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Abstract—To improve the cycle efficiency and peak output 
power density of energy storage systems in electric vehicles 
(EVs), supercapacitors have been proposed as auxiliary energy 
storage elements to complement the mainstream Lithium-ion (Li-
ion) batteries. The performance of such a hybrid electrical energy 
storage (HEES) system is highly dependent on the implemented 
management policy. This paper presents a model-free reinforce-
ment learning-based approach to dynamically manage the cur-
rent flows from and into the battery and supercapacitor banks 
under various scenarios (combinations of EV specs and driving 
patterns). Experimental results demonstrate that the proposed 
approach achieves up to 25% higher efficiency compared to a Li-
ion battery only storage system and outperforms other online 
HEES system control policies in all test cases. 

Keywords—Electric Vehicle; Hybrid Energy Storage Systems; 
Reinforcement Learning 

I.  INTRODUCTION 
There has been a steady increase in the market share of full 

electric vehicles (FEVs) and hybrid electric vehicles (HEVs) 
over the past few years [1]. Compared to conventional internal 
combustion engine (ICE) vehicles, FEV and HEV have better 
energy efficiency [2]. These improvements mainly result from 
the fact that the efficiency of an electric motor (typically 80-
90%) is significantly higher than that of an ICE (typically 
around 20%) [3]. In addition, FEVs and HEVs can easily re-
cover a portion of kinetic energy back to electric energy when 
the vehicle is decelerating, i.e., by using the regenerative brak-
ing technique. They also have the ability to completely shut 
down the electric motor when the vehicle is in the stand-by 
mode [2]. 

In most recent mass production FEVs and HEVs, Li-ion 
battery is preferred over other types of batteries. The main ad-
vantage of Li-ion battery is its high cell voltage, high energy 
density, and long lifetime. Li-ion battery also has less self-
discharge and no memory effect [5]. However, the power den-
sity (defined as the maximum amount of power provided per 
unit volume or mass) of Li-ion battery is low. In addition, a 
high charging or discharging current significantly degrades Li-
ion battery's cycle efficiency due to its rate capacity effect [18], 
and severely deteriorates its cycle life [6]. Unfortunately, high 
charging and discharging current is rather common in the ap-
plication of FEV and HEV. The peak power demand during 
acceleration is usually several times larger than that of constant 
speed driving [7]. Regenerative braking also produces high 

charging currents [9]. 

To combat the disadvantages and improve the cycle effi-
ciency of Li-ion batteries, researchers have proposed to com-
bine supercapacitors (also known as ultracapacitors) with Li-
ion batteries to form a hybrid electrical energy storage (HEES) 
system [4]. Contrary to Li-ion battery, supercapacitor has supe-
rior power density and negligible rate capacity effect, despite 
its low energy density and high capital cost. Therefore, super-
capacitors can be used as an auxiliary energy storage buffer to 
take care of peak discharging and charging power, while Li-ion 
batteries provide the average power demand. 

Researchers have proposed a few control policies for the 
hybrid energy storage system in FEV and HEV, which can be 
categorized into offline optimization-based policies and online 
decision-based policies. Offline management policies assume 
given driving profiles, and their optimality relies on the accura-
cy of their models of motors, vehicle dynamics, conversion 
circuitry, and electrical storage systems. For example, Wang et 
al. investigate both the design and control problem of a hybrid 
storage system, with much simplification on the storage ele-
ment model and the driving profile [14]. Moreno et al. propose 
an optimal control policy based on the complete knowledge of 
the storage system's model, DC-DC converter's model and the 
driving profile [11]. Sangyoung et al. employ charge migration 
from the battery to the supercapacitor to improve the overall 
efficiency of the storage system, considering the rate capacity 
effect of Li-ion battery during both charging and discharging 
[9]. 

Most online management policies are heuristic-based ap-
proaches. Shah et al. propose a simple control algorithm to 
manage the HEES system, where supercapacitor is used only 
during sudden vehicle acceleration or deceleration [13]. Cao et 
al. elaborate the possible configurations of hybrid storage sys-
tems and propose a hysteretic feedback control method to 
maintain supercapacitor terminal voltage [12]. Ortúzar et al. 
use a threshold-based approach that limits the charging and 
discharging current of the battery bank [15]. Miller et al. ap-
plied feedback control on the supercapacitor voltage so that the 
fast transient power demand is handled by the supercapacitor 
[16]. Thounthong et al. consider a similar HEES system where 
the fuel cell is equipped as the main storage unit instead of Li-
ion batteries [10]. Other than heuristic-based management poli-
cies, Moreno and Ortúzar et al. also propose to use neural net-
work based approach to control the hybrid storage system 
[11][15]. 
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In this work, we focus on the management of HEES system 
for FEVs. To the best of our knowledge, this is the first paper 
that presents a model-free online reinforcement learning (RL) 
based approach to manage HEES systems in FEVs. Unlike 
offline optimization-based policies, our approach is model-free, 
i.e., it does not need to know the model of vehicle dynamics, 
motors, conversion circuitry, etc. It treats these models as a 
black box and solely relies on the input and output to optimize 
its decision. Furthermore, it adjusts the management policy to 
adapt to different driving profiles. Our approach is also differ-
ent from the neural network based one in that neural network is 
supervised learning technique based on golden results used for 
training, whereas our approach learns on the fly. We perform 
simulations for various FEV specifications and different driv-
ing profiles. 

