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ABSTRACT
Plug-in electric vehicles (PEVs) are considered the key to reducing
the fossil fuel consumption and an important part of the smart grid.
The plug-in electric vehicle-to-grid (V2G) technology in the smart
grid infrastructure enables energy flow from PEV batteries to the
power grid so that the grid stability is enhanced and the peak power
demand is shaped. PEV owners will also benefit from V2G technol-
ogy as they will be able to reduce energy cost through proper PEV
charging and discharging scheduling. Moreover, power regulation
service (RS) reserves have been playing an increasingly important
role in modern power markets. It has been shown that by provid-
ing RS reserves, the power grid achieves a better match between
energy supply and demand in presence of volatile and intermittent
renewable energy generation. This paper addresses the problem of
PEV charging under dynamic energy pricing, properly taking in-
to account the degradation of battery state-of-health (SoH) during
V2G operations as well as RS provisioning. An overall optimiza-
tion throughout the whole parking period is proposed for the PEV
and an adaptive control framework is presented to dynamically up-
date the optimal charging/discharging decision at each time slot to
mitigate the effect of RS tracking error. Experimental results show
that the proposed optimal PEV charging algorithm minimizes the
combination of electricity cost and battery aging cost in the RS pro-
visioning power market.

1. INTRODUCTION
The increasing demands for energy resources all around the world

as well as the growing public concern over the environmental ef-
fects of fossil fuels have sparked significant interests in renewable
energy [1]. Plug-in electric vehicles (PEVs), which utilize electric
motors for propulsion, have shown great promise in reducing the
cost of transportation as well as curbing the emission due to their
battery storage systems that can be flexibly recharged in a park-
ing garage or at home [2],[3]. As more and more PEVs are being
plugged into the power grid, the control or management issue of
PEV charging arises, since mass unregulated charging processes of
PEVs may result in degradation of power quality and damage util-
ity equipments and customer appliances [3]. Typically, a charging
aggregator is required to decide the control sequences of a group of
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PEVs based on technical constraints (e.g., the state-of-charge (SoC)
of PEV batteries) and specific objectives (e.g., minimizing the cost
of charging). The idea of coordinating PEV group charging by an
aggregator has been discussed in previous works on maximizing
customer convenience [4], reducing peak power demand from the
grid [5], and so on.

Another promising methodology of improving power reliability
is the dynamic pricing strategy in Smart Grid [6]. In the Smart Grid
infrastructure, utility companies could employ real-time or time-of-
use electricity pricing policies, i.e., employing different electricity
prices at different time periods in a day or at different location-
s. This policy can incentivize consumers to perform demand side
management, a.k.a. demand response, by shifting their load de-
mands from peak hours to off-peak hours [7],[8]. As most of the
vehicles are parked on average of 96% of the time [1], dynamic
pricing policy offers a chance for PEV owners to reduce their elec-
tricity cost by exploiting the energy storage ability of PEV batteries
through vehicle-to-grid (V2G) network [9],[10]. However, there
are challenges with V2G services because it is not clear how much
PEV battery aging, and therefore also the corresponding vehicle
warranty, are affected by the V2G operations. Without a careful
consideration of the PEV battery aging, the benefits from V2G op-
erations can hardly be realized and widely appreciated.

Moreover, regulation service (RS) has been proved to be the
most feasible service for grid-side use of PEVs in matching elec-
tricity supply with demand in real time while enabling PEV own-
ers to reduce electricity cost by offering a reserved power capaci-
ty[11],[12]. In an RS contract, each PEV owner declares an average
power consumption (for which he/she is charged) as well as a reg-
ulation service (for which he/she is credited). The vehicle is asked
to modulate its power consumption dynamically through V2G net-
work so as to track the RS signal provided by independent system
operators (ISOs), who in turn try to match supply and demand in
real time in presence of volatile and intermittent renewable energy
generation [11]. Due to this fact, the payoff from RS provisioning
should also be included in the PEV control mechanism.

