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Abstract—Distributed power generation and distribution 

network with the dynamic pricing scheme are the major trend 

of the future smart grid. A smart grid is a network which 

contains multiple non-cooperative utility companies that offer 

time-of-use dependent energy prices to energy consumers and 

aim to maximize their own profits. Decentralized power 

network allows each energy consumer to have multiple choices 

among different utility companies. In this paper, an 

optimization framework is introduced to determine the energy 

price for utility companies in an oligopolistic energy market. 

At the beginning of each billing period (a day), each utility 

company will announce the time-of-use dependent pricing 

policy during the billing period, and each energy consumer 

will subsequently choose a utility company for energy supply 

to minimize the expected energy cost. The energy pricing 

competition among utility companies forms an n-person game 

because the pricing strategy of each utility company will affect 

the profits of others. To be realistic, the prediction error of a 

user’s energy consumption is properly accounted for in this 

paper and is assumed to satisfy certain probability 

distribution at each time slot. We start from the most 

commonly-used normal distribution and extend our 

optimization framework to a more general case. A Nash 

equilibrium-based pricing policy is presented for the utility 

companies and the uniqueness of Nash equilibrium is proved. 

Experimental results show the effectiveness of our game 

theoretic price determination framework. 

Index Terms—smart grid; dynamic pricing; probability 

theory; oligopolistic market. 

I. INTRODUCTION 

The current smart grid technology is undergoing a 

transformation from the traditional static and centralized 

structure to one that is more distributed and consumer-

interactive [1][2]. One of the major modifications is the 

increasingly widespread application of distributed 

generation, which is the integration of small-scale power 

generation facilities located close to the load devices [1]. 

Together with the lowered costs, improved reliability, 

reduced emissions and expanded energy options, the 

introduction of decentralized electrical network architecture 

also makes it more challenging to match power supply to 

real-time demand for the power generation and distribution 

networks [3]. It is generally recognized that the peak 

demand rather than the average determines the amount of 

generation, transmission and distribution capacities that 

utility companies need to provision. The huge difference 

between energy consumption levels at peak usage time and 

off-peak hours has resulted in not only cost inefficiencies 

and potential electricity supply failures (brownouts and 

blackouts), but also environmental pollution due to the 

over-provisioning of the power grid and the resulting 

energy waste [4]. For example, the US national load factor 

(i.e. average load divided by the peak load) is about 55%, 

and only 10% of generation plants and 25% of distribution 

facilities are used more than 400 hours per year, i.e., 5% of 

the total time [1].  

Dynamic energy pricing gives a potential solution for 

demand shaping to reduce the peak power demand and 

smoothen the overall power profile, and has been widely 

investigated in the past decade [1]-[7]. Authors in [4] and [5] 

provide algorithms for optimal load scheduling and cost 

minimization incentivized by dynamic energy pricing, 

whereas reference [6] provides a real-time pricing policy 

for the utility companies with the assumption that each 

energy consumer will optimize a predefined utility function. 

Considering the fact that utility companies tend to make 

decisions based on the anticipated response from the users, 

a concurrent optimization model for both the utility 

company and energy users is presented in [7] in order to 

optimize the social welfare. The optimization framework in 

[7] is based on a centralized monopolistic electrical grid, 

where a single utility company supplies all the power 

demands for the electricity consumers in a local area. 

However, as the decentralized smart grid is the major trend 

of the future electrical power network architecture [1], each 

homeowner is allowed to have multiple choices among 

different utility companies. Hence, the competition between 

different utility companies should be accounted for. Based 

on this observation, authors in [12] tackle the profit 

maximization problem of non-cooperative utility companies 

in an oligopolistic electricity market, and provide a Nash 

equilibrium-based optimal pricing policy for the utility 

companies.  

However, there are some problems with the previous 

work. Almost all assume that the energy consumption for 

each homeowner is accurately predictable and is given in 

prior to utility companies, which is far from realistic. 



Although the historical data can be used to help utility 

companies to make predictions, accurate prediction of load 

power demand is still hard or even impossible since the 

power demand depends on exogenous factors and varies 

dramatically as a function of time of day and seasonal 

factors [7]. According to the algorithms presented in the 

above papers, a forecasting error of energy consumption 

may lead to a completely different solution. For example, 

the previous paper [12] assumes that each homeowner will 

choose one utility company with a certain probability 

according to the pricing policies, and the objective function 

for the utility companies is to maximize the predicted total 

profit. This kind of strategy will lead to a huge uncertainty 

because the variance of the total profit due to prediction 

error is never accounted for. 

