extended ISA for different benchmarks are investigated. Results 
show that the timing variation could reduce the speedup of the extensible processor. However, this reduction is highly dependent on the baseline processor and 
the CFU structures. Additionally, the impact of process variations in the case of worst-case design approach is studied. Results show that the speedup of the 
extensible processor is reduced more than the case when custom instructions (CIs) are selected without considering the process variations. To study the impact 
of each variation type, speedup variations due to the random and systematic variations are investigated separately. The study reveals that the random variation 
has a similar effect on the CFU and the baseline processor, while the impact of the systematic variation on the baseline processor is greater than the CFU. 
 
Categories and Subject Descriptors: J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided design (CAD); [SPECIAL-PURPOSE AND 
APPLICATION-BASED SYSTEMS]:  Microprocessor/microcomputer applications; B.2.2 [Performance Analysis and Design Aids]: Worst-case analysis. 
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1. INTRODUCTION 

The use of embedded processors in a wide variety of platforms such as cell phones, health monitoring devices, and 

automotive applications is increasing. Similar to many other digital systems, the computational speed and power consumption 

are two critical design parameters [1]. One of the design approaches for these processors is application specific integrated circuit 

(ASIC) technique where both high speed and low power dissipation may be achieved with a penalty of higher design cost and 

lower flexibility. Another solution which has higher flexibility and lower design cost is the general purpose processor (GPP) 

where the speed is lower while the power consumption is higher than those of the ASIC approach. The application specific 

instruction set processor (ASIP) methodology is the third approach, which can improve the speed and power consumption of the 

GPP technique [2][3]. In the ASIP approach, the instruction set of a GPP is extended through ASIC design based on the features 

of the specific application. The augmented instructions are determined such that the desired speed, power, and cost requirements 

are fulfilled. The main idea behind using ASIP is to run the hotspot parts of an application using custom instructions (CIs) and 

the other parts of the application on the ALU of the processor. The CIs (which are executed using a hardware block in parallel 

with ALU of the GPP) improve processor speed (performance and speed are used interchangeably in this paper) by increasing 

the instruction level parallelism, and reducing the register file accesses. Similarly, by decreasing the accesses to the cache and 

register file, the CIs lower the power consumption. 
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The ASIP design methodology starts by extracting the data flow graph (DFG) of the application [1][4]. Next, all subgraphs 

of the DFG that meet the constraints of the parallel hardware are enumerated as CIs. The I/O port count and propagation delays 

of the subgraphs are two common constraints in the CI enumeration. Finally, between the candidates, the best CIs based on their 

merit value will be selected. For each CI, the merit function produces values of the parameters that the ASIP intends to improve. 

Normally, the main parameter is the clock cycle count saving, which shows how much performance is obtained by using CIs in 

the ASIP [1][2]. 

In the conventional ASIP approach, the worst-case delays of the primitives (e.g., AND, ADD, SHIFT, etc.) are used as the 

reference to extract the latency of the CIs. In sub-100nm nanotechnologies, however, complexities in the manufacturing of the 

transistors with small sizes have caused significant variations in nominal transistor parameters (such as the threshold voltage and 

effective channel length of transistors), which in turn has led to uncertainties in the performance and power consumption of the 

circuits [5]. There are two types of variations: (i) within die or intra die, and (ii) die to die or inter die variations. As the process 

variation impact increases, the gap between the high level design and fabrication may increase if proper statistical techniques are 

not invoked. Designing based on the process corners to meet the latency constraint is inadequate [5].  

The design flow of the embedded system also is not an exception and should shift from deterministic to probabilistic 

approaches. There are many published results on modeling and mitigating the process variability at the device and circuit levels 

of design abstraction. There is also some work in high level synthesis (HLS), where techniques have been proposed to improve 

the performance and reduce the hardware cost while considering process variations (see, e.g., [5]-[7]). The impact of the process 

variations in the pipelined processors have been considered in several works and some techniques have been presented to 

mitigate the impact (see, e.g., [8][9][10]). As has been stated in [8][10], due to the existence of many critical paths in the 

execution unit of in-order and out-of-order processors, it is crucial to consider process variations in their design. In the case of 

ASIP’s, the designer should improve the speedup of the processor running an application by defining new instructions which are 

created by combining the basic primitives. Adding new instructions may increase the impact of the process variations on the 

extensible processor. In the area of ASIP design, a yield-aware ASIP design methodology to improve the performance yield of 

the extracted CIs has been proposed in [11].  

In this paper, the impact of the process variations on the design of extensible processor is studied. We investigate timing 

variations of the critical paths of the extended ISA in the presence of the process variations. Based on this investigation, the 

speedup efficacies of extensible processors are assessed. Also, we explore process variations impact on the maximum frequency 

of the extensible processors. The remainder of this paper is organized as follows. Section 2 briefly reviews related works while 

the ISA extension methodology is described in Section 3. Process variations and their modeling are described in Section 4. 

Section 5 discusses the impact of the process variation on the extended ISA. The results are discussed in Section 6. Finally, the 

paper is concluded in Section 7. 

 

2. RELATED WORK 

In this section, we categorize some of the prior work in two groups of works on mitigating the process variation effects on 

processors and the research efforts about the design of the ISA extension. 

 

A. Processors 

Two compile time techniques for handling non-uniform latency of different integer functional units (IFUs) in VLIW processors 

were proposed in [12]. In the proposed approach, all the IFUs with high latency due to the process variation are turned off and 
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the processor only uses the low latency IFUs. Whenever, the processor needs more IFUs, some of the highly latency IFUs are 

also turned on. Due to this policy the authors called this technique “on-demand turn-on”. In [8], an architectural technique 

(Trifecta) was proposed to mitigate the timing variation in critical pipeline stages. In the proposed technique, the architecture 

completes its execution in one clock cycle when only the subcritical path operations are needed to generate the result. On the 

other hand, in the operations which involve the critical paths, the architecture makes it possible to complete the operations in two 

cycles. 

