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ABSTRACT

Optimization of the interaction distance between qubits to map
a quantum circuit into one-dimensional quantum architectures is
addressed. The problem is formulated as the Minimum Linear
Arrangement (MINLA) problem. To achieve this, an interaction
graph is constructed for a given circuit, and multiple instances of
the MINLA problem for selected subcircuits of the initial circuit
are formulated and solved. In addition, a lookahead technique is
applied to improve the cost of the proposed solution which ex-
amines different subcircuit candidates. Experiments on quantum
circuits for quantum Fourier transform and reversible benchmarks
show the effectiveness of the approach.

Categories and Subject Descriptors
B.6.3 [Logic Design|: Design Aids—Automatic synthesis

General Terms
Algorithms, Design

Keywords

Logic synthesis, quantum circuits, interaction distance, quantum
architectures.

1. INTRODUCTION

Current technologies for quantum computing often need
gates that involve geometrically adjacent qubits. The archi-
tecture of a quantum computing system can be described
by a simple connected graph G = (V, E) where vertices V
represent qubits and edges E represent adjacent qubit pairs
where gates can be applied on [1]. Accordingly, a complete
graph expresses the absence of any constraints. Quantum al-
gorithms usually consider no interaction constraint between
qubits. However, physical implementation may impose ad-
ditional geometrical constraints. Therefore, the developed
quantum algorithms or quantum circuits should be modified
to consider the effect of various technological limitations.
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Quantum computation technologies arrange qubits of a
physical layout in a one (1D), two (2D), or three (3D) dimen-
sional architecture.! The Linear Nearest Neighbor (LNN)
architecture corresponds to a graph where an edge exists be-
tween only neighboring vertices in a line. Two-dimensional
square lattices (2DSL) corresponds to a graph on a Manhat-
tan grid with four neighboring qubits. The three-dimensional
square lattices (3DSL) model is a set of stacked 2D lattices
with six neighboring qubits. Generally, 3DSL is less restric-
tive. However, it can suffer from the difficulty of controlling
3D qubits. Several quantum computing systems of trapped
ions [2] and liquid NMR [3] have been designed based on
the interactions in a line. 2DSL proposals include arrays of
trapped ions [2] and Josephson junctions [4]. The architec-
ture in [5] is based on the 3DSL model.

Exploring an efficient realization of a given quantum al-
gorithm or quantum circuit for a restricted architecture —
the focus of this work — has been followed by different re-
searchers during the recent years. Physical implementation
of the quantum Fourier transformation (QFT) [6,7], Shor’s
factorization algorithm [8-10], quantum addition [11], quan-
tum error correction [12], and general reversible circuits [13]
for the LNN/2DSL architectures have been explored in the
past. Worst-case synthesis cost of a general/Boolean uni-
tary matrix under the nearest neighbor restriction has been
discussed in [14-17]. In [18,19] heuristic methods for con-
verting an arbitrary quantum circuit to its equivalent circuit
on the LNN architectures have been proposed.

In this work, we model the problem of improving local-
ity, i.e., reducing interaction distance, of a given quantum
circuit by graph theory. Precisely, we use the minimum lin-
ear arrangement (MINLA) problem in graph theory to find
optimized local quantum computation, in terms of the to-
tal synthesis cost or latency, in architectures with qubits
arranged in a line. The rest of this paper is organized as
follows. In Section 2, basic concepts are introduced. Prior
work is discussed in Section 3. Section 4 describes the pro-
posed approaches for locality improvement of quantum cir-
cuits. Experimental results are given in Section 5 and finally
Section 6 concludes the paper. We also discuss how the pro-
posed (MINLA)-based techniques can be generalized for 2D
quantum architectures.

2. BASIC CONCEPTS

1Quantum technologies proposed mainly for quantum communi-
cation, such as photon-based model, is not considered here.



In the following two subsections, we briefly discuss related
concepts in quantum circuits and quantum architectures.