In this paper, we propose an optimization framework of 

dynamic pricing for utility companies to maximize their 

profits in an oligopolistic energy market. At the beginning 

of each billing period (i.e., a day), each utility company will 

announce the time-of-use dependent pricing policy during 

the billing period, and each energy consumer will 

subsequently choose a utility company for energy supply to 

minimize the expected energy cost. Prediction of the energy 

demand of each user is required (at both the user side and 

the utility company side) at the beginning of each billing 

period, and we properly account for the prediction error of 

user's energy consumption in this paper by assuming that it 

satisfies certain probability distribution at each time slot. 

We start from the most commonly-used normal distribution 

and then extend to more general distributions. Instead of 

simply maximizing the expected profit, each utility 

company optimizes a payoff function that is a combination 

of maximizing expectation and minimizing the variance of 

the total profit, accounting for the prediction error. The 

energy pricing competition among utility companies forms 

an n-player game because the pricing strategy of each 

utility company will affect the profits of others. We present 

a Nash equilibrium-based optimal solution for the utility 

companies to determine the time-of-use pricing policy and 

prove the uniqueness of the Nash equilibrium point.  

The remainder of this paper is organized as follows. In 

the next section, we present the system model as well as the 

optimal pricing policy for utility companies under the 

assumption that the prediction error obeys a normal 

distribution at each time slot. The optimization framework 

is then extended to a more general case in Section III. 

Section IV provides the simulation results, and the paper is 

concluded in Section V. 

II. SYSTEM MODEL UNDER THE NORMAL DISTRIBUTION 

ASSUMPTION  

In this paper, a slotted time model is assumed for all 

models, i.e., all system cost parameters and constraints as 

well as scheduling decisions are provided for discrete time 

intervals of constant length. The scheduling epoch is thus 

divided into a fixed number of equal-sized time slots (in the 

experiment, a day is divided into 24 time slots, each with 

duration of one hour). A unified electricity price is used 

throughout the paper. 

We define Price function, Pi[t], as the price of one unit 

of energy (kWh) for each utility company i at time slot t. 

The price is decided by the utility company and pre-

announced to homeowners. In addition, for every 

homeowner j, conj[t] is the total energy consumption at time 

t. It can be easily observed that the equation below 

calculates the total energy cost for a certain homeowner j if 

he chooses company i:  

        ∑             

 

 

Previous papers assumed that conj[t] is an accurately 

predictable  value and is given based on the prediction from 

previous data, which turns out to be oversimplified because 

of the following two reasons: First of all, there are many 

random disturbances and uncertainties in real power 

systems, which may lead to prediction error [14]; Further 

more, the previous data of energy consumption itself can 

vary dramatically for external factors as well as 

homeowners’ own habits. As a result, what we can do  is to 

predict the distribution of energy consumption from the 

previous observations. 

According to these factors, a probabilistic model is 

presented in this paper, which means during the prediction 

step, conj[t] is considered as a stochastic behavior and 

obeys a certain distribution. We start from the most popular 

distribution: normal distribution whose probability density 

function (PDF)  is defined by the formular  
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where   and    are the mean and variance of the random 

variable. For energy consumption conj[t], we use expection 

E[conj[t]] and a variance Var[conj[t]] to represent these 2 

parameters. The former parameter stands for the average 

predicted energy consumption while the latter one tells how 

far the energy consumption may be spread out, i.e., the 

prediction error. In this paper, we assume conj[t] are 

independent random variables for different j and t. 