II. SYSTEM OVERVIEW 
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Fig. 1. Powertrain of a 2WD FEV. 

Fig. 1 shows the powertrain structure of a two-wheel drive 
(2WD) FEV. The system consists of an electric traction motor, 
an energy storage system, a brake control system, power con-
version circuitry including an IGBT-based inverter and switch-
ing-mode power converters (shown in Fig. 3), and other elec-
tric systems such as air-conditioning, lighting and in-vehicle 
entertainment systems. 
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Fig. 2. Torque-speed relationship of an electric motor. 

During normal driving the energy storage system provides 
power to the traction motor, and the motor applies torque to 
wheels through the axle shafts. Unlike ICEs, the output torque 
of electric motors are high throughout the full speed range, 
therefore the use of multiple transmission gears is not com-
monly required. Fig. 2 shows a typical max-torque versus 
speed curve of an electric motor. As shown in the figure, the 
operation of an electric motor is usually divided into two re-
gions: a constant-torque region and a constant-power region. In 

the constant-torque region, the maximum torque applied is lim-
ited by the tire grip or the consideration of passenger comfort, 
and the output power of the electric motor is proportional to the 
speed of the vehicle. In contrast, the maximum torque is lim-
ited by the maximum power of the motor in the constant-power 
region. 

During braking, the electric motor works as a generator to 
recycle kinetic energy and store it back to the energy storage 
system (regenerative braking) or use it to heat up vehicle inte-
rior through a thermal resistor (dynamic braking). The deceler-
ating torque generated by the motor alone is usually too small 
to slow down the vehicle as quickly enough. Thus, a conven-
tional hydraulic braking system is still required. 

A. Hybrid Energy Storage System 
Fig. 3 shows the HEES system structure. It employs paral-

lel structure as it is flexible (the terminal voltages of both ener-
gy storage banks varies and may not match the voltage on the 
DC bus) [17]. The system consists of a battery bank as the 
main storage unit and a supercapacitor as an auxiliary storage 
unit. Three main factors contribute to the power loss in such a 
HEES system, including the internal resistance of storage 
banks, the rate capacity effect of the Li-ion battery bank, and 
the power dissipation in the two switching-mode power con-
verters. 
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Fig. 3. Hybrid electrical energy storage system. 

The power loss due to internal resistance is given by 𝐼2𝑟𝑖𝑖𝑖 . 
The internal resistance 𝑟𝑖𝑖𝑖  of a Li-ion battery is a function of 
the state-of-charge (SoC) of the battery, and is generally dif-
ferent from charging and discharging. The SoC of a battery is 
defined as the ratio between the stored charge and the full 
charge capacity. 

 
Fig. 4. Li-ion battery cell characteristics. 
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Fig. 4 illustrates the open circuit voltage and internal re-
sistance as a function of the SoC for a typical Li-ion battery 
cell during discharging. There exists several methods to esti-
mate the SoC of a Li-ion battery accurately, such as Coulomb 
counting [19], extended Kalman filtering [20], etc. 

Rate capacity effect describes the fact that the actual charge 
change rate 𝐼𝑎 inside a battery is a sublinear (superlinear) func-
tion of its charging (discharging) current 𝐼𝑐 (𝐼𝑑). The Peukert's 
law is a widely adopted empirical equation to evaluate the rate 
capacity effect [18]: 

𝐼𝑎 ≜ 𝑄𝑓
d𝑆𝑆𝑆𝑏(𝑡)

d𝑡
= 𝐼𝑟𝑟𝑟 �

𝐼𝑐
𝐼𝑟𝑟𝑟

�
𝑘𝑐

 or 𝐼𝑟𝑟𝑟 �
𝐼𝑑
𝐼𝑟𝑟𝑟

�
𝑘𝑑

 (1) 

where 𝑘𝑐  and 𝑘𝑑  are the Peukert's constants (0 < 𝑘𝑐 < 1 <
𝑘𝑑 < 2) for charging and discharging, respectively. 𝐼𝑟𝑟𝑟  is the 
reference current and is usually calculated by 𝑄𝑓/20 where 𝑄𝑓 
(in Ah) is the full charge capacity of a battery. Supercapacitors 
do not suffer from rate capacity effect in contrast. 