In [13], a technique to tackle the performance reduction of out-of-order processors in the presence of the process variation was 

presented. In this technique, the instructions, based on their dependability on each other, were categorized in two groups. The 

instructions whose results are not (are) needed for other instructions are executed on a long-latency (short-latency) unit. In [14], 

two fine-grained post-fabrication techniques are proposed to mitigate the timing parameters fluctuation. The voltage 

interpolation and variable latency are the two methods proposed in this paper. In [9], the impact of the process variation on the 

propagation delay of the pipeline stages is investigated. In this work, to decrease the impact of the timing fluctuation on the 

performance of the pipelined processors, an architectural-level technique based on the cycle time stealing is proposed. In 

addition to the time borrowing technique discussed in [9], a method which controls the clock speed in multi-issue processors is 

suggested in [15]. The method categorized the runtime of the program in two different phases, Low-ILP (Instruction Level 

Parallelism) phases, and High-ILP phases. In each phase, the impact of the process variation is lowered by changing the clock 

speed. 

 

B. ISA Extension 

Now, we briefly discuss, the CI identification techniques. An algorithm that explores the search space exhaustively for a single 

feasible cut meeting the I/O constraint was presented in [3]. The algorithm which prunes the search space runs in linear time for 

most Directed Acyclic Graphs (DAGs) having practical numbers of nodes. In [1], the optimization problem was solved by using 

the genetic algorithm. In [16],  the problem was formulated and solved by an Integer Linear Programming (ILP) approach. The 

works in [17][18][19] proposed methods to enumerating all sub-graphs of the DFG. In these methods, only the convexities of the 

subgraphs were important while the I/O constraint was not defined. The technique proposed in [20] was able to identify CIs with 

or without I/O constraint. In all of the proposed identification methods, the goal has been to increase the cycle saving of the 

selected CIs while satisfying the I/O constraint and convexity condition of the selected CI. 

In addition to the identification phase, the other main phase of the ISA extension is selection phase. In [2], exact and 

approximate algorithms for solving the coverage and recurrence problems of candidate extensions are presented. The authors 

describe an optimal search technique that uses a branch-and-bound algorithm in conjunction with a greedy method. The 

objective of the technique was to improve the performance without considering the area budget. The technique proposed in [21] 

partitions the problem into several sub-problems and presents an optimal branch-and-bound algorithm to solve it. This algorithm 

uses subgraph size (number of nodes in the subgraph) as its merit function and relies on sorting the candidates in decreasing 

order of size. An automatic framework for designing a customized processor has been suggested in [4]. The proposed method 

handles both CI identification and CI selection. In the selection phase, the cycle savings and area budgets of the CIs were used as 

the merit function. In all of these methods, the merit function value corresponds to the cycle saving of the CI or combination of 

the cycle saving and area budget. 

The aforementioned methods suggest techniques for improving the speed and output quality of the identification and selection 

phases of the instruction set architecture (ISA) extension. It should be noted that in these methods deterministic values of 
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parameters are used in estimating the CI delays. As mentioned before, in nanoscale era, due to process variations, the speedup 

and maximum frequency of the extended ISA processor are not deterministic parameters. Consequently, the statistical variations 

of the parameters in the design of the ISA extension should be considered. In this work, we investigate the impact of the process 

variation on the speedup and maximum frequency of the extended ISA processor. The study performed in this work shows the 

importance of considering the statistical design versus the worst-case (deterministic) design. It includes the effects of both 

systematic and random variations, on the CFU and existing design of baseline processor. Also, it shows which part is the 

determining component (CFU or baseline processor) in the presence of the process variation. As will be concluded from this 

investigation, the statistical design of extensible processor should be used in coming technologies where the process variation 

becomes even more critical phenomenon. 

 

3. ISA EXTENSION METHODOLOGY 

The overall flow of the ISA extension is shown in Figure 1. The ISA extension starts by extracting the data flow graph (DFG) of 

a target application. The DFG captures the instruction flow of the application. Custom (extended) instructions are sub-graphs of 

this DFG that meet some predefined constraints, such as convexity, number of I/O ports, and propagation delay.  

 
Figure 1 ISA extension flow 

Note that a subgraph is architecturally feasible if its inputs are available at the time of executing that operation which is only 

possible if the subgraph is convex. A subgraph S is called convex when there does not exist any path from a node u ∈ S to 

another node v ∈ S while the node w ∉ S involves in the path. Examples of a DFG and two subgraphs are shown in Figure 2. 

The subgraph ABD is nonconvex due to the path A→C→D (which the node C does not exist in the subgraph) while the 

subgraph CD is convex. Satisfying the convexity guarantees that a CI may be executed independent of any other operations. 
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Figure 2 Examples of a DFG and two subgraphs. 

 

Also, the number of inputs and outputs of the sub-graphs should be equal or less than the read and write ports of the baseline 

processor’s register file. If the I/O number is larger than the register-file R/W ports, we should use a pipelining method to 

resolve this problem, which decreases the performance of the extensible processor. Finally, the CI delay is defined based on the 

clock period and the cycle latency of the execution unit of the processor. If the execution stage of the processor is single cycle, 

the sub-graphs whose propagation delay is less than one clock period cycle are acceptable. On the other hand, if the execution 

stage has multi-cycle latency, the CI delay could be more than one clock period. The enumeration of the feasible sub-graphs is 

done in a CI identification phase. Among the identified sub-graphs (CIs), there could be similarity based on functional and 

structural isomorphism. Similar CIs, which can be executed on a CFU, are identified as CI groups[2][21]. This results in less 

area overhead and thus better area utilization. 

If a DFG node exists in two CIs, these two CIs are considered to have overlap with each other. Because no node in the DFG 

should be executed by more than one CI[2] , all CIs that have an overlap with a selected CI are removed from the list of the 

identified CIs in the first part of a CI selection phase. Based on the overlap between the CIs, a conflict graph is constructed. 

Nodes in the conflict graph are CIs and an edge between two nodes shows that these CIs have an overlap. Notice that removing 

CIs that conflict with the selected CI changes memberships of the CI groups, and consequently, results in changes in the 

overall cycle saving values of the CI groups. 

 In the last part of the CI selection phase, the best CI groups are selected from among all identified CIs. There are two 

general approaches for the CI selection i.e., branch-and-bound, and greedy [2][21][22][23]. The former is an exact method that 

tries to find the best CIs set by searching all the search space. Unfortunately, it is generally infeasible for real applications. The 

greedy approach is much more efficient, yet it does not guarantee to find the optimal set of CI’s. In this paper we use the 

greedy approach to select the CIs. 