To address the above-mentioned issues, we consider the problem
of PEV charging under dynamic pricing and RS provisioning, with
a given departure time and a given target state-of-charge (SoC) lev-
el at that time. In this problem, we explicitly take into account the
degradation of battery state-of-health (SoH), which is defined as
the ratio of full charge capacity of an aged battery to its designed
(nominal) capacity, during V2G operations based on an accurate
SoH modeling. We also consider a power market with RS provi-
sioning, in which PEV owners are credited for the power reserves
that they provide through the V2G network. The objective function
to minimize therefore becomes the summation of the real energy
cost during PEV charging (cost from average power consumption
minus payoff from availing their power reserves) and the extra cost
associated with the aging of the PEV battery. Note that it is the re-



sponsibility of a local controller to announce the amount of power
reserves that a storage node (battery) can avail based on its current
state of charge.

The rest of this paper is organized as follows. We describe the
system modeling, price function, and overall cost function in Sec-
tion 2. In Section 3, we provide the formulation and solution of
the optimal PEV battery charging algorithm under dynamic pric-
ing and regulations. Section 4 presents experimental results, and
Section 5 concludes the paper.

2. SYSTEM MODEL

2.1 Model of PEV Storage
The most critical effect that causes power loss in the storage sys-

tem of a PEV is the rate capacity effect [13]. High-peak pulsed
discharging current will deplete much more of the battery’s stored
energy than a smooth workload with the same total energy demand.
We use discharging efficiency of a battery to denote the ratio of the
battery’s output current to the degradation rate of its stored charge
amount. The rate capacity effect specifies that the discharging effi-
ciency of a battery decreases with the increase of the battery’s dis-
charging current. The energy loss in the battery during the charging
process will be affected in a similar way.

Peukert’s formula [14] can be used to capture the rate capacity
effect. In this empirical formula, the battery charging and discharg-
ing efficiencies are described as functions of the charging current
Ic and the discharging current Id, respectively:

ηrate,c(Ic) =
1

(Ic/Iref )αc
, ηrate,d(Id) =

1

(Id/Iref )αd
(1)

where αc and αd are Peukert’s coefficients, and their values are
typically in the range of 0.1-0.3; Iref denotes the reference current
level for charging and discharging of the battery, which is propor-
tional to the battery’s nominal capacity Cfull.

We call Ic/Iref and Id/Iref the battery’s normalized charging
current and normalized discharging current, respectively. It can be
observed that the efficiency values ηrate,c(Ic) and ηrate,d(Id) in
Eqn. (1) will be higher than 100% if the magnitude of the normal-
ized charging or discharging current is less than one, which con-
tradicts common sense. We therefore modify the Peukert’s formu-
la such that the efficiency values ηrate,c(Ic) and ηrate,d(Id) are
saturated at 100% when the magnitude of the normalized charg-
ing/discharging current is less than one, meaning that the battery
suffers from no rate capacity effect for relatively low values of the
charging and discharging currents.

We denote the rate of change in electric energy stored in the bat-
tery by Pbat,int, a rate which may be positive (charging the stor-
age), negative (discharging from the storage), or zero. Based on
the modified Peukert’s formula, the relationship between Pbat,int
and the storage output power Pbat is given by

Pbat =



Vbat ·Ibat,ref ·(
Pbat,int

Vbat ·Ibat,ref
)β1 ,

Pbat,int
Vbat ·Ibat,ref

>1

Pbat,int, −1 ≤ Pbat,int
Vbat · Ibat,ref

≤ 1 (2)

−Vbat ·Ibat,ref ·(
|Pbat,int|

Vbat ·Ibat,ref
)β2 ,

Pbat,int
Vbat ·Ibat,ref

<−1

where Vbat is the battery terminal voltage and is assumed to be
(nearly) constant; Ibat,ref is the reference current of the battery
storage, which is proportional to its nominal capacity Cfull which
is given in Ah (Ampere Hour); coefficient β1 is in the range of
1.1-1.3, and coefficient β2 is in the range of 0.8-0.9.

We use the function Pbat = fbat(Pbat,int) to denote the rela-
tionship between Pbat and Pbat,int. One important observation is
that this function is a convex and monotonically increasing function
over the input domain−∞ < Pbat,int <∞, as shown in Figure 1.