Property 1: costi,j obeys a normal distribution with the 

expectation and variance calculated as follows:  
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Proof: as Pi[t] values are given, costi,j is a linear 

function of conj[t]. As conj[t] are predicted to be normal 

distribution variables and independent from each other, 

based on the properties of normal distribution in [15], conj[t] 

will also obey a normal distribution.                                     



The distributed power network offers more options for 

homeowners to select one utility company among different 

options. Previous papers presented two kinds of models to 

determine the probability. In [10], each homeowner has a 

“threshold price” and will equally choose a company which 

offers a price lower than threshold. This model is un-

realistic because it is a common sense that buyers should 

have a higher probability to choose a seller who offers a 

cheaper price. And also, the model fails to take into account 

the interactions among different utility companies.  In this 

paper, we use a modified model based on the demand 

function in [12] and use the expectation of total energy cost 

to determine the probability that each utility company i is 

chosen by a certain homeowner j (probi,j) 

        
            

             ∑             
   

 

which reveals that even considering the information 

asymmetry, energy consumers will still have a preference to 

choose the company who offers a cheaper price.  

To study the expectation and variance of the profit 

from a certain homeowner, we use some abbreviations in 

the following equations: p is used to represent the 

probability probi,j, which can be observed to be 

deterministic and is a function of Pi[t].   and    are used to 

represent the mean and variance of the costi,j. And also we 

use a function N(x) to represent the PDF of costi,j, which is 

proved to be normal distributed. There are then two 

outcomes for each homeowner as follows: 

1. With a probability of p, the homeowner will 

choose this certain company. The profit of the 

company is the same as the cost function of the 

homeowner, which obeys a normal distribution.  

2. With a probability of 1-p, the homeowner will not 

choose this certain company. The profit of the 

company from this homeowner is 0. 

Considering these two outcomes, the expectation and 

variance of the profit from the certain homeowner can be 

calculated using conditional probability formulation as 

follows: 
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By definition of normal distribution, we can observe: 

∫
 

 √  
 

 
      

                

∫
 

 √  
 

 
      

            ∫
 

 √  
 

 
      

                 

∫
 

 √  
 

 
      

         

and then we can determine 

                                        

                                           

In the power system where the energy consumption is 

not accurately predictable, utility companies always need to 

make a tradeoff between the expected profit and the 

potential risk in profit. Based on the study in [13], a utility 

function Ui,j is used to weigh the risk and gains for utility 

companies: 

                                    

which means utility function has a positive relation with the 

profit expectation and a negative relation with the profit 

variance. In this equation,    is a parameter that tells the 

company’s risk aversion coefficient. The higher this value, 

the larger amount of expected profit the company is willing 

to sacrifice in order to avoid potential risk.  

Then the price determination problem for utility 

companies can be defined as follows:  

             company i, find            

                        ∑    

 

 

                                 
                                            

As is mentioned in [12], companies are considered as 

non-cooperative among each other, and the price function 

of one company will affect the profit of others, which 

means these companies form an n-person game. 

Considering this, we are interested in the existence and 

uniqueness of Nash equilibrium points. 

Property 2: Utility companies have a unique Nash 

equilibrium point in the profit maximization problem. 

Proof: It has been proven in [12] that if the energy 

consumption is assumed to be accurately predictable, 

          is a strictly concave function in terms of energy 

price functions under a certain modification. This means 

             is a strictly concave function in our paper. In 

reality as well as our own experimental statistics,    should 

be a very small value (usually from 0 to 0.01) because 

expected profit should always be the major concern in 

making decisions, so                    has very little 

effect on the convexity of the function. Then      is a 

strictly concave function in our area of interest. Therefore, 

the utility maximization problem is a strictly concave n-

person game. In this case, the existence and uniqueness of 

Nash equilibrium are directly resulted from the first and 

third theorem in [9].                                                              



The Nash equilibrium point can be calculated using 

iterative local utility maximization of each utility company 

based on game theoretic method. In this iterative solution, a 

constant value d is needed to determine the endpoint. More 

precisely, the optimization process stopped when no utility 

companies can achieve a utility function increase higher 

than d. We can observe that the value of d makes a tradeoff 

between accuracy of the solution and run-time. According 

to the uniqueness of the Nash equilibrium point, our 

solution will be the same under any initial condition (i.e., 

the initial price function of utility companies). The detailed 

algorithm is presented as follows: 

Algorithm 1: Iterative solution for utility maximization. 

Initialize Pi[t] for every i and t. 

While (max_utility_increase > d) 

For each utility company i: 

  Calculate current utility_totali. 

For each time slot t, set: 

                   
                

      
   

Solve the equation set to get Pi[t] for each t under the 

given price functions of other companies. 

Calculate optimized utility_totali. 