In the selection phase, the CI candidates are selected based on their merit value. Normally, cycle saving is the main 

objective in the ISA extension. The cycle saving of the ith CI (denoted as CIi) is computed as 

 

ܥ ௜ܵ ൌ ݏ݊݋݅ݐܽݎ݁ݐܫ# ൈ ൭#ܫܥ௜. ܹܵ െ .௜ܫܥ ݕݐ݈ܽ݊݁ܲ_ܱܫ െ ݈ܿ݁݅ ൬
.௜ܫܥ ݕ݈ܽ݁ܦ݄ݐ݈ܽܲܽܿ݅ݐ݅ݎܥ

݀݋݅ݎ݁ܲ݇ܿ݋݈ܥ
൰൱ (1) 

 

where #Iterations denotes the execution frequency (count) of the basic block to which CIi belongs, #CIi.SW is the number 

of cycles that the CI needs to run on the baseline processor, and CIi.IO_Penalty denotes the number of extra accesses to the 

register file for reading/writing data (when the number of CI I/O ports is more than the number of register file read/write 
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ports). The last term calculates the number of cycles needed to execute CIi on the CFU (CIs may be multi-cycle.) In this ratio, 

CIi.CriticalPathDelay denotes the propagation delay of the CI critical path and ClockPeriod is the target clock period for the 

extensible processor. 

Whether the design flow includes the selection and identification phases together or separate, when the area constraint is 

defined as a constraint in the ISA extension, we can formulate the instruction selection problem as 

 

݁ݖ݅݉݅ݔܽܯ ෍ ஼ூܵܥ ீ௥௢௨௣೔

|ௌ௘௟௘௖௧௘ௗ ஼ூ ீ௥௢௨௣௦|

௜ୀଵ

 
(2) 

 

while 

 

෍ ஼ூܽ݁ݎܣ ீ௥௢௨௣௜ ൏ ஼௢௡௦௧௔௥௜௡௧ܽ݁ݎܣ

|ௌ௘௟௘௖௧௘ௗ	஼ூ	ீ௥௢௨௣௦|

௜ୀଵ

 (3) 

Equations (2) and (3) are the objective function and its constraint used in the CI selection process which is an optimization 

problem. To select CIs, one should use either these equations in an optimal (exact) optimization algorithm or a merit function 

in a non-optimal optimization algorithm (e.g., greedy). In the non-optimal selection, when we wish to implement the CFU 

while considering the area overhead of selected CIs, the merit function, for example, may be specified as Cycle Saving/Area 

(see, e.g., [24]). In this case, the merit function of the jth CI group is modified as 

௝ݐ݅ݎ݁ܯ ൌ
∑ ܥ ௜ܵ
|஼ூ ௚௥௢௨௣ೕ|
௜ୀଵ

݁ݎܣ ௝ܽ
 

(4) 
 

where Area denotes the area of the jth CI group. It is obvious that in the cases where the area budget constraint is not 

considered, the merit function may be defined as only the cycle saving. Hence, in this case, the merit function of the jth CI 

group is formulated as 

௝ݐ݅ݎ݁ܯ ൌ ෍ ܥ ௜ܵ

|஼ூ ௚௥௢௨௣ೕ|

௜ୀଵ

 
(5) 

 

Finally, note that the ISA extension is based on CI groups; however, for the sake of brevity, we shall use the term CI instead 

of the CI group henceforth. 

 

4. PROCESS VARIATION MODELING 

In this paper we will consider variations of the transistor effective channel length (L) and threshold voltage (Vth) as the two 

main sources of process variability in CMOS VLSI circuits (see, e.g., [8]). The delay of a path, in the presence of the process 

variations may be expressed as 

௉௔௧௛ܦ ൌ ଴ܦ ൅෍∆ܦ௅ ൅෍∆ܦ௏೟೓ (6) 

where the ܦ଴ is the nominal delay of the path, and ∆ܦ௅ and ∆ܦ௏೟೓ are the delay variations caused by the channel length and 

threshold voltage fluctuations of the logic gates in the path, respectively. For both of the latter parameters, we use the first 

order approximation proposed in [10]  

௅ܦ∆ ൌ ߙ ൈ  (7) ,ܮ∆

௏೟೓ܦ∆ ൌ ߚ ൈ ∆ ௧ܸ௛, (8) 
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ܮ ൌ ଴ܮ	 ൅ ܮ∆ ൌ ଴ܮ ൅ ௦௬௦ܮ∆ ൅  ௥௡ௗܮ∆

௧ܸ௛ ൌ ௧ܸ௛଴ ൅ ∆ ௧ܸ௛ 	ൌ 	 ௧ܸ௛଴൅	∆ ௧ܸ௛
௥௡ௗ 

where α and β are coefficients extracted from curve fitting, L denotes the channel length variation which consists of 

random and systematic variations (Lrnd and Lsys, respectively), Vth is the threshold voltage variation which is due to random 

variation (Vth
rnd), L0 denotes the nominal channel length, and Vth0 is the nominal threshold voltage. As an example, Figure 3 

shows the delay variation of a gate with FO4 versus the channel length variation in a 45nm technology [25]. Results, which 

were obtained by the HSPICE simulations, reveal that the characteristic may be modeled fairly accurately as a line.  

 
Figure 3 Impact of the L variation on the FO4 delay 

 

The channel length fluctuation is modeled based on the systematic and random variations. We model the systematic 

variation of the channel length using multi-level quad-tree spatial correlation approach [26]. There are other methods such as 

spherical spatial correlation structure as was discussed in[27]. For this variation, which we consider a normal distribution with 

zero mean, the places of the gates in the critical paths are needed. Note that Vth is a function of L and channel doping density. 

The systematic variation of the Vth is due to the L variation while its random variation is a function of random dopant 

fluctuation (RDF). Since (7), implicitly includes the effect of the L variation on the Vth, similar to [10], the systematic variation 

of the ௧ܸ௛ is not explicitly included in (8). 