2.1 Quantum gates and circuits

A quantum bit, qubit, can be considered as a mathemati-
cal object which represents a quantum state with two basic
states |0) and |1). In addition to the selected basis, a qubit
can get any linear combination of its basic states. A quan-
tum system which contains n qubits is often called a quan-
tum register of size n. An n-qubit quantum gate performs a
specific 2" x 2" unitary operation on selected n qubits. The
unitary matrix implemented by several gates acting on dif-
ferent qubits independently can be calculated by the tensor
product of their matrices. Two or more quantum gates can
be cascaded to construct a quantum circuit. For a set of k
gates g1, 92, ,gr cascaded in a quantum circuit C' in se-
quence, the matrix of C' can be calculated as My My_1 - -+ M3
where M; is the matrix of the i-th gate (1 < i < k). Given
any unitary U over m qubits |z1z2--- ©m), a controlled-
U gate with k control qubits |y1y2--- yx) may be defined
as an (m + k)-qubit gate that applies U on |z1x2 -+ &) iff
ly1y2 - -+ yr)=|11---1). For example, CNOT is the controlled-
NOT with a single control, Toffoli is a NOT gate with two
controls. A multiple-control Toffoli gate C*FNOT is a NOT
gate with k& controls. In circuit diagrams, e is used for con-
ditioning on the qubit being set to value one. A SWAP gate
maps |ab) into |ba). We use X on qubits of a SWAP gate in
circuit diagrams. More information is in [20].

2.2 Physical layout

In a particular realistic physical layout, e.g., in an ion-trap
quantum architecture [21], each qubit has a specific physical
location at each time step. To apply a 2-qubit gate in a
quantum computing system which uses mobile qubits, both
qubits should be available at one location.? This is done by
moving qubits from one physical location to another dur-
ing the computation. Some quantum architectures provide
a “MOVE” operator which moves one qubit at a time. Other
ones provide a “SWAP” operator which exchanges the loca-
tion of two adjacent qubits at one time step. We will discuss
these cases later in the paper. If all gates use local (adjacent)
qubits, physical implementation can be done with no further
effort; otherwise additional movements are necessary.

For a given quantum circuit, an initial “trivial” qubit or-
dering 1,2, - ,n is usually assumed independent of the cir-
cuit. This qubit ordering reflects the physical locations of
qubits in the physical layout, i.e., qubit #i is assigned to
the i-th physical location (1 < ¢ < n). However, for a given
quantum circuit this arrangement may not be the best in
terms of the resulting latency.®

To improve the total latency, or equivalently the num-
ber of 2-qubit local gates, following [18], one can globally
reorder qubits to change the initial physical locations as

2Quantum technologies with constantly moving phenomena (e.g.,
photons) use “flying” qubits. In this case, gates are fixed and
qubits are affected upon flowing through the gates. In quantum
technologies with physical locations for qubits, gates are applied
in fixed locations and “mobile” qubits may travel between loca-
tions. More detail is in [22].

3 After arranging qubits, gates should be applied. This may need
to move qubits from one physical location to another. Latency
is defined as the total number of time steps required to perform
all gates. This time includes the time required to move qubits
between gate operations, and the time required to apply all gates.
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Figure 1: (a) A sample circuit, and its interaction graph (b). (c)
Circuit in (a) after applying global reordering.

li,lo,-++ )1, for 1 < I; < n. Global reordering consumes
no additional gates. To illustrate, consider a sample circuit
in Figure 1(a) which is the X error syndrome using Shor-
EC method for [[9, 1, 3]] code [23]. The resulting circuit after
applying global reordering is shown in Figure 1(c). As can
be seen, the original circuit has 6 non-local gates, where
four of them are local in the new circuit. Since local gates
use adjacent qubits, there is no need to move the involved
qubits for a gate application. This reduces the circuit la-
tency. The problem is that even after global reordering,
some gates may remain (or be) non-local. In this case, one
needs to add additional local operations, MOVE or SWAP,
to move or permute qubits such that the qubits that are in-
volved in the original non-local gates will be local afterward.
This is called local reordering [18]. Note that after a local
qubit reordering, qubit locations may be changed and work-
ing with the remaining gates may need additional orderings.
This is done by applying extra SWAP gates.