Two switching-mode power converters convert the terminal 
voltage of both storage banks to match the DC bus voltage set-
ting and regulate input/output currents of both banks by feed-
back control. The conversion efficiency of a converter 𝜂𝑐𝑐𝑐𝑐 is 
defined as: 

𝜂𝑐𝑐𝑐𝑐 =
𝑃𝑜𝑜𝑜
𝑃𝑖𝑖

=
𝑉𝑜𝑜𝑜𝐼𝑜𝑜𝑜
𝑉𝑖𝑖𝐼𝑖𝑖

 (2) 

where 𝑉𝑜𝑜𝑜 and 𝐼𝑜𝑜𝑜  are the output voltage and current, 𝑉𝑖𝑖 and 
𝐼𝑖𝑖 are the input voltage and current of the converter, respec-
tively. The efficiency of a converter is usually not constant, but 
dependent on its input and output voltages and currents [9]. 

B. Vehicle Dynamics 
A common model used to calculate the total traction force 

𝐹𝑇 of a vehicle is based on the following equation [8]: 

𝐹𝑇 = 𝐹𝑎 + 𝐹𝑔 + 𝐹𝑅 + 𝐹𝐴𝐴 

= 𝑚 ∙ 𝑎 + 𝑚 ∙ 𝑔 ∙ sin𝜃 + 𝐶𝑅 ∙  𝑚 ∙ 𝑔 ∙ cos𝜃 +
1
2𝐶𝐴 ∙ 𝜌 ∙ 𝐴 ∙ 𝑣

2 (3) 

where 𝐹𝑎 is the acceleration force, 𝐹𝑔 is the component of vehi-
cle gravity force along the road with slope 𝜃, 𝐹𝑅 is the rolling 
friction force, and 𝐹𝐴𝐴  is the aerodynamic resistance force. 
Note that 𝐶𝑅 is the rolling resistance coefficient which is de-
pendent on the condition of both the road and the tire, 𝐶𝐴 is the 
aerodynamic resistance coefficient, 𝜌 is the air density, 𝐴 is the 
frontal area of the vehicle, and 𝑣 is the velocity of the vehicle. 

Given the total traction force, the driving power demand is: 

𝑃𝑑 = 𝐹𝑇 ∙ 𝑣/𝜂𝑚 (4) 
where 𝜂𝑚 is the efficiency of the electric motor (including the 
inverter) and is a function of the angular speed of the motor 
𝜔𝑚 = 𝑣 ∙ 𝜇/𝑟  and the torque of the motor 𝑇𝑚 = 𝐹𝑇 ∙ 𝑟/𝜇 
where 𝑟 is the radius of the tire and 𝜇 is the axle ratio. Note that 
in regenerative braking mode (𝑇𝑚 < 0), the hydraulic braking 
system may provide braking torque in addition to that provided 
by the electric motor. 

We define 𝑃𝑡𝑡𝑡𝑡𝑡  as the total power drawn from the energy 
storage system: 

𝑃𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑑 + 𝑃𝑒 (5) 
where 𝑃𝑒 accounts for the power demand of all other electrical 
systems in the vehicle. 

III. PROBLEM FORMULATION 
The control variables in the HEES system management 

problem in FEVs are the charging/discharging currents of the 
battery bank and the supercapacitor bank. More precisely, at 
any time, the driving power demand, regenerative braking 
power and the power demand of other electrical systems are 
given by the position of the gas or the brake paddle and the 
vehicle dynamics. Therefore, the hybrid storage system con-
troller only concerns how to distribute the total power demand 
defined in (5) between these two banks. 

Depending on the sign of 𝑃𝑡𝑜𝑜𝑜𝑜  and the decision made by 
the system controller, the HEES system is in one of the six 
modes as in TABLE I. A positive value of 𝑃𝑏  or 𝑃𝑠 means the 
corresponding energy storage bank is providing power and a 
negative of 𝑃𝑏  or 𝑃𝑠  means the corresponding storage bank is 
being charged. 

In Mode 1, both storage banks are supplying power to the 
motor. In Mode 6, both storage banks are being charged. In all 
other modes, one storage bank is supplying power to or getting 
charged by the electric motor and the other storage bank. Fig. 5 
shows the power flow of Mode 3, where the battery bank is 
providing power to the motor as well as charging the superca-
pacitor bank. 

TABLE I.  OPERATION MODES OF THE HEES SYSTEM. 