We assume that Lrnd and Vth
rnd are normally distributed with zero mean. In the case of random variations, the variation 

for each transistor is independent of those of the others. Since components of the random and systematic variations of L are 

normally distributed and independent of each other, the total variation of the L is normal with zero mean and standard deviation 

of 

  

ߪ ൌ ටߪ௦௬௦ଶ ൅ ௥௡ௗߪ
ଶ  (9) 

 

Due to the delay variation of the design paths given by (6), the longest path delay of a given design may be represented by 

a delay probability distribution function (delay PDF). Hence, the maximum clock frequency of the design must be calculated 

based on the delay PDF. To model the maximum clock frequency, we can use the technique proposed in [28], which relies on 

identification and analysis of a set of timing critical paths in the circuit. The timing critical paths are those paths whose delay 

variations may violate a user-specified maximum propagation delay constraint. In a system with a set of timing critical paths, 

the delay PDF of the system is modeled by [28] 

 

∆்݂ ൌ ஽݂ଶ஽ି ೎்೛,೙೚೘ ∗ ௖ܰ௣ ௐ݂ூ஽ି ೎்೛,೙೚೘൫ݐ െ ௖ܶ௣,௡௢௠൯ሺܨௐூ஽ି ೎்೛,೙೚೘൫ݐ െ ௖ܶ௣,௡௢௠൯ሻ
ே೎೛ିଵ (10) 
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where fX denotes the normal PDF of the variations (X: D2D and WID stand for “Die to Die” and “With-In Die”, 

respectively). For this distribution, the mean is zero. The corresponding Cumulative Distribution Function (CDF) for this 

distribution is denoted by F. Also, Ncp is the number of critical paths, ௖ܶ௣,௡௢௠	is the nominal delay of the longest path delay, 

and * denotes the convolution operator. The variation is calculated by averaging the ratio of the standard deviation to the mean 

of all the critical paths. For more details on the calculation of (10), one may refer to [28]. Note that, in the presence of the 

process variation, the delay of a critical path may become larger than the predefined maximum propagation delay constraint. 

Therefore, a path is critical when its timing yield is less than 1 [28]. 

To model the spatial correlation needed for the calculation of Lsys of CIs, we use the method proposed in [26]. In this 

method, the die area is divided into a multi-level quad-tree structure. Figure 4 shows the chip area partitioning in three levels. 

At each level of the partitioning hierarchy, the die area is divided into 4௅ே squares where LN is the level number. Also, for each 

square (r) in each level (LN), a random variation is associated with the square (∆ܮ௅ே,௥). Hence, the intra die variation of a gate 

is the summation of variations of the hierarchical squares to which the gate belongs. For example, if we assume gate A belongs 

to square 5 of level 2, the length variation of this gate, denoted by ∆ீܮ௔௧௘	஺, will be 

 

௔௧௘ீܮ∆ ஺ ൌ ଶ,ହܮ∆ ൅ ଵ,଴ܮ∆ ൅  ଴,଴ (11)ܮ∆

 

Figure 4 Multi-level quad-tree spatial correlation model 

The total within die variation must be divided among the levels. The value considered for each level, is used to determine 

the variations of the squares in that level. Also, based on the variations defined for each level, one can control the amount of 

spatial correlation between two gates that are located in different squares. The smallest squares are the highly correlated areas 

with spatial correlation of 1. Additionally, because level 0 is shared by all gates, its variation is applied to all gates, and hence, 

may be considered as the inter-die variation. Hence, by decreasing the index of the levels, the spatial correlation of the 

corresponding level is decreased. In this paper, the spatial correlation of each level is obtained from 

 

ܥ ௜ܵ ൌ
1

2ெ௔௫ூ௡ௗ௘௫ି௜
 (12) 

where the CSi is the spatial correlation in the ith indexed level,  and the MaxIndex is the index of the highest indexed level 

(e.g., in Figure 4, MaxIndex is equal to 2). 

To extract the spatial correlation based on the above method, we need the floorplan of the design. In the ASIP design, the 

ISA extension should be performed in early steps of the design flow when the floorplan of the extensible processor is not 

determined. In the ISA extension, only the execution unit is modified where a CFU part is added in parallel with the ALU. 
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Therefore, in designing an extensible processor, we need to add a CFU as a parallel unit to the existing ALU*. If we know the 

area usage of the extended ISA, we can model the CFU as a black box and add it as an layout object to be floor planned along 

with the other objects in the extensible processor floorplanning phase. Note that changing the area of the CFU changes the total 

area of the extensible processor, and hence, the optimum layout of the basic design (which contains all blocks of the extensible 

processor except for the CFU) typically changes. Figure 5 shows the floorplan of a MIPS processor, where a part of the die is 

set aside for the CFU usage. Because of the connection between the CFU and register-file and also the connection between the 

execution unit and CFU, CFU should be placed near the register file and the execution unit to meet the propagation delay 

constraint. Hence, in floorplanning of the MIPS processor, the CFU part was placed between the register-file and the execution 

unit. Assuming that the selected CIs are placed in this region we can then extract the systematic variation information. Using 

this approach, the impact of the process variation on the baseline processor and CFU parts of the extensible processor can be 

studied.  

  

 

Figure 5 A layout design of a MIPS processor while a part of the area is reserved for CFU 

In the selection phase, however, the locations of CIs have not been determined yet, and hence, their systematic variations 

cannot be calculated. To overcome this problem, we estimate the CI area and shape. In particular, the CI’s shape is assumed to 

be rectangular with the rectangle area set to the CI’s approximated area. The CI’s approximated area is calculated as follows  

௔௣௫ܽ݁ݎܣ ൌ
1

ݎ݋ݐ݂ܿܽ_ݕݐ݅ݏ݊݁݀
ൈ ෍ ௜ܽ݁ݎܣ

|ீ௔௧௘௦|

௜ୀଵ

 (13) 

where Areai is the area of the ith gate used in the implementation of the CI, and the density_factor is a coefficient capturing 

the component density in the gate placement step. This value of this coefficient may be set by the designer. In this work, the 

value of this coefficient was set to 0.83.  

The strength of the systematic variation impact on the critical path depends on the distance between the gates on the path. 

To estimate the variation of a CI, we make use of variations of different points obtained from the multi-level quad-tree method. 

                                                            
* To add the new instructions, the decoder stage must be modified to accept them. In this work, we have assumed the processor contains some unused op-codes 
that are usable by the custom instructions. Hence, the decoder part is not changed. 
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The maximum amount of variation which exists in a component (e.g., ALU) in the case of the systematic variation depends on 

maximum distance between any two points in the layout of the component. As is illustrated in Figure 6 the maximum distance 

is the smallest in the case of square shaped layout compared to the case of rectangular shaped layout. Hence, we assume a 

rectangular shape for the realization of the CI and assess the impact of different aspect ratios of the rectangle ranging from 1 

and 2 (see, Figure 6). 

 

Figure 6 Floorplanning shape of a CI with different Width/Height ratios 

For each pattern, the systematic variation modeling is done by partitioning the area of the CI and assigning a random value 

to each square based on [26]. The parameter variation of each square at the highest level (e.g., Level 2 in Figure 4) is 

calculated by summing the parameter variations of all the squares in the lower levels to which the square belongs plus its own 

parameter variation (see, e.g., (11)). After calculating the variation of the smallest squares (i.e., squares in the highest indexed 

level), the variation of the pattern is calculated by finding the standard deviation of the variation of these squares. Finally, by 

averaging the standard deviations of different aspect ratios, the parameters of the systematic variation of CI are calculated. 