Due to the monotonicity property, Pbat,int is also a monotonical-
ly increasing function of Pbat, denoted by Pbat,int = f−1

bat(Pbat).
We can see from Figure 1 that rate capacity effect makes the charg-
ing/discharging process less efficient.

Figure 1: Relationship between Pbat and Pbat,int considering
the rate capacity effect.

2.2 Model of Battery SoH Degradation
State-of-health (SoH) degradation is another significant portion

of power loss for PEV batteries [15]. To study the SoH degradation
effect, we first formally define the state-of-charge (SoC) of a battery
storage bank as follows:

SoC =
Cbat
Cfull

× 100% (3)

where Cbat is the amount of charge stored in the battery bank, and
Cfull is the amount of charge in the battery when it is fully charged.
We interpret SoC as the state of the battery bank. On the other hand,
theCfull value gradually decreases as a value of battery aging (i.e.,
SoH degradation). The amount of SoH degradation, denoted by
DSoH , is defined as follows:

DSoH =
Cnomfull − Cfull

Cnomfull

× 100% (4)

where Cnomfull is nominal value of Cfull for a fresh new battery.
The SoH of batteries is difficult to estimate because it is related to

a capacity fading effect (i.e., SoH degradation) which results from
long-term electrochemical reactions inside the battery. The capac-
ity fading is related to the carrier concentration loss and internal
impedance growth in the batteries. These effects strongly depend
on the operating condition of the battery such as charging and dis-
charging currents, number of charge-discharge cycles, SoC swing,
average SoC, and operation temperature [16],[17]. The character-
ization of a battery cell requires time-consuming experiments and
mathematical models are used to help us reduce the time complexi-
ty in estimating the SoH degradation. Electrochemistry-based mod-
els [18] are generally accurate but not easy to implement. Hence,
we apply the SoH degradation model of Li-ion batteries proposed
in [19], which can be applied to cycled charging and discharging of
the battery elements and shows a good match with real data.

The SoH degradation model estimates the SoH degradation for
cycled charging/discharging of a Li-ion battery cell, where a (charg-
ing/discharging) cycle is defined as a charging process of the bat-
tery cell from SoClow to SoChigh and a discharging process right
after it from SoChigh to SoClow. The SoH degradation during
one such cycle depends on the average SoC level SoCavg and the
SoC swing SoCswing . We calculate SoCavg and SoCswing of one
cycle using:

SoCavg = (SoClow + SoChigh)/2 (5)

SoCswing = SoChigh − SoClow (6)



SoCswing achieves the maximum value of 1.0 (100%) for the full
100% depth of discharge cycle, i.e., the SoC changes from 0 up to
100% and then back to 0. The SoH degradation DSoH,cycle during
this charging/discharging cycle, accounting for both average SoC
level and SoC swing, is:

D1 = KCO · exp[(SoCswing − 1) · Tref
Kex · TB

] + 0.2
τ

τlife

D2 = D1 · exp[4KSoC · (SoCavg − 0.5)] · (1−DSoH)

DSoH,cycle = D2 · exp[KT · (TB − Tref ) · Tref
TB

]

(7)

where Kco, Kex, KSoC , and KT are battery specific parameter-
s; TB and Tref are the battery’s operation temperature and ref-
erence temperature, respectively; τ is the duration of this charg-
ing/discharging cycle; τlife is the calendar life of this battery. We
useDSoH,cycle(SoCswing, SoCavg) to denote the relationship be-
tween DSoH,cycle, SoCswing , and SoCavg . The total SoH degra-
dation (in reference to a fresh battery) after M charging and dis-
charging cycles is calculated by:

DSoH =

M∑
m=1

DSoH,cycle,m (8)

whereDSoH,cycle,m denotes the SoH degradation in themth cycle.
One can observe in Eqn. (8) that the normalized SoH degradation

value DSoH accumulates over the battery lifetime from 0 (brand
new) to 100% (no capacity left). In the literature, one typically
finds values of DSoH = 20% or DSoH = 30%, indicating 80% or
70% remaining capacity, respectively, to measure the battery’s end
of life. The relationship between the Li-ion battery SoH degrada-
tion versus the SoC swing and average SoC level is shown in Figure
2. In this experiment, we change the duration of a cycle to achieve
different average SoC levels and SoC swings. We repeat the charge
and discharge cycling until the battery reaches DSoH = 20%, and
record the total number of cycles (i.e., the cycle life of the battery.)
The results are also shown in Figure 2. There are two important
observations drawn from the figure: (i) a higher SoH degradation
rate is caused by both a higher SoC swing and a higher average SoC
level in each charging/discharging cycle, and (ii) the cycle life of a
Li-ion battery increases superlinearly with respect to the reduction
of SoC swing and average SoC. We make use of these observations
as well as the function DSoH,cycle(SoCswing, SoCavg) in the rest
of this paper.