3. PRIOR WORK

For quantum architectures which support SWAP oper-
ation, a straightforward method to overcome the interac-
tion constraints is to insert local SWAP gates in front of a
non-local gate to permute lines (qubits) and move the in-
volved lines toward each other. This should be followed by
adding SWAP gates after the computation to recover the ini-
tial qubit ordering. For specific quantum circuits, one can
explore more efficient implementations [6-9,11,12]. Addi-
tionally, one may try to use local gates “during” a general
synthesis [13] instead of trying to reduce SWAP gates by
a post-process approach. Although this seems interesting,
considering locality besides other important metrics during
the synthesis can complicate the overall process significantly.
On another side, several researchers considered the overall
impact of the interaction constraints on their developed cir-
cuits/constructions instead of working with actual circuits.
In this case, they may “prove” that total cost may increase
by a constant factor (e.g., 10 in [15] and < 2 in [14, 16]).

To work with arbitrary circuits, the authors in [18] devel-
oped exact and heuristic post-synthesis methods to reduce
the number of SWAP gates. The exact method, which is lim-
ited to small circuits, was used in a peephole optimization
approach. Along with 3 templates, the authors suggested
two reordering strategies, global and local, where in global
a qubit with the highest interaction impact is placed at the
middle line continuingly until no further improvement can
be achieved. In local, the algorithm inserts SWAP gates
only before a non-local gate, and the new ordering is used
for the remaining gates.

In [19], the authors showed that a bubble sort generates
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the minimum number of SWAPS required to construct an ar-
bitrary permutation of qubits for each gate. They addition-
ally showed that in an n-qubit circuit, for two qubits of the
i-th gate positioned at locations ¢ and ¢4 only qubits placed
between ¢} and ¢& should be considered instead of working
with all qubits (i.e., |¢i —g¢3|! permutations instead of n! per-
mutations). Note that finding the best local orderings for all
2-qubit gates needs considering all \q{ — qé\! permutations
for all gates at the same time (i.e., |1 —q3|!' X |¢f —g3|!- - -.
To avoid this huge exponential search, authors worked with
at most w consecutive gates.

The authors of [24] considered circuits that perform “spec-
ified” operations spanning n wires with focus on depth. They
showed that rotation of n wires with local gates can be done
in depth n+ 5, reversing n wires with local gates is possible
with depth 2n + 2, swapping across n wires by local gates
can be done in depth n + 7 for even n and in depth n + 8
for odd n with size 6n — 9. More information is in [24].

4. THE PROPOSED METHOD

Basically, a quantum computer technology, e.g., architec-
tures based on ions, may support the MOVE operation to
transform a qubit from one physical location to another. A
physical location may also be shared by several qubits at the
same time. In this case, to make a local two-qubit gate, one
needs to change the locations of far qubits, by applying a
sequence of single-qubit MOVE operations. Note that there
should be enough room to hold the moving qubit(s) in in-
termediate and final physical locations. On the other hand,
a quantum architecture may not provide the MOVE oper-
ation e.g., in architectures based on superconductors. For
this case, one needs to apply SWAP gates which physically
change the locations of both involved qubits. For quantum
architectures with 1D interaction distance, the MOVE op-
eration and a physical location for multiple qubits are not
usual, and the previous approaches discussed in Section 3
worked with SWAP gates. The same limitations exist for
some 2D quantum architectures too. For other 2D quantum
architectures, the MOVE operation and a multi-qubit phys-
ical location exist. In the following sections, we propose our
methods to make gates local in 1D quantum architectures.
Potential problems to extend our approach for 2D quantum
architectures are outlined in Section 6.

The MINLA problem is defined for a weighted graph G =
(V,E). The goal is to arrange the vertices V of G on an
integer line by a one-to-one function f : V. — [1---|V]] to
minimize 3¢, 1 cp Wiuwp|f(w) — f(v)| where wiy ,y is the
weight of the edge between nodes v and v. This problem can
be considered as a label assignment of the given graph G.
The MINLA problem is NP-hard in general. However, poly-
nomial time algorithms to compute exact solutions for some
particular graphs are known. In addition, some approxi-
mation algorithms have been proposed in the past. More
information can be found in e.g., [25]. In this paper, the
degree of a vertex v in graph G is represented as deg(v).
The maximum degree of a graph G, denoted by A(G), is
the maximum degree of its vertices.