 

5. PROCESS VARIATIONS IMPACT ON ASIP DESIGN 

In the conventional approach, the delay of a CI is estimated as a scalar value. This value is calculated by summing up the node 

(primitive) worst-case delays in the critical timing path which are activated during the execution of the CI [5]. Due to the 

increase in the normalized standard deviation of parametric variability in the nanoscale technologies [29], using the worst-case 

approach is not appropriate and statistical approaches for the delay estimation should be utilized [5]. 

Figure 7 shows a CI in a given CFU, which contains four nodes, four inputs, and 2 outputs. The delay PDFs of the nodes are 

shown next to the nodes. If we wish to use the worst-case approach, the delay of the CFU is equal to the maximum critical path 

delay. For this approach, one should find the worst-case delay of each output (O1 and O2), and obtain their maximum which has 

a deterministic value. On the other hand, in the statistical approach, the propagation delay of each output has a PDF which might 

be computed using a statistical static timing analysis (SSTA) [26][28]. The CFU delay has also a PDF, which is obtained by 

taking the maximum of the PDFs of Path 1 and Path 2.  
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Figure 7 An example of  the PDF delay model of different parts of a CFU. 

The pipelined stages in a processor contain some critical paths whose delays are defined using PDFs. The processor maximum 

clock frequency or performance yield is extracted based on these PDFs. The results obtained from (10) reveal that the increase in 

the ratios of standard deviation to mean of the delays and the number of the critical paths may lead to the processor frequency 

decrease. As an example, we have plotted the PDFs of a circuit with a critical path delay of 1ns in Figure 8(a) and (b). In Figure 

8(a), the standard deviation to mean ratio is constant and is equal to 15%, while in Figure 8(b), the Ncp value is constant equal to 

the 1000. 

The dependence of the maximum operation frequency of the processor on the number of critical paths suggests that extending 

the ISA may result in reduced clock frequency for the extensible processor. This is due to the increase in the number of the 

critical paths in the system. This decrease in the maximum operating frequency may increase the execution time of the 

application, which is undesirable. This raises the question whether the speedup improvement will be achieved if we extend the 

processor. One of the main contributions of this paper is to find an answer to this question. We investigate the difference 

between the speedup improvements that we expect at the design time and the one that we would achieve after manufacturing the 

processor. In our study, both systematic and random variations are considered. 

 

 
(a) 

 
(b) 

Figure 8 Impact of the Ncp and the standard deviation per mean ratio, on the PDF of the maximum frequency on a circuit while the mean of its critical paths 
dealy is 1ns (a) Standard deviation to mean ratio is constant equal to 15% (b) the Ncp value is constant equal to the 1000. 

 

6. RESULTS AND DISCUSSION 

A. Simulation Setup 

To assess the performance of the proposed technique, we selected several applications from mibench [30], PacketBench [31], 

and SNR-RT benchmark suits [32]. The IP-sec and MD5 from PacketBench, lms and adpacm from SNR-RT, and G721encoder, 

G721decoder, and bitcounter from mibench suit were chosen. The benchmarks’ DFGs were extracted using GIMPL 

intermediate representation [33] generated by GCC. To evaluate the proposed design flow, we have implemented it with the 

programming language C#. The identification phase was performed based on the method presented in [1]. We modified the 
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method in such a way that the clock period constraint could be included. Also, to implement the selection phase we used a 

greedy approach [2]. The area and delay of the primitives (e.g., ADD and SHIFT units) were obtained by Synopsys Design 

Compiler. 

We used a 32-bit in-order MIPS processor as our baseline machine. To extract the critical paths, we implemented its layout 

using a 45nm technology [25]. For synthesis the baseline processor, we have used the Synopsys Design Compiler and defined 

1ns as the timing constraint. The baseline processor was synthesized without any timing violation. The wire conditions (default 

conditions) and also the clock trees were selected automatically by the synthesis tool. Next, to obtain the layout from the gate-

level netlist of the processor, we used the Cadence SOC Encounter. The only specific parameter that we set in the tool was the 

delay constraint of 1 ns. The options of placement and routing stages were set such that the tool fully attempted to meet the delay 

constraint. 

By adding the CFU, the placement of the gates in the baseline processor was changed. In our study, the baseline processor 

with different CFU areas was placed and routed and the critical paths were extracted. In all the cases, we forced the place-and-

route tool to map the design such that all the propagation delays of the paths were less than 1ns. Therefore, the maximum 

frequency of the processor was set to 1 GHz. For the same reason, in the identification phase, the defined propagation delay 

constraint was 1ns.  

For the process variation analysis, we assumed σLsys/L0 = 5%, and ߪ ௧ܸ௛
௥௡ௗ ോ ௧ܸ௛଴ ൌ ௥௡ௗܮߪ ോ ଴ܮ ൌ 10%	[34]. In the proposed 

approach, any other sources of variation affecting the delay of the CFU and baseline processor could be easily included. The 

reason that we did not include other sources is that they are not as important as RDF and channel length fluctuation. For 

example, oxide thickness variation is not of prime concern due to the use of high- dielectrics (higher thickness of the dielectric 

and hence considerably lower impact of its variations) in the MOSFET structure.  

To model the systematic variation, we define the area of the squares in the highest indexed level (see, Figure 4) about 

100m2 as the highly correlated area. To find the maximum frequency of the extensible processor, we determined the PDFs of 

frequency of the CFU and the basic part of the extensible processor separately using (10). Finally, the maximum value of the 

worst-case frequencies of these two PDFs was selected as the frequency of the extensible processor. Also, in this paper µ+3σ is 

used to calculate the worst-case frequency and delay. 