Mode Total Power 
𝐏𝐭𝐭𝐭𝐭𝐭 

Battery Output Power 
𝐏𝐛 

SuperCap Output Power 
𝐏𝐬 

1 𝑷𝒕𝒕𝒕𝒕𝒕 ≥ 𝟎 𝑷𝒃 ≥ 𝟎 𝑷𝒔 ≥ 𝟎 
2 𝑷𝒕𝒕𝒕𝒕𝒕 ≥ 𝟎 𝑷𝒃 < 𝟎 𝑷𝒔 ≥ 𝟎 
3 𝑷𝒕𝒕𝒕𝒕𝒕 ≥ 𝟎 𝑷𝒃 ≥ 𝟎 𝑷𝒔 < 𝟎 
4 𝑷𝒕𝒕𝒕𝒕𝒕 < 𝟎 𝑷𝒃 < 𝟎 𝑷𝒔 ≥ 𝟎 
5 𝑷𝒕𝒕𝒕𝒕𝒕 < 𝟎 𝑷𝒃 ≥ 𝟎 𝑷𝒔 < 𝟎 
6 𝑷𝒕𝒕𝒕𝒕𝒕 < 𝟎 𝑷𝒃 < 𝟎 𝑷𝒔 < 𝟎 

Let 𝐼𝑑,𝑏 and 𝐼𝑑,𝑠 (𝐼𝑑,𝑏 , 𝐼𝑑,𝑠 ≥ 0 ) denote the discharging cur-
rent of the battery bank and the supercapacitor bank, respec-
tively, 𝐼𝑐,𝑏 and 𝐼𝑐,𝑠 (𝐼𝑐,𝑏 , 𝐼𝑐,𝑠 ≤ 0) denote the charging current of 
these two banks. Note that 𝐼𝑑,𝑏  and 𝐼𝑐,𝑏  cannot be non-zero 
simultaneously. The same rule is applied to 𝐼𝑑,𝑠  and 𝐼𝑐,𝑠 . We 
combine both equations in one for writing simplicity: 
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Fig. 5. Mode 3 power flow in the HEES system. 



𝑃𝑏 = 𝑉𝑏𝑂𝑂�𝐼𝑑,𝑏 + 𝐼𝑐,𝑏� − �𝐼𝑑,𝑏
2 𝑅𝑑,𝑏 + 𝐼𝑐,𝑏

2 𝑅𝑐,𝑏� 
𝑃𝑠 = 𝑉𝑠𝑂𝑂�𝐼𝑑,𝑠 + 𝐼𝑐,𝑠� − (𝐼𝑑,𝑠

2 𝑅𝑑,𝑠 + 𝐼𝑐,𝑠
2 𝑅𝑐,𝑠) (6) 

The equation for 𝑃𝑡𝑡𝑡𝑡𝑡  is thusly: 

𝑃𝑡𝑡𝑡𝑡𝑡 = 𝑉𝑏𝑂𝑂�𝜂𝑑,𝑏𝐼𝑑,𝑏 + 𝐼𝑐,𝑏/𝜂𝑐,𝑏� − �𝜂𝑑,𝑏𝐼𝑑,𝑏
2 𝑅𝑑,𝑏 + 𝐼𝑐,𝑏

2 𝑅𝑐,𝑏/𝜂𝑐,𝑏� 
+𝑉𝑠𝑂𝑂�𝜂𝑑,𝑠𝐼𝑑,𝑠 + 𝐼𝑐,𝑠/𝜂𝑐,𝑠� − (𝜂𝑑,𝑠𝐼𝑑,𝑠

2 𝑅𝑑,𝑠 + 𝐼𝑐,𝑠
2 𝑅𝑐,𝑠/𝜂𝑐,𝑠) (7) 

where 𝜂𝑑,𝑏, 𝜂𝑐,𝑏, 𝜂𝑑,𝑠 and 𝜂𝑐,𝑠 are the discharging and charging 
efficiency of both banks determined by the efficiency of the 
corresponding converter. 

We formally formulate the HEES system management 
problem in FEVs as an online decision making problem. The 
goal of HEES system management is to optimize the overall 
objective: 

Objective: Minimizing the total energy drawn from the 
HEES system for a complete driving cycle: 

𝐸𝑡𝑡𝑡𝑡𝑡 = � 𝑉𝑏𝑂𝑂(𝑡)𝐼𝑎(𝑡)d𝑡
𝑇

0
+

1
2
𝐶𝑠 ��𝑉𝑠𝑂𝑂(0)�

2 − �𝑉𝑠𝑂𝑂(𝑇)�
2� (8) 

where 𝑇  is the total driving time, 𝐼𝑎(𝑡)  is the actual charge 
change rate inside the battery given in (1), and is positive when 
it is discharging. The online management policy will make 
decision periodically at each epoch t throughout operation. 