4.1 Label assignment for qubit reordering

Consider a given circuit C with n qubits g1, ¢z, , ¢» and
m 2-qubit gates g1, g2, -+ , gm.* Working on C, we construct

4We ignore single-qubit gates for locality improvement since they

a weighted graph G, called interaction graph, with n vertices
V1,02, ,Up corresponding to qubits in C. Additionally, we
add one edge with weight w; ; between nodes v; and v; if
there are w;, ; 2-qubit gates between qubits ¢; and ¢; in the
circuit. If w;; = 0, we omit the edge and for w;; = 1,
we omit the weight. Figure 1(b) illustrates the interaction
graph for the circuit in Figure 1(a). For a gate g; with qubits
¢ and j (and i # j), interaction distance (ID) is defined as
li—j—1|. A gate with ID= 0 is a local gate. Total interaction
distance of a circuit is a summation over the interaction dis-
tances of its gates. Accordingly, minimizing the interaction
distance in C is equivalent to solving the MINLA problem
for G. Figure 1(c) shows the circuit in Figure 1(a) after
applying the MINLA algorithm where the initial ID = 12
in (a) is improved to ID = 4 in (b). While applying the
MINLA problem on the whole circuit can improve the total
interaction distance, some gates may remain non-local, see
Figure 1(c). Next, we show how the MINLA problem can
be used to make all gates local.

4.2 Subcircuits with consecutive gates

Consider a set of w consecutive 2-qubit gates A = {¢1, g2,
-+, gw} for an n-qubit LNN architecture. Assume that the
gate g; works on qubits ¢} and ¢4 (and ¢i # ¢%). There
are many different qubit arrangements. For an interaction
graph G, we may have:

e A(G) =0. This is a trivial case with no gate.

e A(G) = 1. In this case, all gates use distinct qubits.
Accordingly, one can find a qubit (re)ordering when
for each gate g;, the qubits ¢¢ and ¢4 are adjacent. To
achieve this, group ¢i and ¢ as a new qubit for all
gates in A for a total of n — w qubit groups — each
group can include either one qubit (if the qubit is not
used by any gates in A) or two qubits (if exactly one
gate in A uses the two qubits). There are 2 x (n —w)!
qubit orderings to make all gates in A local. No SWAP
gate is required in this case.

e A(G) = 2 and there is no cycle in G. For this case,
there is a “staircase” construction where all gates are
local. Assume there are ko vertices with deg(v) =
0, k1 vertices with deg(v) = 1, and k2 vertices with
deg(v) = 2 — equivalently ko qubits with no inter-
action, etc. For ko > 0 or k1 > 2 (k1 is even) the
interaction graph is unconnected and the number of
connected components is ko + k1 /2. To construct a lo-
cal circuit, place all qubits (equivalently vertices in G)
with deg(v) = 0 close to each other, and remove such
vertices from G. For a vertex with deg(v) = 1, place
the related qubit at the next available physical loca-
tion, and remove the vertex and its edge from G. Con-
tinue the same approach for the “new” vertex (created
after removing the previous vertex) with deg(v) = 1.
Apply this approach for all connected components in
G. After all, group qubits which belong to one con-
nected component. This leads to ko + k1/2 groups in
total. Exchanging all physical locations of one group

have no effect on circuit locality. Another reason is that single-
qubit gates can be absorbed into surrounding two-qubit gates.
The resulting circuit is called a “skeleton” circuit in [7]. Through-
out the paper, we simply use circuit to mean a skeleton circuit.



with the ones for another group, in (ko + k1/2)! to-
tal ways, has no effect on total interaction distance.
Overall, no SWAP gate is required in this case.

e In any other non-trivial cases with A(G) > 3or A(G) =
2 and with cycle(s) in G, at least one SWAP gate is
required. Assume that we divide all 2-qubit gates in C
into k sets with only local gates, each set with at most s
SWAP gates. For s = 0, all sets belong to either case 1
or case 2. Otherwise, one needs to add SWAPs, called
intra-set SWAP gates. If it is not possible to make
the current w gates local with s SWAP gates, decre-
ment w to w— 1 and recheck. If not, re-decrement and
proceed. It can be verified that at least for w = 2, we
can find a local subcircuit with no SWAP gate, i.e.,
s =0. A larger s limit leads to a larger w.