 

B. Results for Impact of Process Variations on Speedup and Frequency 

1) Impact of Process Variations on Speedup 
First, we study the impact of process variations on the speedup of the extensible processor. The overall speedups of the 

extensible processor for different applications are reported in Figure 9. The CIs were selected using the merit functions given 

by (4) and (5) based on the nominal delay (“Without PV” and with “PV”) and worst-case delay (“PV Worst-Case”). While in 

both cases of “Without PV” and “PV”, the CIs were selected based on the nominal delay of the primitives, in the latter case, the 

impact of process variations on the maximum frequency of the extensible processor was also considered. It means that in the 

case of “PV”, after selecting the CIs, the impact of process variations on the extensible processor was modeled, and the 

frequency reduction was calculated. For the case “PV Worst-Case”, instead of using the nominal delay, the worst-case delays of 

the primitives were used, and hence, we did not need to conduct a separate analysis for the impact of process variations on the 

extended ISA. The study includes the area constraints of 3%, 13%, and 51%. As the results presented in Figure 9 reveal, for the 

applications considered in this work, process variations may reduce the average (maximum) speedup of the extensible 

processor by about 1.44% (5%). If we select the CIs based on the worst-case delay, the achieved speedups in all cases (except 
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Bitcounter, IP-sec and lms benchmarks for the area budget of 3%) are lower than those based on the nominal delay (“PV”).  In 

the “PV Worst-Case” approach, there is not any critical path in the CFU. When the selection is performed based on the nominal 

delay, it is possible that the CFU contains some critical paths decreasing the operating frequency. The comparison between the 

“PV” and “PV Worst-Case” cases shows that the speedup achieved through using the selected CIs has more effects than the 

maximum operating frequency reduction by increasing the number of the critical paths of the selected CIs. Also, the results 

show that the difference between the “PV Worst-Case” approach and “PV” is reduced by decreasing the area budget. In the IP-

sec and lms benchmarks, when the area budget is 3% of the baseline processor area, the speedup of “Worst-Case” is equal to 

that of the “PV”. The reason is that for these two benchmarks, under this area budget, the selected CIs in both “PV” and “PV 

Worst-Case” were similar. In the case of Bitcounter benchmark, when the area budget is 3%, the speed gain of the “PV Worst-

Case” is better than the case of “PV”. In this case, the speed gain of the “PV Worst-Case” was not reduced compared to the 

case of “Without PV”. This shows that in this case, there were some CIs with high CS whose critical path degradations due to 

the process variation do not violate the timing constraint (timing yield of 1). On the other hand, in the “PV” case where the 

impact of the process variation on the selected CIs was considered, some of the CIs violated the timing constraint forcing us to 

reduce the operating frequency of the extensible processor. This caused the reduction in the speedup compared to the case of 

“Without PV” (which is about the same as the case of “PV Worst-Case”). 

(a) (b) 

(c) (d) 

Figure 9 The impact of the process variations on the overall speedup of the extensible processor. The CIs were selected under a) area budget of 3%, b) area 
budget of 13%, c) area budget of 51% of the baseline processor, d) no area budget. 

 

2) Impact of Area Budget on Speedup Reduction 
Figure 10 shows the average of the speedup reduction versus the area budget. As may be inducted from the figure, 

enlarging the area budget increases the impact of the timing variation on the CFU, and hence, the speedup reduction of the 

extended ISA. For small area budgets, except in the case of 3% area budget (this will be discussed next), the PV impact on 

speedup reduction is lower.  
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Figure 10 The average speedup reduction of the “PV” case compared to the “Without PV” case under different area budgets. 

 

Speedup reduction originates from the increase in the number of critical paths in the CFU which leads to the decrease in the 

maximum frequency of the extensible processor. To study this further, as an example, the delays of the CFU and baseline 

processor, and also the number of critical paths  of the selected CFU, Ncp, for the MD5 benchmark under different area budgets 

are shown in Figure 11. Enlarging the area budget increases the number of the selected CIs which may lead to increase in the 

number of the critical paths (and the timing variation) which decreases the mean and standard deviation () of the maximum 

frequency (see Figure 8(a)). On the other hand, by decreasing the Ncp the mean value of the maximum frequency is increased. 

Hence, it mitigates the impact of the CFU in decreasing the maximum frequency. However, the sigma of the delay variation 

also is increased by decreasing Ncp (see Figure 8(a)). The larger value of  could decrease the worst-case of the maximum 

frequency more than the increase in the mean of the maximum frequency. This is exactly what happens in the case of where the 

area budget is 3%. In this case, the maximum value of Ncp for the proposed benchmarks was 1, and hence, the worst-case delay 

of the CFU was larger than that of the baseline processor. Therefore, in this case, for some benchmarks, the speedup reduction 

was increased. It should be mentioned that in Figure 11, the delays of the basic part for different area budgets are different. 

This originates from this fact that by changing the area of the extended ISA, the placement and routing of the critical paths in 

the basic part are changed. 

 

 
Figure 11 Left Axis) The worst-case delay of the CFU and the basic part for MD5 benchmark. Right Axis) The number of the critical paths (Ncp) of the 

selected CFU in MD5 benchmarks. 

 

Note that the speedup reduction highly depends on process variations impact on both the CFU and baseline processor. To 

show the impact of the number of critical path of the baseline processor on the speedup reduction of the extensible processor, 

we calculated the average and the maximum speedup reduction of the applications considered in this work under two different 

cases. In the first case, we assumed that the number of the critical paths of the baseline processor was decreased to half, while 

for the second case we assumed no critical path in the baseline processor. The results showed that, compared to the “Without 
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PV” case, in the first case the average(maximum) speedup reduction was 2.16% (6.1%), while for the second case process 

variations led to the increase of the average speedup reduction by about 18.35%. 

3) Impact of Process Variations on Frequency 
Figure 12 shows the frequency of the “PV” and “PV Worst-case” approaches when the ISA are selected without any area 

budget. Due to the impact of the critical paths on the CFU frequency, in the “PV” approach, the frequency of the extensible 

processor is less than that of the “PV Worst-case” approach (there are not any critical paths in the CFU). Finally, the speedup 

of the extended instructions in the adpcm benchmark in the worst-case approach is one. It shows that all the CI candidates of 

the adpcm benchmarks had a worst-case delay greater than the propagation delay constraint and hence no CI was selected. 

To study the impact of the CFU in the presence of process variations on the frequency of the extensible processor, in our 

investigation we determined which part of the extensible processor (the basic part (bP) or the CFU (C)) defines the maximum 

frequency of the extensible processor. The results which are based on the worst-case delay are presented in Table I. Again, the 

results show that by increasing the area budget, the importance of the CFU in setting the maximum frequency increases. In the 

case of lms, by increasing the area budget, the number of critical paths for the selected CFU does not increase as much as other 

benchmarks. Hence, in the lms case, for all the area budgets, the critical paths in the basic part are more crucial than those in 

the CFU. 