Calculate the max_utility_increase among all companies. 

Pi[t] for every i and t is determined after the above process. 

 

This problem can be simplified when all companies 

have the same risk aversion coefficient.  

Property 3: At the Nash equilibrium point, each utility 

company has exactly the same price function if    stays the 

same for all companies. 

Proof: When    is the same for all companies, the 

objective functions between any two companies are totally 

the same. Assume the price function of two utility 

companies, namely c1 and c2, are different in a Nash 

equilibrium point (say Pc1[t] ≠ Pc2[t]), another Nash 

equilibrium point should exist if they exchange their price 

functions, which contradicts the uniqueness of Nash 

equilibrium in property 2. In fact, it is always the situation 

that companies will ultimately use almost the same risk 

aversion coefficient in oligopolistic energy market, due to 

the interactions and the price competitions among them.         

  

The third property offers us an alternative and easier 

algorithm to solve this problem under this certain situation, 

as we can simply assume the price function of all utility 

companies are the same after the first derivative of the 

objective function. No initial price function is needed and 

no iteration is required, which makes the algorithm much 

faster than the previous one. All the price functions can be 

determined by solving a single equation set. The detailed 

algorithm is presented as follows: 

 

Algorithm 2: Unique Nash equilibrium point determination. 

For any one of utility company i: 

For each time slot t, set: 

   
                

      
|                         

Solve the equation set to get Pi[t] for each t. 

For all utility companies k≠i, set price function Pk[t] = Pi[t] for 
each t. 

 

III. MODEL EXTENSION 

In section II, the normal distribution based system 

model is investigated. However, if we remove this 

assumption and extend the system model to a more general 

case, an interesting observation is that all the above 

solutions still stay the same.  

Assume energy consumption is predicted to satisfy a 

distribution which can be any kind (i.e. normal distribution, 

uniform distribution or other kind). As costi,j is a linear 

function of conj[t], although we cannot determine the 

distribution type of costi,j, as long as conj[t] are independent 

variables, based on the properties of expectation and 

variance in [15], we still have 
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Again p is used to represent the probability probi,j,   

and    are used to represent the mean and variance of the 

costi,j. This time we use a general function f(x) to represent 

the PDF of costi,j. By definition of expetation and variance, 

we have 

    ∫             

  ∫        

and also by definition of probability density function, we 

have 

∫          

Then the expectation and variance of the profit from 

the certain homeowner can be calculated using conditional 

probability formulation as follows: 
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which is exactly the same as for normal distribution. As a 

result, all the solutions in section II still stay for any type of 

distribution in energy consumption. 

Although we cannot tell the distribution type of the 

final profit, a reasonable estimation can be made when the 

number of homeowners is large enough.  

Property 4: If the number of homeowners is large, the 

total profit of each company will obey an almost normal 

distribution. 

Proof: Energy consumption at each time slot for each 

homeowner is independent, while the final profit is a linear 

function of the energy consumption given the designed 

price functions. Based on the central limit theorem 

presented in [15][1], the mean of a sufficiently large 

number of independent random variables, each with a well-

defined mean and well-defined variance, will be 

approximately normally distributed. A simple extension of 

this theorem can be applied here to determine that total 

profit of each company will finally be 

approximately normally distributed with the increase of the 

number of homeowners.                                                        

Property 4 is useful for utility companies to make 

decisions under a certain constraint on potential risk.  

IV. EXPERIMENTAL RESULTS 

To demonstrate the effectiveness of the proposed 

solutions, cases corresponding to the aforesaid pricing 

models are examined. In these simulations, the duration of a 

time slot is set to one hour. For this reason, power 

consumption of the tasks is determined with a granularity of 

one hour. The proposed algorithms have been implemented 

using Matlab and tested for random cases. During the 

simulation, the energy consumption at each time slot is 

predicted to obey a random type of distribution with a well-

defined mean and well-defined variance for every 

homeowner, and each homeowner has a probability to 

choose a certain utility company based on the offered price 

functions.  

We assume the risk aversion coefficient is the same for 

each utility company and calculated the unique Nash 

equilibrium point for an oligopolistic energy market 

containing 5 utility companies serving 100 homeowners. 

Based on the previous proof, this problem can be easily 

solved using the second algorithm presented in this paper. 