Inter-set SWAP gates. For a circuit C with m gates
and n qubits, assume that one finds w1, w2, - - - , Wi consecu-
tive gates, w1 + w2 + - - - +wr = m, such that all w; gates in
set i need at most s SWAPs to be local. Assume all w; gates
in the i-th set work on n; < n qubits. Each set i with w;
gates needs a new qubit reordering for the involved n; qubits.
Accordingly, to have a local circuit C’ for C, one needs to add
SWAP gates between sets ¢ and i + 1 for 1 <i < w—1 to
change the qubit ordering in set ¢ to the one in set ¢ + 1.
These SWAP gates are called inter-set SWAP gates. Work-
ing with an unlimited s leads to no inter-set SWAP gates.
Figure 2(a) illustrates the concept. Note that the methods
in [18,19] are special cases of the method discussed above in
the sense that they assume m sets for a circuit with m non-
local gates, no intra-set SWAPs, and then apply inter-set
SWAPs to locally construct adjacent gates.

Label assignment for local reordering. To find the
best possible ordering for each set, we use the MINLA prob-
lem. This is done by constructing an interaction graph G
for gates in each set (vs. the whole circuit) and applying
the MINLA problem for each set accordingly. The solution
to the MINL A problem may not be unique, in this case the
one that leads to the minimum number of inter-set SWAP
gates is preferred. In case of a tie, one is selected randomly.
To select sets, one can try w = 3 consecutive gates starting
from gate ¢ in the circuit, and then apply the MINLA prob-
lem. If a relabeling and at most s SWAP gates are sufficient
to make the gates local, increment w and redo. Otherwise,
use w — 1 and restart with ¢ + w. Note that the exact solu-
tion of the MINLA problem for some particular graphs can
be found in a polynomial time.® Hence, one may be able to
find optimal MINLA solutions in several sets.

Intra-set SWAP & inter-set SWAP minimization.
To minimize the number of SWAP gates one should partic-
ularly consider the value of s for each set. Consider k sets
indexed from 1 to k each of which with w; gates and working
on n; qubits. Assign s; as the maximum number of intra-set
SWAP gates for set i. The value of s; affects the final qubit
ordering of set ¢ as well as its following sets, and also the
total number of sets. Figure 2 illustrates this effect with
one example. Accordingly, s; values and the total number
of sets should be carefully determined. On the other hand,
after distinguishing sets and appropriate qubit orderings for
each set, we apply [19, Theorem 1] to find the minimum

5Trees7 rectangular and square meshes and hypercubes are exam-
ples of graphs that can be solved in polynomial time with optimal
MINLA solution [25].

number of inter-set SWAP gates. This method is based on
simulating the bubble sort algorithm.

4.3 SWAP minimization with lookahead

Consider an n-qubit subcircuit C with W gates divided
into a set of k smaller subcircuits c1, ca, - - - , cx each of which
with w; gates (Zi=¥w; = W). Applying the MINLA problem
on set i leads to a qubit ordering O; for this set. Given that
the ordering O; for set i has no effect on its successive qubit
orderings for sets i + 1,--- ,k (i.e., solutions of the MINLA
problem in the successive sets), all ¥ MINLA problems can
be theoretically solved in parallel. To find a local subcircuit
c; for ¢; after considering the effect of O;, we apply the ap-
proach in [18]. Additionally, the number of inter-set SWAP
gates is determined by considering qubit orderings O; and
Oit1 (1 <i<k—1) and the method in [19, Theorem 1].

Altogether, one can find the number of intra-set SWAP
gates for all sets and the number of inter-set SWAPs ac-
cordingly to determine the total number of SWAP gates for
the subcircuit C. However, w; values are not pre-determined
and are subject to an optimization (Figure 2). To improve,
one can move the last gate of set ¢ to set 4+ 1 (or the first
gate to set ¢ — 1) and update the number of intra-set and
inter-set SWAP gates accordingly as discussed. This should
be followed by selecting the best sets to minimize the total
number of SWAP gates for C. To Achieve this, we apply a
lookahead. Starting from the first gate of subcircuit C, one
needs to determine initial set borders. We begin from the
gate at position ¢ = 0 and include gates at positions 1---7
until the added gate at position j leads to an interaction
graph G with A(G) > 2, or creation of a cycle in the graph.
Then, we close the current set without the j-th gate, and
restart the same approach from the gate at position j and
a new set. Continuing this process leads to an initial set
configuration. Then, we increment/decreamnet the number
of gates at each set by min(L, w;) for a lookahead of size L,
and construct a search tree to obtain a minimized number
of SWAPs for C.