 

Figure 12 Maximum frequency of the CFU for the “PV” and “PV Worst-Case” approaches. The CIs are selected without any area constaint. 

TABLE I WHICH PART OF THE EXTENSIBLE PROCESSOR DETERMINES THE MAXIMUM FREQUENCY OF THE EXTENSIBLE PROCESSOR. BASIC PART “BP” OR CFU 

“C”. 
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3% C bP C bP bP C C 
6% bP C bP C bP bP bP 
13% bP bP bP C bP bP bP 
25% C bP C C bP bP C 
38% C C C C bP C C 
51% C C C C bP C C 
64% C C C C bP C C 

*WNAB stands of With No Area Budgets 

 

C. Comparison of Random and Systematic Variation Impact 

In this subsection, to determine the significance of the random and systematic variations, we will study the impact of each 

type separately on the propagation delay and speedup. 

1) Impact of Systematic and Random Variation on Propagation Delay 
Table II shows the impact of the systematic and random variation on the propagation delay of selected CFU in the IP-sec 
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and Bitcounter benchmarks. Also, the effects of the variations on the baseline processor are given in this table. By increasing 

the systematic variation (σ/µ) from 0% to 10%, the worst-case delay of the CFU does not change considerably. On the other 

hand, for the baseline processor, by increasing the systematic variation from 0% to 5% (5% to 10%) the worst-case delay 

increases from 1.14ns to 1.17ns (1.17ns to 1.25ns). Because the primitives of the critical paths in the baseline processor (basic 

part) are scattered in the larger area in comparison with those in the CFU, the systematic variation has more effects on the 

baseline processor. Most of the critical paths in the baseline processor belong to the forwarding paths and register-file [8][10]. 

Figure 13 shows the example for an extensible processor for lms benchmark with 6 CIs (where the layout was designed by the 

Cadence SOC Encounter). Also, the placements of the primitives of the longest paths are shown with dashed boundaries. The 

primitives of the critical paths of the basic part are scattered in more areas in comparison with the primitives of CIs in the CFU. 

 

TABLE II IMPACT OF THE RANDOM AND SYSTEMATIC VARIATIONS ON THE PROPAGATION DELAY OF SELECTED CFU IN 45NM TECHNOLOGY. 

   Delay (ns) 

  

A
re

a 
C

on
st

ra
in

t 

Random Variation = 10% Systematic Variation = 5% 

 

B
en

ch
m

ar
k 

Systematic Variation Random Variation 

  
0% 5% 10% 0% 10% 15% 

C
F

U
 

IP
-s

ec
 

WNAB 1.18 1.18 1.18 1.01 1.18 1.25 
3% 1.00 1.00 1.00 1.00 1.00 1.00 
13% 1.21 1.21 1.21 1.00 1.21 1.30 
25% 1.15 1.16 1.16 1.00 1.16 1.22 
38% 1.18 1.18 1.18 1.00 1.18 1.25 
51% 1.18 1.18 1.18 1.00 1.18 1.25 
64% 1.18 1.18 1.18 1.00 1.18 1.25 

B
it

co
u

n
te

r 

WNAB 1.19 1.19 1.19 1.00 1.19 1.26 
3% 1.21 1.22 1.22 1.00 1.22 1.31 
13% 1.16 1.16 1.16 1.00 1.16 1.23 
25% 1.18 1.18 1.18 1.00 1.18 1.25 
38% 1.19 1.19 1.19 1.00 1.19 1.27 
51% 1.19 1.19 1.19 1.00 1.19 1.27 
64% 1.19 1.19 1.19 1.00 1.19 1.27 

Baseline 
Processor 

1.14 1.17 1.25 1.11 1.17 1.22 

 

Also, the situation for the random variation is similar for both CFU and baseline processor where by increasing the random 

variation, the worst-case delay increases. Also, the results show (“Random Variation = 0%”) the systematic variation impact 

are not as important as random variation on the CFU. 
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Figure 13 An extensible processor with 6 CIs (MIPS as the baseline processor). The placement of the longest critical path in the basic part is shown. 

To see the effect of technology on the results reported in Table II, we performed the study for the 90 nm library for different 

amounts of parameter variation. The results are reported in Table III. Note that, in this case, due to the increase in the gate 

delay, 1.2ns was defined as the timing constraint. 

As was expected, the behaviors regarding the impact of increasing or decreasing the process variation on the delay of CFU 

and baseline processor, were the same as those of the 45nm technology. Finally, it should be noted that the results show that the 

delay variations due to the parameter variation in the 90nm technology are smaller than those in the 45nm technology. 

 

TABLE III IMPACT OF THE RANDOM AND SYSTEMATIC VARIATIONS ON THE PROPAGATION DELAY OF SELECTED CFU IN 90 NM TECHNOLOGY. 
 

  
Delay (ns) 

  
Systematic Variation 0% 5% 2.5% 5% 

  
Random Variation 10% 10% 5% 0% 

 
Benchmark Area Constraint 

C
F

U
 

IP
-s

ec
 

WNAB 1.256 1.259 1.256 1.259 
3% 1.256 1.259 1.256 1.259 
13% 1.256 1.259 1.256 1.259 
38% 0.000 0.000 0.000 0.000 
64% 1.170 1.174 1.176 1.174 

B
it

co
un

te
r WNAB 1.166 1.169 1.171 1.169 

3% 1.166 1.169 1.171 1.169 
13% 1.166 1.169 1.171 1.169 
38% 0.000 0.000 0.000 0.000 
64% 1.251 1.260 1.257 1.260 

 Baseline Processor  1.344 1.355 1.327 1.332 

 

 

2) Impact of Systematic and Random Variation on Speedup 
Table IV shows the impact of the systematic and random variations on the speedup of the extensible processor when 

running some benchmarks. When the random variation is 10% and the systematic variation varies, in most cases, the maximum 

values of speedup belong to the variation ratios of 5% and 10%. By increasing the systematic variation, the delay fluctuation of 

the CFU is not changed more (see, Table II), but the impact of the systematic variation on the baseline processor is increased, 

and consequently its delay is increased. Hence, the frequency of the extensible processor defined based on the delay of the 
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critical paths in the basic part. Since the frequencies of the processors-with or without CFU- are similar, the CFU have more 

effects on runtime reduction. On the other hand, when the systematic variation is low, the CFU is the part whose worst-case 

delays of its critical paths are greater. Hence, in this case, the frequency of the extensible processor is less than the frequency of 

the baseline processor. For instance, Table V depicts the worst-case delays of the CFU, basic part, and the extensible processor 

for the MD5 benchmark which has the trend that we just mentioned.  