Figure 2: Li-ion battery SoH degradation versus SoC swing (at
different average SoC levels) and average SoC level (at different
SoC swings).

2.3 Model of Regulation Service Provisioning
Market

Power market RS provisions have been widely studied in recent
years [11], which are adopted to match electricity supply with de-

mand in real time. There are several power markets with different
time-scales, and we focus on the hour-ahead power market in [20]
because PEVs can participate in RS provisioning market in the time
scale of several hours. Currently, RS reserves are mainly offered by
centralized generators. However, market rules are changing to al-
low the demand side, especially PEVs, to the provide reserves as
well. For example, PJM, one of the largest US ISOs, has allowed
electricity loads to participate in reserve transactions [21].

In this power market, each energy user declares an average en-
ergy consumption P and an RS reserve R to the power system in
advance of each hour. With market clearing prices for energy con-
sumed and RS reserves, ΠE and ΠR, the energy user is charged
for its average power consumption and credited for the RS reserves
such that the participant pays a net amount of ΠEP −ΠRR. How-
ever, the credit for the RS reserves does not come for free. As the
hour unfolds, each energy user is asked to modulate its real time
power consumption P (t) dynamically so as to track the RS signal
z(t) by ensuring that P (t) = P + z(t)R where −1 ≤ z(t) ≤ 1.
It can be observed that energy users can reduce their electricity bill
by providing RS reserves, while the power grid can also achieve
a better match between power supply and demand in presence of
volatile and intermittent renewable energy generations.

The RS provisioning market is especially promising for PEVs,
because the charging policy can be expediently adjusted in order
to meet the required power consumption level specified in the RS
provisioning contract. When connected to the grid, each vehicle
determines the optimal average power consumption P and the RS
reserve R of the next time slot (hour) based on its current SoC, the
target SoC, dynamic energy prices, and the credit for RS reserves.
OnceP andR are set, each vehicle adjusts its charging power in the
next hour based on the RS signal z(t) which is dynamically broad-
casted from the power grid. The RS signal z(t) is generated based
on the real-time power market situation and is used to balance the
supply and demand in the power market [22]. For each individual
PEV owner who has very little effect on the entire power market,
z(t) can be considered as a given signal.

The uncertainty of the z(t) signal complicates the optimal PEV
charging schedule determination because of the following reason-
s: First, the PEV requires a guaranteed amount of charging energy
during the parking time to satisfy a target SoC, while in the worst
case, the grid might require the PEV owners to always ramp down
the charging power consumption; In addition, the SoCswing value
has a strong dependency on the real-time charging sequence, which
is directly related to the actual RS signal z(t), and hence the bat-
tery SoH degradation is also dependent on the z(t) signal; Finally,
the SoC level of future time slots can not be accurately estimated
due to the uncertainly of z(t). To participate in RS provisioning
market, a joint optimization framework should be developed that
would consider the dynamic price of the power grid, the change of
SoCswing value as well as the resultant battery SoH degradation,
and the uncertainty of SoC level in future time slots.