Find: (at each epoch 𝑡) 
• The battery bank discharge or charge current: 𝐼𝑑,𝑏(𝑡), 

𝐼𝑐,𝑏(𝑡) 
• The supercapacitor bank discharge or charge current: 

𝐼𝑑,𝑠(𝑡), 𝐼𝑐,𝑠(𝑡) 

Given: (at each epoch 𝑡) 
• Driving power demand 𝑃𝑑(𝑡) 
• Power demand of other electrical systems 𝑃𝑒(𝑡) 
• DC bus voltage: 𝑉𝐷𝐷𝐷𝐷𝐷(𝑡) 
• Li-ion battery bank state-of-charge: 𝑆𝑆𝑆𝑏(𝑡) 
• Supercapacitor bank open circuit voltage: 𝑉𝑠𝑂𝑂(𝑡) 
• Vehicle speed: 𝑣(𝑡) 

Subject to: (at each epoch 𝑡) 
• Power constraint given by (7). 
• Supercapacitor bank terminal voltage constraint: 

𝑉𝑠,𝑚𝑚𝑚
𝑂𝑂 ≤ 𝑉𝑠𝑂𝑂(𝑡) = 𝑉𝑠𝑂𝑂(0)−� �𝐼𝑑,𝑠(𝜏) + 𝐼𝑐,𝑠(𝜏)�𝑑𝑑

𝑡

0
/𝐶𝑠 ≤ 𝑉𝑠,𝑚𝑚𝑚

𝑂𝑂  (9) 

Note that at any time 𝑡, the controller only has the data now 
and the past data. We do not assume any prior knowledge 
about the future. 
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Fig. 6. HEES Control System. 

Fig. 6 shows the information and control flow in the HEES 
control system. The controller gathers information from the 
motor, other electrical systems, as well as the energy storage 
system itself. It makes a decision on how to regulate charg-
ing/discharging current of battery bank and supercapacitor 
bank based on this information and the presented algorithm in 
Section IV. Next it sets outputs of the converters to the desired 
current levels based on the decision. The controller does not 
need to have any knowledge about the future driving profile, or 
the underlying models for the power conversion circuitry, elec-
tric motor and the vehicle dynamics. The only required infor-
mation is the 𝑉𝑏𝑂𝑂  versus 𝑆𝑆𝑆𝑏  relationship of the Li-ion bat-
tery in order to calculate the total energy consumption, which is 
the optimization objective. Note that if this relationship is una-
vailable, 𝑉𝑏𝑂𝑂  may be substituted with the battery bank's rated 
terminal voltage as an approximation. Section IV describes 
how one can learn a judicious control policy without knowing 
all those models. 

IV. PROBLEM SOLUTION 

A. Reinforcement Learning Background 
Reinforcement learning (RL) is a widely used machine 

learning technique when the problem of interest can be mod-
eled as an interaction system between an objective-oriented 
agent and an environment with uncertainty [22]. Fig. 7 illus-
trates how the agent interacts with the environment: At deci-
sion epoch 𝑡𝑘, the system is at state 𝑠𝑘, and the agent chooses 
action 𝑎𝑘. As a result of the action, the system transitions to 
state 𝑠𝑘+1 at time 𝑡𝑘+1 and yields a reward 𝑅𝑘 to the agent. In 
RL, a decision epoch is defined as the time point when the 
agent is able to make an action. 

Agent

Environment
1ks +

1kR +

ks kR
ka

 
Fig. 7. The agent environment interaction [22]. 

We denote the state space by 𝑆 and the set of available ac-
tions by 𝐴. The reward 𝑅 is a function of the current state and 
action: 𝑆 × 𝐴 → 𝑅. The ultimate goal of RL is to find a policy 
𝜋(𝑠) = 𝑎 for the agent, which chooses action 𝑎 ∈ 𝐴 for each 
state 𝑠 ∈ 𝑆 , in order to maximize the discounted cumulative 
reward collected during an infinite time span: ∑ 𝛾𝑖𝑅𝑖∞

𝑖=0 . Note 
that the discount factor 𝛾  is required not only to make the 
above summation finite, but more importantly to reflect the 
uncertainty in the future. 

We employ a specific type of RL algorithm, namely TD(λ)-
learning [23]. In TD(λ)-learning technique, a 𝑄 value, denoted 
by 𝑄(𝑠,𝑎) , is associated with each state-action pair (𝑠, 𝑎) , 
which approximates the expected discounted cumulative re-
ward of taking action 𝑎  starting at state 𝑠 . At each decision 
epoch, 𝑄 values are updated based on the collected reward dur-
ing the current time period, and a new action is chosen based 
on the updated 𝑄 values of corresponding state-action pairs. 