5. EXPERIMENTAL RESULTS

We implemented the proposed optimization method in
C++ and all experiments were done on an Intel Core i7-3770
machine with 16GB memory. To achieve this, the program
initially extracts an interaction graph from a given circuit.
Then, it determines the number of sets and set borders in
such a way that each set can be implemented locally with
no SWAP gate. This step is followed by running several in-
stances of the MINLA algorithm for each set. Finally, the
algorithm inserts SWAP gats between adjacent sets as dis-
cussed. To reduce the number of SWAPs, for each set the
ordering which leads to the minimum number of inter-set
SWAP gates is selected.

To evaluate the proposed interaction distance optimiza-
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Figure 4: The result of applying the proposed method on the
4gt11_84 benchmark. (a) Non-local circuit, (b) local circuit.
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Figure 2:

(a) Circuit in Figure 1(c) with only local gates. In this circuit, our algorithm was applied for subcircuits ¢; and cg in Figure

1(c), and 6 inter-set SWAP gates are added and s1 = s2 = 0. (b) The value of s; in each set affects the total number of SWAP gates.
Circuit in (b) has the same functionality in (a) but with s; = s3 = 4 (redrawn in (c¢) with SWAP gates). The second subcircuit in (b)
uses intra-set SWAP gates as shown in (c). No inter-set SWAP gate is used in (c). Note that in (c) one may consider two sets with four

and two gates, shown in (d).

In this case, s1 = s2 = 0, and four inter-set SWAP gates are applied. Comparing circuits in (d) and (a)

further reveals the effect of selecting appropriate subcircuits on total cost.

Table 1:

The synthesis results (# of SWAPs) for benchmarks in [26] as well as for quantum Fourier transform circuits after applying the

method in [18] and ours. Runtime results (all in second) for [18] vary from = 0 for small circuits to 1300 for large circuits. On average,
the results in [18] are improved by 28%. S, m/M/A/T, and % represent # of sets, minimum/maximum/average/total numbers of SWAP

gates in each set, and improvement.

Ours Ours

Circuit n [18] | S (m,M,A,T) Time | % Circuit n [18] S (m,M,A,T) Time %
3.17_13 3 6 5 (1,1,0.8,4) 0.007 | 33 hwb8_118 8 24541 6205 (1,9,2.3,14361) 389.1 41
4.49_17 4 20 10 (1,2,1.2,12) 0.006 | 40 hwb9_123 9 36837 | 7344 (1, 14 2.9,21166) 1200 43
4gt10-v1_81 5 30 14 (1,3,1.4,20) 0.013 | 33 modbadder_128 | 6 85 31 (1,4, 1 6,51) 0.064 40
4gt11_84 5 3 2 (2,2,1,1) 0.01 67 mod8-10_177 5 77 43 (1,3,1.8,72) 0.02 6

4gt12-v1_89 5 35 23 (1,3,1.5,35) 0.021 0 rd32-v0_67 4 2 3 (1,1,0.6,2) 0.006 0

4gt13-v1_93 5 11 6 (1,2,1,6) 0.11 45 rd53.135 7 76 29 (1,7,2.3,66) 0.097 13
4gt4-v0_80 5 34 16 (1,5,2.2,34) 0.035 0 rd73.140 10 62 22 (1,8,2.5,56) 12.472 10
4gt5_75 5 17 9 (1,2,1.3,12) 0.015 | 29 sym9_148 10 5480 1736 (1,8,1.9,3415) 833.33 | 38
4mod5-v1_23 5 16 8 (1,2,1.2,9) 0.015 44 sys6-v0_144 10 62 21 (1,7,2.8,59) 9.814 5