3. PROBLEM FORMULATION AND OPTI-
MIZATION

3.1 Problem description
In this section, we present the formulation and the solution of the

cost minimization problem for a PEV in a V2G system in the con-
text of hour-ahead power market with regulation services1. Assume
that a PEV is scheduled to depart after N hours of parking at home
or at a public parking lot, and it can thus participate in the power
market for N consecutive hours. The initial SoC level of the PEV
battery is given by SoC[0] = SoCini, and the target SoC level
is SoCtar when the PEV departs. We denote the dynamic energy

1Please note that other types of dynamic energy prices, such as
day-ahead dynamic pricing, may also be supported.



price and the RS reserve revenue per unit of energy provided by the
PEV during the i-th hour by ΠE [i] and ΠR[i], respectively, while
the average power consumption and the amount of RS reserve de-
clared by the PEV in the i-th hour are denoted by P [i] and R[i],
respectively. Please note that ΠE [i] and ΠR[i] are announced at
the beginning of the i-th hour in this hour-ahead power market, and
the PEV declares P [i] and R[i] to the grid accordingly. During the
i-th hour, the real-time power drawn from the grid can be expressed
as follows

P (t) = P [i] + z(t)R[i] (9)

where z(t) is the regulation signal as defined in Section 2.3.
The total cost function is comprised of two parts: the energy cost

during PEV charging (cost from average power consumption minus
payoff from RS reserve provisioning) and the cost associated with
PEV battery aging, given as follows:

Costtotal = Costenergy + Costaging (10)

The energy cost in Eqn. (10) is calculated as follows:

Costenergy =

N∑
i=1

(ΠE [i]P [i]−ΠR[i]R[i]) (11)

while the battery aging cost is given by (we assume that the battery
reaches end-of-life when SoH degradation is 30%):

Costaging =
DSoH

1− SoHth
· Costbat (12)

where Costbat is the cost to purchase and replace the PEV bat-
tery, DSoH represents the amount of SoH degradation during the
combination of driving cycle and charging process, SoHth is the
threshold SoH level (typically 70%) at which the battery should be
replaced.

As can be seen from Eqn. (11) and (12),Costenergy andCostaging
depend on the entire sequence of ΠE [i] and ΠR[i], as well as the
RS signal z(t) which will directly affect the battery SoC range dur-
ing each hour. However, in an hour-ahead power market, one only
knows the price for average power and credit for power regulation
for the next hour. In order to reflect the potential opportunity for
power regulation in all future hours, we propose to estimate the val-
ues of ΠE [i]’s and ΠR[i]’s based on the pricing history. Moreover,
as mentioned earlier, the uncertainty of z(t) adds to the difficul-
ty of accurately calculating the total cost. To tackle this problem,
rather than finding an effective approach to predict the complicat-
ed dynamics of the regulation signal, we treat z(t) as a random
variable that follows a specific distribution on [−1, 1] which can be
extracted from data in the past. Once the probability density func-
tion (PDF) of z(t) is obtained, the expected behavior of the system
can be estimated based on the statistics of z(t).

In order to find the optimal P̄ [i]’s andR[i]’s to minimize the total
cost of the PEV, we propose the following adaptive control frame-
work. At the beginning of the i-th hour, ΠE [i] and ΠR[i] are given,
and the HEV controller determines the average power consumption
and the RS reserve of all future hours based on the current knowl-
edge of the system parameters (either given or estimated). While
the values of P̄ [i] and R[i] for the i-th hour are submitted to the
grid, the values of P̄ [i+1], . . . , P̄ [N ] andR[i+1], . . . , R[N ] will
be further updated at the next decision epoch at the beginning of
the (i + 1)-th hour when our knowledge of parameters including
ΠE [i+ 1] and ΠR[i+ 1] is updated.

3.2 Adaptive Control Problem Formulation
We describe the adaptive control problem of HEV charging at

the beginning of the i-th hour. At that time ΠE [i] and ΠR[i] are
announced from the grid, and the SoC level of the HEV battery is
given by SoC[i − 1]. The amount of average power consumption
and RS reserve to be submitted to the grid, i.e. P̄ [i] and R[i], are

derived by HEV controller by jointly considering the next hour (the
i-th hour) and all other hours in the future (the (i + 1)-th to N -th
hour). As mentioned in Section 3.1, in order to consider all future
hours, the unknown parameters including the market prices, the
SoC of the battery, and the SoH degradation of the battery will
first be estimated. While finding these estimations, we assume that
history information of the power market (e.g. pricing, regulation
signal, etc.) are available.