B. Proposed RL-based Algorithm 
To apply the RL method to the HEES system management 

problem in EVs, we first define the state and action space, and 
the reward function. Then we present the RL-based algorithm. 

1) State, Action and Reward Definition: 
State Space: {𝑃𝑡𝑡𝑡𝑡𝑡} × {𝑣} × �𝑣′� � × {𝑉𝑠𝑂𝑂} × {𝑉𝐷𝐷𝐷𝐷𝐷} , 

where 𝑣′�  is the predicted vehicle acceleration between the cur-
rent and the next decision epoch, and the rest are defined in 
Section III. 

The complexity and convergence speed of TD(λ)-learning 
algorithm is proportional to the number of state-action pairs; 
therefore, it is better to include only the most critical inputs 
(and exclude the rest) in the state space. For example, the bat-
tery SoC is excluded in the state space since it does not have 
significant impact on the power conversion efficiency of con-
verters, compared to the SoC of the supercapacitor bank. 
𝑉𝐷𝐷𝐷𝐷𝐷 may be excluded as well if it does not change dramati-
cally over time. Meanwhile, because the predicted vehicle ac-
celeration is strongly correlated with the motor power, we add 
it to the state space. By predicting future acceleration of the 
vehicle, we equip the controller with the information of the 
peak power demand or regenerative power in the near future, 
which helps the controller to make the decision of taking corre-
sponding actions such as pre-charging or discharging the su-
percapacitor bank. 

Action Space: �𝐼𝑑,𝑏/𝐼𝑐,𝑏�, where 𝐼𝑑,𝑏 (𝐼𝑐,𝑏) denote the dis-
charge (charge) current of the battery bank and is from a set of 
predefined values. 

We only need to determine the charging or discharging cur-
rent of the battery bank. The supercapacitor bank current is 
determined automatically from the total power demand 𝑃𝑡𝑡𝑡𝑡𝑡  
using (7). In practice, the supercapacitor bank current is deter-
mined by a feedback control mechanism in the sense that we 
configure Converter #1 in Fig. 3 to supply the desired amount 
of current and Converter #2 in the same figure to maintain the 
voltage on the DC bus. For example, if 𝑃𝑡𝑡𝑡𝑡𝑡  is higher than the 
power provided by both storage banks, the voltage on the DC 
bus slightly drops, and the supercapacitor bank supplies more 
power in response to raise the DC bus voltage back to the de-
sired level. 

To keep the supercapacitor bank terminal voltage within the 
lower and upper bounds, we add additional logic to protect the 
supercapacitor from being over-charged or over-discharged 
when its terminal voltage is higher than the maximum limit or 
lower than the minimum limit. 

The proposed RL algorithm for the online hybrid energy 
storage system management problem is invoked periodically 
with a period of ∆𝑡. If the total power demand changes be-
tween any two decision epochs, the battery bank current re-
mains the same while the supercapacitor bank current adapts to 
the change of total power demand because Converter #2 per-
forms voltage regulation of the DC bus. 

Reward Function: Reward 𝑅𝑘 collected between decision 
epochs 𝑡𝑘−1 and 𝑡𝑘 is defined as: 

𝑅𝑘 = −� 𝑉𝑏𝑂𝑂(𝑡)𝐼𝑎(𝑡)d𝑡
𝑡𝑘

𝑡𝑘−1
−

1
2
𝐶𝑠 ��𝑉𝑠𝑂𝑂(𝑡𝑘−1)�

2 − �𝑉𝑠𝑂𝑂(𝑡𝑘)�
2� (10) 

Note that 𝑅𝑘  is positive if the HEES system is being 
charged and negative if the system is being discharged. The 
reward function is defined as such because the overall objective 
for the HEES system management problem in FEVs is to min-
imize the energy drawn from the HEES system. 

2) Action Selection 
A straightforward approach for action selection is to always 

choose the action with the highest 𝑄 value. If we do so, how-
ever, we are at the risk of getting stuck in a sub-optimal solu-
tion [24]. A judicious RL agent should exploit the best action 
known so far to gain rewards while in the meantime exploring 
all possible actions to find a potentially better choice. We ad-
dress this exploration versus exploitation issue by breaking our 
learning procedure into two phases: In the exploration phase, 𝜀-
greedy-policy is adopted, i.e., the current best action is chosen 
only with probability 1 − 𝜀. In the exploitation phase, the ac-
tion with the highest 𝑄 value is always chosen. 