However, in order to verify the uniqueness of Nash 

equilibrium point, we also apply the iterative solution for 

each utility company under different initial conditions (i.e. 

initial price functions). As the final calculated unified price 

function value is between 0.2 and 0.5, we give a unified 

price of 0.1 as a low initial price and a unified price of 0.9 

as a high initial price. To study the effect of risk aversion 

coefficient, we also tested our model under different values 

of  . Utility function, expected total profit and total profit 

variance are compared for different cases. The result is 

presented in Table 1.  

Table 1. Utility Function, Profit Expectation and Profit 

Variance Comparison for the Presented Algorithms under 

Different Initial Conditions and Different Risk Aversion 

Coefficients 

  
Algorithm and 

initial price 

Utility 

function 
Exp. Var. 

0.000 

Algorithm 1, p=0.1 24.99 24.99 25.03 

Algorithm 1, p=0.9 24.99 24.99 25.03 

Algorithm 2 24.99 24.99 25.03 

0.002 

Algorithm 1, p=0.1 24.88 24.93 24.89 

Algorithm 1, p=0.9 24.88 24.93 24.89 

Algorithm 2 24.88 24.93 24.89 

0.004 

Algorithm 1, p=0.1 24.77 24.87 24.77 

Algorithm 1, p=0.9 24.77 24.87 24.77 

Algorithm 2 24.77 24.87 24.77 

0.006 

Algorithm 1, p=0.1 24.66 24.81 24.65 

Algorithm 1, p=0.9 24.66 24.81 24.65 

Algorithm 2 24.66 24.81 24.65 

0.008 

Algorithm 1, p=0.1 24.54 24.74 24.53 

Algorithm 1, p=0.9 24.54 24.74 24.53 

Algorithm 2 24.54 24.74 24.53 

0.010 

Algorithm 1, p=0.1 24.44 24.68 24.41 

Algorithm 1, p=0.9 24.44 24.68 24.41 

Algorithm 2 24.44 24.68 24.41 

 

The above table verifies that regardless of how high or 

low the initial price is set to, utility companies will finally 

converge to a price function that maximizes their utility 

functions, and the result is the same for both algorithms. 

The final price strategy for different companies turned out 

to be the same as the calculated result, which has been 

proved to be the unique Nash equilibrium solution. 

We also observe that the value   makes a tradeoff 

between the expected profit and the potential risk in profit. 

Both the profit expectation and the variance will decrease 

with the increase of parameter  . The relationship of profit 

expectation and variance in terms of   is shown in Figure 1.  

 
Figure 1. Relationship of Profit Expectation and Variance in 

Terms of   
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To study the exact distribution of the final profit, we 

randomly generate the energy consumption values at each 

time slot and calculate the real profit of each utility 

company, under the well-defined price function based on 

the result in the previous step. We repeat this experiment 

for 10000 times and draw the profit distribution graph, as is 

shown in Figure 2.  

 
Figure 2. Final Profit Distribution under        

The above figure verifies that regardless of what type 

of distribution the energy consumption is predicted to obey, 

the final profit is still almost normally distributed with the 

calculated mean and variance. This is the same as the 

predicted result from central limit theorem. 

The runtime of the proposed algorithms for all the 5 

utility companies is about 5 minutes for algorithm 1 and 

less than 1 second for algorithm 2 respectively both on a 

machine with a dual core processor with frequency of 2.80 

GHz. This run time makes it feasible to utilize our models 

real-time. The total run-time to test the distribution of final 

profit under 10000 test cases is around 5 minutes.  

V. CONCLUSION 

A probability theory based model is presented to tackle 

the utility maximization problem of non-cooperative 

companies in oligopolistic energy market considering the 

prediction error of users’ energy consumption. The model is 

started from the most commonly-used normal distribution 

and extended to a more general case. An iterative solution 

is presented and a more efficient algorithm is provided for 

certain conditions. The model is implemented and tested 

with some arbitrary test schemes. The results confirm that 

our designed algorithms lead to Nash equilibrium solutions 

and also show the effect of risk aversion coefficient on final 

profit expectation and profit variance. The distribution of 

final profit satisfies the predicted normal distribution with a 

calculated mean and variance. The real-time simulation 

strengthened the reliability of our proposed solution on 

price function with an acceptable runtime. 
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