For the market clearing price of average power consumption over
hour i′ (i + 1 ≤ i′ ≤ N), ΠE [i′], we make the observation that
its daily fluctuation pattern is similar across different days and a
high power price in a specific hour usually implicates high prices
in the following hours. Therefore, the estimated value, denoted by
Π̂E [i′], is calculated as

Π̂E [i′] =
ΠE [i]

Π̄E [i]
· Π̄E [i′] (13)

where Π̄E [i] and Π̄E [i′] are the average market clearing prices for
average power consumption in the i-th hour and the i′-th hour in
the history, respectively. In this way we effectively derive the es-
timation Π̂E [i′] over the i′-th hour through the given value ΠE [i].
Using the same approach, the estimated value of ΠR[i′], denoted
by Π̂R[i′], can be calculated.

To estimate the SoC change and the SoH degradation of the bat-
tery of the PEV, we first extract the empirical p.d.f. (probability
density function) of z(t), which will be denoted by fZ(z) where
−1 ≤ z ≤ 1. Considering the power conversion efficiency and the
rate capacity effect, the relation between the power drawn from the
power grid, P̄ [i′] + z(t)R[i′], and the battery charging/discharging
power Pbat(t) is given as

P̄ [i′] + z(t)R[i′] =


1

ηC
· Pbat(t), Pbat(t) ≥ 0

ηD · Pbat(t), otherwise
(14)

where ηC and ηD are the charging and discharging efficiencies of
the power converter, respectively. The relationship betweenPbat(t)
and the internal input power of the battery Pbat,int(t) is specified in
Eqn. (2). Based on these two relationships we define the function
P̄ [i] + z(t)R[i] = ftran(Pbat,int(t)).

Therefore, the estimated average internal input power of the bat-
tery for the i′-th hour, denoted by P̂bat,int[i′], can be calculated
as

P̂bat,int[i
′] =

∫ 1

−1

f−1
tran(P̄ [i′] + zR[i′])fZ(z)dz (15)

And the estimated SoC values for future hours, denoted by ˆSoC[i′],
are determined by:

ˆSoC[i′] = SoC[i− 1] +

i′∑
j=i

P̂bat,int[j] ·∆T

Vbat · Cfull
, i ≤ i′ ≤ N (16)

Using functions fZ(·) and ftran(·), the approximate SoH degrada-
tion during the charging period, denoted by D̂SoH , can be calculat-
ed as follows

D̂SoH = NC ·DSoH,cycle(SoCswing, SoCavg) (17)

where DSoH,cycle(SoCswing, SoCavg) is defined as in Eqn. (7)
and NC is the equivalent charging cycles that can be calculated as

NC =
∆T

∑
i′
∫ 1

−1
max

(
ηC(P̄ [i′] + zR[i′]), 0

)
fZ(z)dz

2Vbat · Cfull · SoCswing
(18)

Based on the above calculations, the adaptive control problem at
the beginning of time slot i (1 ≤ i ≤ N ) can be formulated as
follows:



Given: Current SoC level SoC[i− 1], target SoC level SoCtar ,
next-hour energy pricing function ΠE [i], RS reserve revenue ΠR[i]
and PDF of RS tracking signal z(t).

Predict: Future energy pricing function and RS reserve revenue
Π̂E [i′] and Π̂R[i′] for i < i′ ≤ N ,

Find: SoChigh, SoClow, P [i′], and R[i′], for i ≤ i′ ≤ N .
Minimize: Estimated Objective function in Eqn.(10)
Subject to: Charging/discharging power constraint and SoC con-

straint
To solve the problem efficiently after predicting the values of

the unknown parameters, we propose to use a solution framework
with an outer loop and a kernel algorithm. In the outer loop, we
iterate over a set of possible values of SoChigh and SoClow. In
each iteration, given the range of the SoC of the battery during the
charging period, we formulate an optimization problem as follows:

Find: P̄ [i′]’s, R[i′]’s, P̂bat,int[i′]’s, and ˆSoC[i′]’s
Minimize:

ΠE [i]P̄ [i]−ΠR[i]R[i] +

N∑
i′=i+1

(ΠE [i′]P̄ [i′]−ΠR[i′]R[i′])

+
D̂SoH

1− SoHth
· Costbat

(19)

Subject to:

P̄ [i′] +R[i′] ≤ Pmax,C , ∀i′ (20)