 

TABLE IV IMPACT OF THE SYSTEMATIC VARIATION ON THE SPEEDUP OF EXTENSIBLE PROCESSOR FOR SOME BENCHMARKS IN 45NM TECHNOLOGY. 
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in

t Random Variation = 10% Systematic Variation = 5% 

Systematic Variation Random Variation 

 
0% 5% 10% 0% 10% 15% 

M
D

5 

WNAB 2.10 2.16 2.17 2.46 2.16 2.11 
3% 1.40 1.44 1.48 1.66 1.44 1.40 

13% 1.70 1.74 1.74 1.94 1.74 1.72 
38% 1.82 1.88 1.89 2.13 1.88 1.83 
64% 1.94 1.99 2.01 2.28 1.99 1.94 

IP
-s

ec
 

WNAB 2.18 2.25 2.21 2.49 2.25 2.21 
3% 1.56 1.56 1.55 1.73 1.56 1.55 

13% 1.78 1.79 1.79 1.99 1.79 1.80 
38% 1.74 1.80 1.79 2.00 1.80 1.76 
64% 1.74 1.80 1.79 2.00 1.80 1.76 

B
it

co
u

nt
er

 WNAB 1.93 1.99 1.99 2.23 1.99 1.95 
3% 1.40 1.44 1.47 1.65 1.44 1.39 

13% 1.83 1.88 1.88 2.10 1.88 1.85 
38% 1.86 1.92 1.92 2.15 1.92 1.90 
64% 1.86 1.92 1.92 2.15 1.92 1.87 

ad
pc

m
 

WNAB 1.15 1.19 1.19 1.33 1.19 1.16 
3% 1.03 1.05 1.05 1.17 1.05 1.04 

13% 1.11 1.15 1.15 1.28 1.15 1.13 
38% 1.15 1.18 1.19 1.33 1.18 1.15 
64% 1.15 1.18 1.19 1.32 1.18 1.15 

 

TABLE V WORST-CASE DELAY OF THE EXTENSIBLE PROCESSOR, BASIC PART, AND CFU FOR THE MD5 BENCHMARK. 

Worst-Case Delay(ns) 0% 5% 10% 

CFU 1.20 1.21 1.21 

Basic Part 1.14 1.17 1.25 

Extensible Processor 1.20 1.21 1.25 

 

In the second case (the systematic variation is 5% while the random variation varies) the random variation has similar 

effects on both the CFU and baseline processor. Thus, by increasing the random variation, the impact of the CFU to increase 

the speedup of the extensible processor is reduced.  

To support the results which are reported in Table IV, the results in 90nm technology are reported in Table VI. As was 

expected, the behaviors regarding the impact of increasing or decreasing the process variation on the speedup of the extensible 

processor were the same as that of the 45nm technology. Finally, it should be noted that the results show that the speedup 

variations due to the parameter variation in the 90nm technology are smaller than those in the 45nm technology. 
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TABLE VI IMPACT OF THE SYSTEMATIC VARIATION ON THE SPEEDUP OF EXTENSIBLE PROCESSOR FOR SOME BENCHMARKS IN 90NM TECHNOLOGY 

  Speedup 

  Systematic Variation 0% 5% 2.5% 5% 

  Random Variation 10% 10% 5% 0% 

Benchmark Area Constraint   

C
F

U
 

M
D

5 

WNAB 1.537 1.550 1.551 1.555 

3% 1.356 1.357 1.359 1.361 

13% 1.438 1.442 1.439 1.442 

38% 1.470 1.483 1.482 1.486 

64% 1.501 1.514 1.516 1.519 
IP

-s
ec

 
WNAB 1.507 1.515 1.511 1.516 

3% 1.391 1.392 1.394 1.396 

13% 1.464 1.467 1.479 1.482 

38% 1.460 1.468 1.480 1.485 

64% 1.460 1.468 1.480 1.485 

B
it

co
u

nt
er

 

WNAB 1.502 1.506 1.509 1.507 

3% 1.330 1.331 1.333 1.335 

13% 1.472 1.478 1.481 1.478 

38% 1.482 1.486 1.490 1.488 

64% 1.482 1.488 1.490 1.488 

ad
pc

m
 

WNAB 1.271 1.273 1.275 1.273 

3% 1.169 1.170 1.188 1.190 

13% 1.256 1.259 1.256 1.259 

38% 1.256 1.259 1.256 1.259 

64% 1.256 1.259 1.256 1.259 

 

3) Impact of the Size of the Highly Correlated Area on Speedup 
By changing the systematic variation, we study the effects of the size of the highly correlated area on the speedup of the 

extensible processor. In this study, the size of the highly correlated area is shrunk from 100m2 to 25m2. The results which 

are reported in Figure 14 show, in most cases, the speedup is increased. This is due to the fact that, in these cases, the 

maximum delay belongs to the critical paths in the CFU due to the random variation. Also, as mentioned before, the impact of 

the systematic variation on the baseline processor is more than that of the CFU. By decreasing the highly correlated area, the 

worst-case delay of the baseline processor increases from 1.17ns to 1.19ns while in all benchmarks, the increase in delay of the 

CFU is negligible (< 1ps). Hence, in these cases, without changing the maximum frequency of the extensible processor, the 

maximum frequency of the baseline processor decreases leading to the speedup increase. 
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(a) (b) 

Figure 14 Impact of the size of the highly correlated area on the speedup of the extensible processor. 

 

7. CONCLUSION 

In this work, the performance of the extensible processor under process variation was investigated. First, the effects of 

random and the systematic variations on the extended ISA and the baseline processor were modeled. Then, the impact of the 

timing variation on the overall speedup and the maximum achievable frequency of the extensible processor was investigated. 

Additionally, the role of each of the CFU and the basic part of the processor in decreasing the speedup was determined. The 

results of the study showed that the process variation reduced the overall speedup of the extensible processor mainly due to the 

impact on CFU part. We considered the case of designing based on the worst-case timing. The study for this case revealed that 

the impact of the process variation was reduced. However, the speed enhancement of the extended ISA was also decreased 

which lowered the overall speedup of the design. In terms of the importance of variation type, our results indicated that only 

the random variation had dominant impact on the CFU part of the extensible processor while both random and systematic 

variations had major effects on critical paths of the baseline processor. 
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