4mod7-v0_95 5 28 15 (1,2,1.4,21) 0.012 | 25 urfl_149 9 60235 19952 (1,11,2.2,44072) 896.1 27
aj-el1_165 4 39 23 (1,4,1.5,36) 0.018 | 8 urf2_152 8 25502 | 8652 (1,9, 2 0,17670) 61.14 31
alu-v4_36 5 23 10 (1,5,1.8,18) 0.017 | 22 urf5_158 9 52440 17705 (1,9,2.2,39309) 1191.7 | 25
decod24-v3.46 | 4 4 3 (1,2,1,3) 0.01 25 QFT5 5 12 3 (3,3,2,6) 0.008 50
ham7.104 7| 84 32 | (1,7,2.1,68) 0.082 | 19 || QFT6 6 | 22 4 (2,7,3,12) 0.053 | 45
hwb4_52 4 14 8 (1,2,1.2,10) 0.005 | 29 QFT7 7 39 5 (3,10,5.2,26) 0.253 33
hwb5_55 5 79 42 (1,5,1.5,63) 0.037 | 20 QFT8 8 60 5 (5,13,6.6,33) 1.77 45
hwb6_58 6 136 54 (1,6,2.1,118) 0.049 13 QFT9 9 87 6 (4,16,9,54) 22.332 | 38
hwb7_62 7 3660 961 (1,8,2.2,2128) 11.99 42 QFT10 10 123 7 (2,18,10,70) 4.261 43

tion method, we compared our results with those obtained
by applying the method in [18] for reversible benchmarks
in [26] as well as for the quantum Fourier transform circuits.
For all cases, the number of SWAP gates added by each
method to construct a local circuit was compared. In [18],
quantum costs before and after the optimization were re-
ported where SWAP gate was considered as a unit-cost gate
(see [18, Table 3]). Accordingly, the number of SWAP gates
is the difference of quantum cost before and after the op-
timization. We limited the runtime to 30 minutes and re-
ported those cases that our algorithm leads to a solution.
Table 1 reports the results.

For each circuit in Table 1, besides the number of SWAP
gates we reported the number of sets and the minimum,
maximum and average numbers of SWAP gates in each set.
Note that we limited the algorithm to use s = 0 in each
set. Accordingly, no intra-set SWAP gate is used and all
SWAPs are the result of applying inter-set SWAP insertion
method. We also limited the algorithm to use a lookahead
of depth = 1 to reduce runtime. Increasing the lookahead
depth improves the results with the penalty of runtime. As
can be seen in Table 1, the average number of SWAP gates
required to transform a local ordering from one set to an-
other set is small, and our algorithm leads to a considerable
reduction in the number of SWAP gates — 28%, on average
and up to 60%. Figure 3 and Figure 4 illustrate the results
of applying the proposed method on two benchmarks. In
these circuits, all SWAP gates are inserted between sets.

6. CONCLUSION AND FUTURE WORK

In this paper, the interaction distance constraint in quan-
tum architectures with 1D interactions was addressed. We
modeled the interactions between gate qubits in a given cir-
cuit by an interaction graph, and used the well-known Min-
imum Linear Arrangement (MINLA) problem to find qubit
reordering to improve circuit locality. The proposed ap-
proach divides a given circuit into several subcircuits and
uses the MINLA instances within each subcircuit to find
qubit locations for qubits involved in each subcircuit. Next,
local SWAP gates are inserted inside each subcircuits to
make the remaining non-local gates local. Finally, additional
SWAP gates are inserted between subcircuits to transform
one qubit ordering to another to keep circuit functionally
unchanged. The proposed approach applies a lookahead to
determine subcircuit borders and to minimize the total num-
ber of SWAP gates. Given that the MINLA is NP-hard, the
problem of minimizing the number of necessary SWAP gates
to run an arbitrary quantum circuits on LNN architectures
is NP-hard. This addresses the conjecture in [19, page 25].

In addition to considering circuit depth and improving
runtime to handle larger circuits, a major step in future
direction is to consider the interaction distance constraint
in 2D quantum architectures. This path has been followed
for specific circuits in the past e.g., [10]. However, the case
of general circuits needs attention.

e For architectures which do not support MOVE and use
one physical location per qubit, we can extend MINLA
to the 2-dimensional grid arrangement problem [27].
New methods are required to insert intra-set SWAPs
and to determine initial qubit locations.
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Figure 3: The result of applying the proposed method on the 3_17_13 benchmark. (a) Non-local circuit, (b) local circuit.

e For quantum architectures which support MOVE and

[9]

[10]

[11]

[12]

[13]

[14]

may hold several qubits in one physical location our
ideas should be revised. In this case, one can con-
struct a graph for physical locations (vs. qubits) and
use one node for qubits with the same location. This
can be followed by a 2-dimensional grid arrangement
problem to determine a qubit ordering. Besides the
challenges stated above, the algorithm should handle
the maximum size of intermediate and final physical
locations when one qubit is passing from one physical
location. Method in [28] is a related approach.
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