P̄ [i′]−R[i′] ≥ Pmax,D, ∀i′ (21)

P̂bat,int[i
′] ∈

[
f−1
tran (−Pmax,D) , f−1

tran (Pmax,C)
]
, ∀i′ (22)

P̂bat,int[i
′] ≤

∫ 1

−1
f−1
tran(P̄ [i′] + zR[i′])fZ(z)dz, ∀i′ (23)

ˆSoC[i′] = ˆSoC[i′ − 1] +
P̂bat,int[i

′]∆T

VbatCfull
, ∀i′ (24)

SoC[N ] ≥ SoCtar + σ (25)

SoC[i′ − 1] + ηC
(
P̄ [i′] +R[i′]

)
∆T ≤ SoChigh, ∀i′ (26)

SoC[i′ − 1] + f−1
tran

(
P̄ [i′]−R[i′]

)
∆T ≥ SoClow, ∀i′ (27)

R[i′] ≥ 0, ∀i′ (28)

Constraints (20) and (21) set the bounds for the total charging
and discharging power for the battery. Similarly, constraint (22) set
the range for the actual energy change rate of the battery. Constraint
(23) captures the relation between the input power from the grid
and the energy change of the battery. Constraint (24) estimate the
SoC of the battery for each future hour. Constraint (25) ensures
that the SoC reaches the preset target value when the PEV departs,
where σ is a parameter to account for the estimation error of the
SoC, which can be set to be proportional to the averageR[i′] values.
Constraints (26) and (27) ensure that the SoC of the battery will not
go beyond the SoC bound set in the outer loop with the input power
modulated by the regulation signal.

Based on [23], it can be proved that ftrans(·) is a convex in-
creasing function while f−1

trans(·) is a concave increasing function.
Therefore, the objective function as shown above is a convex func-
tion of all decision variables, and every inequality constraints in
the formulation can be trivially transformed into a convex form.
At the same time, all equality constraints are affine. Consequently,
the formulated problem that is solved in each iteration of the SoC
range is a standard convex optimization problem that can be solved
optimally with polynomial time complexity using algorithms such
as the interior point algorithm [23].

Because the kernel algorithm can be solved with polynomial
time complexity and the outer loop can be achieved by a search
algorithm (an exhaustive search in the worst case), the overall time
complexity of the algorithm is pseudo-polynomial.

4. EXPERIMENTAL RESULTS
In the simulation, we consider an hour-ahead RS provisioning

power market and the PEV is equipped with a 30kWh Li-ion bat-
tery. Two baseline solutions are used for comparison. The first
baseline solution is one which constant power charging without
regulation. The second baseline solution applies dynamic-pricing-
aware charging control without regulation.

The charging/discharging efficiencies of the battery are set to
0.85, and the Peukert factors β1 and β2 are set to 1.15 and 0.87, re-
spectively. The maximum charging and discharging power, Pmax,C
and Pmax,D , are set to 10kW. All SoH related parameters in Eqn.
(7) are from [17], and we consider an average battery lifetime of 5
years (the normal Li-ion battery lifetime is 3-7 years) as well as a
battery cost of $400. The dynamic pricing scheme for power con-
sumption and regulation service are extracted from the locational
based marginal pricing (LBMP) and regulation pricing provided by
NYISO [24] for October 12th – 13th, 2014. The pricing history
used for future price estimation as in Eqn. (13) is also from NY-
ISO. At the same time, we use the sampled data by PJM [21] (sam-
pled per 4-second interval) from May 10th, 2014 for the tracking
signal z(t) in our simulation. TABLE I shows the energy cost and
aging cost of the optimal solution for different SoCini and SoCtar
values, under different total charging hoursN . The energy cost and
aging cost of the two baseline solutions are also shown in this table
for comparison. Notice that a the energy cost might be negative, in-
dicating that the PEV makes some profit by offering RS reservation
or buying electricity when the electricity price is low while selling
back when the price is high.

We first consider an extreme case that SoCini = SoCtar , i.e.,
the PEV does not need to charge at all. As shown in TABLE I,
our proposed solution brings an opportunity of making profit from
offering RS reservation while at the same time balancing the supply
and demand in the power grid (a negative energy cost is achieved).
However, the revenue might not be high enough to compensate the
cost of exacerbating the aging process of the battery, as the total
cost is still positive.