3) Q-Value Update Equation 
TD(λ)-learning algorithm updates every 𝑄 value according 

to the following equation at decision epoch 𝑡𝑘: 

𝑄(𝑠, 𝑎)
𝑢𝑢𝑢𝑢𝑢𝑢
�⎯⎯⎯� 𝑄(𝑠, 𝑎) + 𝛼 ∙ 𝑒(𝑠, 𝑎)

∙ �𝑅𝑘 + 𝛾max
𝑎𝑘

{𝑄(𝑠𝑘 ,𝑎𝑘)} − 𝑄(𝑠,𝑎)� (11) 

where 𝑠𝑘 and 𝑎𝑘 are the state and action at decision epoch 𝑡𝑘. 
The coefficient 𝛼 controls the learning rate and 𝛾 is the dis-
count factor. 𝑒(𝑠, 𝑎) denotes the eligibility of the state-action 
pair (𝑠, 𝑎), reflecting the degree to which the particular state-
action pair has been chosen in the recent past. The eligibility 𝑒 
of all state-action pairs is updated at each decision epoch by: 

𝑒(𝑠, 𝑎)
𝑢𝑢𝑢𝑢𝑢𝑢
�⎯⎯⎯� 𝜆 ∙ 𝑒(𝑠, 𝑎) + 𝛿((𝑠, 𝑎), (𝑠𝑘 , 𝑎𝑘)) (12) 

where 𝜆 is a constant between 0 and 1, and 𝛿(𝑥,𝑦) is the Kron-
ecker delta function: 

𝛿(𝑥, 𝑦) = �1, 𝑥 = 𝑦
0, 𝑥 ≠ 𝑦 (13) 

In practice, we do not have to update the 𝑄 values and eli-
gibility 𝑒  of all state-action pairs. We only keep a list of 𝑀 
most recent state-action pairs since the eligibility of all other 
state-action pairs is at most 𝜆𝑀 which is negligible when 𝑀 is 
large enough. 

4) Vehicle Acceleration Prediction 
We first predict the speed of the vehicle at the next decision 

epoch using a second-order autoregressive (AR) model [25]: 

𝑣�(𝑡𝑘+1) = 𝜑1𝑣(𝑡𝑘) + 𝜑2𝑣(𝑡𝑘−1) + 𝜀𝑘+1 (14) 
where 𝜑1  and 𝜑2  are two AR coefficients and 𝜀𝑘  is white 
noise. Both 𝜑1 and 𝜑2 are computed online by estimating the 
first two elements of the autocorrelation of vehicle speed (de-
noted by 𝜌1 and 𝜌2) and solving Yule Walker equations: 

�
𝜑1 + 𝜑2𝜌1 = 𝜌1
𝜑1𝜌1 + 𝜑2 = 𝜌2

 (15) 



Then the predicted vehicle acceleration between the current 
decision epoch and the next decision epoch is given by: 

𝑣′� =
𝑣�(𝑡𝑘+1) − 𝑣(𝑡𝑘)

∆𝑡
=

(𝜑1 − 1)𝑣(𝑡𝑘) + 𝜑2𝑣(𝑡𝑘−1)
∆𝑡

 (16) 

5) Algorithm Description 
In summary, the pseudo code of the above TD(λ)-learning 

algorithm at each decision epoch is: 

Update AR model coefficients for vehicle acceleration prediction 
Compute current state 𝑠 
Find action 𝑎 that maximizes 𝑄(𝑠, 𝑎) 
Update the 𝑄 values of 𝑀 previous states 
Update eligibility 𝑒 of 𝑀 − 1 previous states and the current state 
If in exploration phase 
 Randomly select a new action 𝑎′ with probability 𝜀 
Execute action 𝑎 (or 𝑎′) 

The time complexity of the above algorithm is 𝑂(|𝐴| + 𝑀) 
where |𝐴| denotes the number of available actions and 𝑀 is the 
number of previous state-action pairs kept in memory. 

V. SIMULATION RESULTS 

A. Simulation Setup 
We conduct simulations on three different vehicle specifi-

cations (as shown in TABLE II. ) and four driving profiles (as 
shown in TABLE III. ), using SIMES [30], which has detailed 
models of various energy storage elements and power convert-
ers for validating the model-free RL technique. We adopt the 
motor efficiency model from ADVISOR [3], theoretical per-
manent magnet synchronous motor (SM) model in [28], and 
theoretical induction motor (IM) model in [29], respectively. 
We use the vehicle dynamics model presented in Section II.2 to 
convert the driving profile to the driving power demand. With-
out loss of generality, the power demand of other electrical 
systems is assumed to be constant as it is very small compared 
with the driving power demand. 

In the proposed RL algorithm, we configure the number of 
state-action pairs to be 160 and use a control interval of 10s. 
The 𝑄 value of each state-action pair is initialized to 0. 