It can be observed from TABLE I that our proposed solution
achieves an total cost of 15% less than the baseline solutions on
average. 2 The benefit of the proposed algorithm mainly comes
from the reduction of energy cost (30% reduction on average), as
PEV owners can participate in RS provisioning power market and
get credit from offering RS reservation. Figure 3 shows the detailed
result of our proposed optimal solution for electricity price and bid-
ding decision under N = 12, SoCini = 0.2 and SoCtar = 0.8.
One can see that in our optimal solution, the PEV offers a consid-
erable amount of RS reserve. The energy cost is further reduced
when the total charging hours is increased. Besides the fact that
longer charging time will smoothen the charging current and thus
reduce rate capacity effect, our proposed solution also achieves
higher profit from participating in more time slots. The adaptive
solution guarantees that PEV reaches the target SoC no matter what
z(t) signal is broadcasted. However, longer charging time will in-
crease the aging cost.

Another observation from TABLE I is that it is better for PEVs
to start charging at a relatively low SoCini level. The reason is that
under the same total charging amount, a lower SoCini will lead to
a smaller SoCavg and thus the aging cost can be reduced.

5. CONCLUSION
In this paper, we consider the problem of PEV charging under

an hour-ahead RS reservation market with dynamic energy prices,
with a given total charging time as well as a target SoC level at
that time. In this problem, we explicitly take into consideration the
degradation of battery SoH during V2G operations, based on an ac-
curate SoH modeling. The total cost function therefore becomes the

2Please note that a pessimistic estimation of charge-discharge cy-
cles is used in our proposed solution and the actual aging cost of
our solution should be less than the presented result.



Table 1: Comparison between the Cost of Proposed Solution and Baseline Solutions
Parameters Cost of Proposed Solution ($) Cost of Baseline Solution 1($) Cost of Baseline Solution 2($)

N SoCini SoCtar Energy Aging Total Energy Aging Total Energy Aging Total
6 0.1 0.1 -0.01 0.61 0.60 0 0.61 0.61 0 0.34 0.34
6 0.2 0.5 0.26 0.52 0.78 0.44 0.51 0.95 0.41 0.51 0.92
6 0.2 0.8 0.60 1.06 1.66 0.98 1.04 2.02 0.91 1.04 1.95
6 0.5 0.8 0.25 1.55 1.80 0.46 1.53 1.97 0.42 1.53 1.95
8 0.2 0.5 0.23 0.63 0.86 0.40 0.62 1.02 0.35 0.62 0.97
8 0.2 0.8 0.54 1.24 1.78 0.86 1.23 2.09 0.76 1.23 1.99
8 0.5 0.8 0.22 1.88 2.10 0.40 1.87 2.27 0.45 1.87 2.22

12 0.2 0.5 0.19 0.86 1.05 0.35 0.85 1.20 0.26 0.85 1.11
12 0.2 0.8 0.45 1.63 2.08 0.70 1.62 2.32 0.60 1.62 2.22
12 0.5 0.8 0.18 2.58 2.76 0.35 2.55 2.90 0.25 2.55 2.80

Figure 3: Electricity Price and Bidding Decision for N = 12,
SoCini = 0.2 and SoCtar = 0.8

summation of the energy cost during PEV charging (cost from de-
claimed average energy consumption minus payoff from declaimed
RS reserves) and the extra cost associated with the aging of PEV
battery. We derive an optimal control algorithm of PEV that adap-
tively updates its current SoC level and always makes the optimal
bidding decision based on an accurately estimated price function in
the future hours. The proposed algorithm also accurately accounts
for the power loss during the charging and discharging process of
PEV batteries, especially the rate capacity effect, and in power con-
version circuits, which is often neglected in the reference work.
Experimental results demonstrate that the proposed optimal PEV
charging algorithm minimizes the combination of electricity cost
and battery aging cost in the RS provisioning power market. We
use actual data for RS reserve and dynamic energy prices and en-
ergy storage modeling from actual experiments in simulations, and
the experimental result can serve practical purpose.
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