TABLE II.  VEHICLE SPECIFICATIONS.1 

Vehicle Specs 1 2 3 
Mass (kg) 970 1493 2108 

Motor Type SM SM IM 
                                                           

1 The specifications of the three vehicles mainly come from those of a Smart EV, Nissan 
Leaf and Tesla Model S, respectively. A supercapacitor bank with reasonable capacity 
is considered for each vehicle. 

Tire Radius (m) 0.287 0.316 0.352 
Axle ratio 4.0 7.94 9.73 

Li-ion Capacity (kWh) 17.6 24 65 
SC Size (F) 5 7 15 

TABLE III.  DRIVING PROFILE SPECIFICATIONS (FROM [27]). 

Profile Time 
(s) 

Distance 
(km) 

Maximum 
Speed (km/h) 

Maximum Accelera-
tion (m/s2) 

hudds 1061 8.9 93 1.96 
hwy 766 16.5 96 1.43 
la92 1436 15.8 108 3.08 
us06 601 12.9 129 3.76 

The baseline system and management policies we compare 
with are as follows, with corresponding parameters optimized 
for each vehicle model: 

1) BO: Li-ion battery only electrical energy storage system; 

2) TH: Threshold values are imposed upon the battery bank 
charging/discharging current. The battery bank current should 
not exceed the threshold unless the supercapacitor bank termi-
nal voltage goes above 𝑉𝑠,𝑚𝑚𝑚

𝑂𝑂  or drops below 𝑉𝑠,𝑚𝑚𝑚
𝑂𝑂 ; 

3) SF: Supercapacitor bank supplies power/get charged 
first. Battery gets charged/discharged only when the superca-
pacitor bank terminal voltage goes above 𝑉𝑠,𝑚𝑚𝑚

𝑂𝑂  or drops below 
𝑉𝑠,𝑚𝑚𝑚
𝑂𝑂 ; 

4) PI: Proportional-Integral (PI) feedback control on 𝑉𝑠𝑂𝑂  
[16]. Use supercapacitor bank to regulate the voltage on DC 
bus and use battery bank to perform PI control on 𝑉𝑠𝑂𝑂; 

5) SPI: Speed dependent PI control on 𝑉𝑠𝑂𝑂  [16]. Similar to 
PI whereas the target voltage is speed-dependent; 

6) HY: Hysteretic feedback control on 𝑉𝑠𝑂𝑂  where the rela-
tionship between the battery bank current and the supercapaci-
tor bank terminal voltage is defined by a hysteretic curve [12]. 

B. Simulation Results 
Fig. 8 shows the electrical energy storage system efficiency 

(defined as the ratio between energy delivered to the load 
∫𝑃𝑡𝑡𝑡𝑡𝑡d𝑡 and energy drawn from the energy storage system 
𝐸𝑡𝑡𝑡𝑡𝑡) of different vehicles and different driving profiles. As 
shown in Fig. 8, the efficiency of the battery only system can 
be as high as around 80% for the hwy profile when the vehicle 
is driving at relatively constant speed for most of the time. 
However, its efficiency drops significantly to below 55% in 
some cases when the vehicle spends more time on quick accel-
eration. The incorporation of a supercapacitor bank enhances 
the efficiency by up to 25% using the presented RL algorithm. 
An advantage of the presented RL algorithm based manage-
ment policy over other baseline policies is that the RL based 
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Fig. 8. Electrical energy storage system's efficiency of different vehicles and different driving profiles. 



policy consistently outperforms all other baseline policies in all 
cases of different driving profiles and vehicle specifications, 
demonstrating that it adapts itself to different driving condi-
tions well. 

TABLE IV.  ENERGY DISSIPATED IN STORAGE SYSTEMS. 

Management 
Policy BO TH SF PI SPI HY RL 

Energy 
Dissipated (%) 29.9 25.6 18.2 22.1 18.1 19.2 16.2 

The average percentages of energy dissipated in the storage 
system of different systems and management policies are 
shown in TABLE IV. The presented RL algorithm reduces 
energy dissipation by 46% compared to the battery only system 
and 10% compared to the best baseline management policy. 
The decrease of energy dissipation in the storage system not 
only improves the efficiency, but also reduces heat generated in 
the storage system, thereby enhances the lifetime of Li-ion 
batteries and lowers security risks. 

VI. CONCLUSION 
In this paper a model-free reinforcement learning based al-

gorithm to manage the hybrid electrical energy storage systems 
in electric vehicles is presented. Simulations are conducted 
using realistic models of energy storage systems and actual 
parameters of existing commercial electrical vehicles. Simula-
tion results shows that the presented approach improves the 
efficiency of the energy storage system by up to 25% compared 
to a Lithium-ion battery only energy storage system and out-
performs all other online control policies in all cases with dif-
ferent vehicle specifications and different driving profiles. 
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